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Abstract
In this paper, we consider weighted Lorentz spaces with respect to a vector measure and
derive some of their properties. We describe the interpolation with a parameter function
of these spaces. As an application, we get a type of the generalization of Steffensen’s
inequality for Lp(∥m∥) and interpolation spaces for couples of Lorentz-Zygmund spaces.
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1. Introduction
We begin our work by recalling the classical Lorentz spaces. Let (Ω,Σ, µ) be a measure

space. For 0 < p < ∞ and 0 < q ≤ ∞ the Lorentz space Lp,q(µ) is the collection of all
measurable functions f on Ω such that the quantity

∥f∥Lp,q(µ) :=


(∫∞

0 (t
1
p f∗(t))q dt

t

) 1
q (0 < q < ∞),

supt>0 t
1
p f∗(t) (q = ∞)

is finite, where f∗ denotes the decreasing rearrangement of |f |. Note that Lp,p(µ) is just
the Lebesgue space Lp(µ) and Lp,∞(µ) is the weak-Lp space. The Lp,q(µ) spaces arise in
the Lions-Peetre K-method of interpolation: in particular,

Lp,q(µ) = (Lp0(µ), Lp1(µ))θ,q,

where, 1
p = 1−θ

p0
+ θ

p1
. For standard facts concerning Lorentz spaces and K-method, we

refer the reader to [2, 4].
Integration of scalar functions with respect to a countably additive vector measure

m : Σ → X with values in a Banach space X was introduced by Bartle-Dunford-schwartz
[1] and studied by Klvanek-Knowles [18], and Lewis [19,20]. Recently, several papers have
analysed the properties of the spaces of (weakly) p–integrable functions (Lp

w(m)) LP (m),
these may be found in, for example, [8, 14–17,26].
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The Calderón complex interpolation [X0, X1]θ and [X0, X1]θ, with 0 < θ < 1 of the
couples (X0, X1) where X0 and X1 are spaces Lp(m) or Lp

w(m), with 1 ≤ p < ∞, were
obtained in [16] and in [12] the Complex interpolation of Orlicz spaces with respect to a
vector measure was identified. Moreover, the real interpolation spaces (X0, X1)θ,q, where
0 < θ < 1 ≤ q ≤ ∞, and X0 and X1 are, as above, Lp(m) or Lp

w(m), with 1 ≤ p ≤ ∞, for
vector measures on σ–algebras were studied in [14]. More precisely, Let 0 < θ < 1 ≤ q ≤
∞, 1 ≤ p0 < p1 ≤ ∞, and 1

p = 1−θ
p0

+ θ
p1

we have

(Lp0(m), Lp1(m))θ,q = (Lp0
w (m), Lp1(m))θ,q (1.1)

= (Lp0
w (m), Lp1

w (m))θ,q

= Lp,q(∥m∥).
The real interpolation spaces of these spaces for vector measures on δ-ring described in

[11]. We recall that Lp spaces of vector measure on σ–algebras are as the finite measure
scalar case, we always have that Lp(m) ∩ L∞(m) = L∞(m) and Lp(m) ∩ L1(m) = Lp(m)
and the same happens with the corresponding spaces of the semivariation ∥m∥, and the
case of δ–ring corresponds to the case of infinite scalar measures.

The aim of the present paper is to study several structure properties of the weighted
Lorentz spaces Λp

∥m∥(φ) and we describe interpolation with a parameter function between
these spaces. Indeed, in this paper, by replacing tθ by a more general (parameter) function
ϱ = ϱ(t) in (1.1), as p0 = 1, p1 = ∞, we prove that (L1(m), L∞(m))ϱ,q = Λq

∥m∥( t
ϱ(t)).

2. Weakly p-integrable and p-integrable functions
Let us recall that some basic facts and introduce some notations to a vector measure.

Let m : Σ → X be a vector measure defined on a σ-algebra of subsets of a nonempty set
Ω, this will means that m is countably additive on Σ with range in Banach space X. We
denote by X∗ its dual space and by X∗∗ its bidual. Also B(X) denotes the unit ball of
X. The semivariation of m is the set function ∥m∥(A) = sup{|⟨m,x∗⟩|(A) : x∗ ∈ B(X∗)},
for each A ∈ Σ, where |⟨m,x∗⟩| is the total variation of the scalar measure ⟨m,x∗⟩ given
by ⟨m,x∗⟩(A) = ⟨m(A), x∗⟩.

A measurable function f : Ω → R is called weakly integrable (with respect to m) if f ∈
L1(|⟨m,x∗⟩|) for any x∗ ∈ X∗ and for each A ∈ Σ there exists an element

∫
A fdm ∈ X∗∗

such that ⟨
∫

A fdm, x
∗⟩ =

∫
A fd⟨m,x∗⟩ for x∗ ∈ X∗. The space L1

w(m) of all (equivalence
classes of) weakly integrable functions becomes a Banach lattice when it is endowed with
the norm

∥f∥1 := sup
{∫

Ω
|f |d|⟨m,x∗⟩| : x∗ ∈ B(X∗)

}
.

We say that a weakly integrable function f is integrable (with respect to m) if the vector∫
A fdm ∈ X for all A ∈ Σ. It is clear from the definition that L1(m) ⊆ L1

w(m) and
in general, this inclusion is strict. In [27] Stefansson obtains conditions under which the
equality L1(m) = L1

w(m) holds. Properties of the space of integrable functions L1(m)
have already been studied in [6–8,17,24,27].

Let 1 < p < ∞. The spaces of p-integrable functions was introduced by Sánchez-Pérez
and the corresponding spaces Lp(m) and Lp

w(m) have been studied in depth by many
authors being their behavior well understood, (see [9, 15, 26]). We say that a measurable
function f is weakly p-integrable with respect to m, if |f |p ∈ L1

w(m) and p-integrable with
respect to m, if |f |p ∈ L1(m). We denote by (Lp

w(m)) Lp(m) the corresponding spaces of
(weakly) p-integrable functions with respect to m, which is a Banach space when equipped
with the norm

∥f∥p := sup
{(∫

Ω
|f |pd|⟨m,x∗⟩|

) 1
p

: x∗ ∈ B(X∗)
}
.
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Clearly Lp(m) ⊆ Lp
w(m). In particular in [15] the authors studied the case equality

Lp(m) = Lp
w(m) holds. For the general theory of vector measures we refer the reader to

[10].

3. Weighted Lorentz spaces with respect to a vector measure
For the measurable function f on a measure space (Ω,m) where m is a vector measure,

we define its distribution function by ∥m∥f (t) := ∥m∥({w ∈ Ω : |f(w)| > t}), where
∥m∥ is the semivariation of the measure m. This distribution function ∥m∥f has similar
properties that in the scalar case [2,14]. Also, the decreasing rearrangement of f , defined
by

f∗(s) := inf{t > 0 : ∥m∥f (t) ≤ s}
for all s > 0. Note that

inf{t > 0 : ∥m∥f (t) ≤ s} = sup{t > 0 : ∥m∥f (t) > s}
= λ{t > 0 : ∥m∥f (t) > s} = λ∥m∥f

(s),
where λ∥m∥f

is the distribution function of ∥m∥f , with respect to the Lebesgue measure
λ on the interval [0,∞).
In [14] Fernandez et al. introduced Lorentz spaces with respect to a vector measure and
given some of their fundamental properties. For 1 ≤ p, q ≤ ∞ the Lorentz space Lp,q(∥m∥),
is the space of all measurable functions f such that the quantity

∥f∥Lp,q(∥m∥) :=


(∫∞

0 (t
1
p f∗(t))q dt

t

) 1
q (1 ≤ q < ∞),

supt>0 t
1
p f∗(t) (q = ∞)

is finite. In the special case in which 1 ≤ p = q ≤ ∞, we denote the space Lp,p(∥m∥)
simply by Lp(∥m∥). The next result gives alternative descriptions of the ∥.∥Lp(∥m∥) in
term of distribution function and the decreasing rearrangement.

Remark 3.1. Let f be a measurable function. If 1 ≤ p < ∞, then by definition of norm
in Lp(∥m∥) and [14, Proposition 2], we have

∥f∥p
Lp(∥m∥) =

∫ ∞

0
f∗(s)pds = p

∫ ∞

0
tp−1∥m∥f (t)dt, (3.1)

Furthermore, in the case p = ∞, ∥f∥L∞(∥m∥) = sups>0 f∗(s) = f∗(0). It follows from (3.1)
that Lp(∥m∥) are rearrangement-invariant function spaces as 1 < p < ∞. Aspects related
to rearrangement-invariant spaces can be seen in [2].

Now we define the weighted Lorentz spaces with respect to a vector measure m which
are generalization of the Lorentz spaces Lp,q(∥m∥) and derive some of their elementary
properties. Let 1 ≤ p < ∞ and φ(t) be a given weight, nonnegative measurable function
on (0,∞). The weighted Lorentz space Λp

∥m∥(φ) with respect to a vector measure m, is
defined to be the collection of all functions f for which the quantity

∥f∥Λp
∥m∥(φ) :=

(∫ ∞

0
(f∗(t)φ(t))p dt

t

) 1
p

1 ≤ p < ∞,

is finite.
Moreover, integration by parts yields∫ ∞

0
(f∗(t)φ(t))p dt

t
= p

∫ ∞

0
yp−1

{∫ ∥m∥f (y)

0
φp(t)dt

t

}
dy 1 ≤ p < ∞,

and hence ∫ ∞

0
(f∗(t)φ(t))p dt

t
= p

∫ ∞

0
yp−1wp (∥m∥f (y)) dy,
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where w(t) = {
∫ t

0 φ
p(s)ds

s }
1
p is a positive, nondecreasing weight (see [5]). From now on,

we delete the subscript ∥m∥. For p = ∞ we define
∥f∥Λ∞(φ) = ∥f∥Λ∞(w) := sup

s
f∗(s)w(s) = sup

y
yw(∥m∥f (y)) < ∞.

Note that, if φ(t) = t
1
q , then Λp(φ) = Lq,p(∥m∥) and Λ∞(φ) coincides with Lq,∞(∥m∥).

Recall that for 1 ≤ p ≤ ∞, ∥.∥Λp(φ) is a quasi-norm if its “fundamental function" w(t) =
{
∫ t

0 φ
p(s)ds

s }1/p satisfies the ∆2-condition, w(2t) ≤ cw(t), for some c > 0, in fact, since w
is a nondecreasing function one has that w(x+ y) ≤ c(w(x) + w(y)) and hence,

∥f + g∥p
Λp(φ) = p

∫ ∞

0
yp−1wp (∥m∥f+g(y)) dy

≤ p

∫ ∞

0
yp−1wp

(
∥m∥f (y

2
) + ∥m∥g(y

2
)
)
dy

≤ c

∫ ∞

0
yp−1

(
wp(∥m∥f (y

2
)) + wp(∥m∥g(y

2
)
)
dy

≤ c
(
∥f∥p

Λp(φ) + ∥g∥p
Λp(φ)

)
.

Example 3.2. For φ(t) = t
1
q (1 + | log t|)α with 1 ≤ p, q ≤ +∞ and −∞ < α < +∞,

Λp(φ) is the Lorentz–Zygmund space Lq,p
∥m∥(logL)α. This is the Lorentz space Lq,p(∥m∥)

if α = 0.

The next proposition contains elementary property of weighted Lorentz spaces.

Proposition 3.3. If w1(t) < cw0(t), for all t > 0, then
(1) Λp(φ0) ⊂ Λp(φ1) for 1 ≤ p ≤ ∞,
(2) Λp(φ0) ⊂ Λ∞(φ1) for 1 ≤ p < ∞.

Proof. Let us start with the first one. For every measurable function f we have w1(∥m∥f (t)) <
cw0(∥m∥f (t)) , if w1(t) < cw0(t), for all t > 0, and it follows that∫ ∞

0
yp−1wp

1 (∥m∥f (y)) dy < c

∫ ∞

0
yp−1wp

0 (∥m∥f (y)) dy,

therefore Λp(φ0) ⊂ Λp(φ1). Next we are going to prove the second one. Consider a function
f ∈ Λp(φ0). Since f∗ is a decreasing function, so for each t > 0 we have

f∗(t)w1(t) < cf∗(t)w0(t) = cf∗(t)
(∫ t

0
φ0(s)pds

s

) 1
p

≤ c

(∫ t

0
(φ0(s)f∗(s))p ds

s

) 1
p

≤ c

(∫ ∞

0
(φ0(s)f∗(s))p ds

s

) 1
p

= c∥f∥Λp(φ0).

Now, taking supremum over all t > 0, it follows that f ∈ Λ∞(φ1), that is, Λp(φ0) ⊂
Λ∞(φ1). �

4. Estimates of K-functional with respect to a vector measure
We let (A0, A1) denote a compatible couple of quasi-Banach pair (i.e. A0 and A1 are

quasi-Banach spaces, which both are continuously embedded in some Hausdorff topological
vector space). For every f ∈ A0+A1 and any 0 < t < ∞, the so-called Peetre K-functional
is defined by

K(t, f, A0, A1) = K(t, f) := inf
f0+f1=f

(∥f0∥A0 + t∥f1∥A1),
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where fi ∈ Ai, i = 0, 1.
For 1 ≤ q ≤ ∞ and each measurable function ϱ, the real interpolation space (A0, A1)ϱ,q

consists of all elements of f ∈ A0 +A1 such that the quantity

∥f∥(A0,A1)ϱ,q
:=


(∫∞

0

(
K(t,f)

ϱ(t)

)q
dt
t

) 1
q (1 ≤ q < ∞),

supt>0
K(t,f)

ϱ(t) (q = ∞)

is finite. By replacing measurable function ϱ = ϱ(t) by tθ we obtain (A0, A1)θ,q.
We shall write A ≼ B if A ≤ cB, where c is some positive constant independent of

appropriate quantities involved in A,B. If both A ≼ B and B ≼ A are satisfied (with
possibly different constants), we write A ≈ B. In order to estimate the K–functional we
can see that K(t, f) ≈ K(t, |f |) for a general function f and for every t > 0.So in the
sequel, we will suppose that f ≥ 0 when we want to estimate the K–functional K(t, f).

Theorem 4.1. Let f be a function in Lp(m), 1 ≤ p < ∞. Then

K(t, f, Lp(m), L∞(m)) ≼
(∫ tp

0
f∗(s)pds

) 1
p

, t > 0.

Proof. Take s∗ = f∗(tp) and consider the nonnegative function

f0(w) =
{

0, f(w) ≤ s∗

f(w) − s∗, f(w) > s∗
(4.1)

and f1 = f − f0. Since f1(w) ≤ s∗, so f1 ∈ L∞(m) and ∥f1∥L∞(m) ≤ s∗. On the other
hand f0 ∈ Lp(m) since 0 ≤ f0 ≤ f − s∗ and f ∈ Lp(m). Moreover, for all s > 0 we have

∥m∥f0(s) = ∥m∥{w : f0(w) > s}
= ∥m∥{w : f(w) − s∗ > s}
= ∥m∥{w : f(w) > s+ s∗}
= ∥m∥f (s+ s∗).

Now from definition of norm in Lp(m), we obtain

∥ f0 ∥p
Lp(m) = sup

{∫
Ω
fp

0d|⟨m,x∗⟩| : x∗ ∈ B(X∗)
}

= sup
{∫ ∞

0
|⟨m,x∗⟩|fp

0
(s)ds : x∗ ∈ B(X∗)

}
≤

∫ ∞

0
∥m∥fp

0
(s)ds =

∫ ∞

0
∥m∥f0(s

1
p )ds =

∫ ∞

0
∥m∥f (s

1
p + s∗)ds

=
∫ fp

∗ (tp)

0
∥m∥f (s

1
p + s∗)ds+

∫ ∞

fp
∗ (tp)

∥m∥f (s
1
p + s∗)ds

≤
∫ fp

∗ (tp)

0
∥m∥f (s∗)ds+

∫ ∞

fp
∗ (tp)

∥m∥f (s
1
p )ds

≤
∫ fp

∗ (tp)

0
tpds+

∫ ∞

fp
∗ (tp)

∥m∥fp(s)ds

=
∫ fp

∗ (tp)

0
tpds+

∫ ∞

fp
∗ (tp)

λfp
∗
(s)ds.
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Applying the equality λχ[0,tp)fp
∗

= tpχ[0,fp
∗ (tp)) + λfp

∗
χ[fp

∗ (tp),∞) we can conclude

∥ f0 ∥p
Lp(m) ≤

∫ fp
∗ (tp)

0
tpds+

∫ ∞

fp
∗ (tp)

λfp
∗
(s)ds

=
∫ ∞

0
λχ[0,tp)fp

∗
(s)ds =

∫ ∞

0
λχ[0,tp)f∗(s

1
p )ds

= p

∫ ∞

0
sp−1λχ[0,tp)f∗(s)ds, (by Proposition 2.1.8 in [2])

=
∫ tp

0
f∗(s)pds.

For for a fixed t > 0 we get

K(t, f, Lp(m), L∞(m)) ≤ ∥f0∥Lp(m) + t∥f1∥L∞(m)

≤
(∫ tp

0
f∗(s)pds

) 1
p

+ tf∗(tp)

=
(∫ tp

0
f∗(s)pds

) 1
p

+
(∫ tp

0
f∗(tp)pds

) 1
p

≼
(∫ tp

0
f∗(s)pds

) 1
p

.

The proof is complete. �

Proposition 4.2. Let f be a function in L1(m). Then

tf∗(t) ≼ k(t, f, L1(m), L∞(m)), t > 0.

For the proof of above proposition you can see [14].
In the sequel, we prove the generalization of Steffensen’s inequality for Lp(∥m∥) spaces.
To this end, we need the next theorem.

Theorem 4.3. Let f be a function in Lp(∥m∥), 1 ≤ p < ∞. Then

K(t, f, Lp(∥m∥), L∞(∥m∥)) ≈
(∫ tp

0
fp

∗ (s)ds
) 1

p

, t > 0. (4.2)

Proof. First we prove “ ≤ ” of (4.2). Choose the nonnegative functions f0 as it is
considered in Theorem 4.1 and f1 = f − f0. Let A = {w : f0(w) > 0}. Then

∥m∥(A) = ∥m∥{w : f0(w) > 0} = ∥m∥{w : f(w) − s∗ > 0}
= ∥m∥{w : f(w) > s∗} = ∥m∥f (s∗) = ∥m∥f (f∗(tp)) ≤ tp.

Since f∗(s) is decreasing and constant on [∥m∥(A), tp], so we have

K(t, f, Lp(∥m∥), L∞(∥m∥)) ≤ ∥f0∥Lp(∥m∥) + t∥f1∥L∞(∥m∥)

≤
(∫ ∞

0
f0∗(s)pds

) 1
p

+ tf∗(tp)

=
(∫ tp

0
f0∗(s)pds

) 1
p

+
(∫ tp

0
f∗(tp)pds

) 1
p

≤ 2
(∫ tp

0
f∗(s)pds

) 1
p

. (4.3)
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To obtain the converse inequality, assume that f = f0 + f1, f0 ∈ Lp(∥m∥) and f1 ∈
L∞(∥m∥). Taking into account the inequality

f∗(s) ≤ f0∗(s/2) + f1∗(s/2) ≤ f0∗(s/2) + ∥f1∥L∞(∥m∥),

we observe that(∫ tp

0
f∗(s)pds

) 1
p

≤
(∫ tp

0

(
f0∗(s/2) + ∥f1∥L∞(∥m∥)

)p
ds

) 1
p

≤ c

{(∫ ∞

0
(f0∗(s))p ds

) 1
p

+ t∥f1∥L∞(∥m∥)

}
= c

{
∥f0∥Lp(∥m∥) + t∥f1∥L∞(∥m∥)

}
.

Taking the infimum over all decompositions f = f0 + f1 ∈ Lp(∥m∥) +L∞(∥m∥), we reach
desire inequality. �

We then deduce immediately the following that is a type of the generalization of Stef-
fensen’s inequality, see [3]. Recall that if Y be a Banach function space, we will denote by
Y ′ the Banach function space consisting of all measurable functions g on (0,∞) such that

∥g∥Y ′ = sup
∥f∥Y ≤1

∣∣∣∣∫ ∞

0
f(s)g(s)ds

∣∣∣∣
is finite. We will need the following representation of the norm of Y given by Lorentz and
Luxemburg [21]

∥f∥Y = sup
∥g∥Y ′ ≤1

∣∣∣∣∫ ∞

0
f(s)g(s)ds

∣∣∣∣ .
This gives that Y ′′ = Y . Moreover if Y is a rearrangement-invariant space then we have
∥f∗∥Y = ∥f∥Y ; in fact,

∥f∥Y = sup
∥g∥Y ′ ≤1

∫ ∞

0
f∗(s)g∗(s)ds.

Corollary 4.4. Let f and g be positive functions on (0,∞), f decreasing and g measurable.
Assume that, for some p > 1, f ∈ Lp(∥m∥) + L∞(∥m∥) and g ∈ (Lp(∥m∥))′ ∩ L1(∥m∥),
with

∥g∥(Lp(∥m∥))′ = 1, ∥g∥L1(∥m∥) = t.

Then ∫ ∞

0
f(x)g(x)dx ≤ 2

(∫ tp

0
(f∗(x))pdx

) 1
p

.

Proof. Let f = f0 + f1, f0 ∈ Lp(∥m∥), f1 ∈ L∞(∥m∥). Then from above descriptions we
obtain ∫ ∞

0
f(x)g(x)dx =

∫ ∞

0
f0(x)g(x)dx+

∫ ∞

0
f1(x)g(x)dx

≤ ∥f0∥Lp(∥m∥) + ∥f1∥Lp(∥m∥)

= ∥f0∥Lp(∥m∥) + sup
∥g∥

(Lp(∥m∥))′ ≤1

∫ ∞

0
f1∗(s)g∗(s)ds

≤ ∥f0∥Lp(∥m∥) + t∥f1∥L∞(∥m∥).

Finally from (4.3) in Theorem 4.3 follows that∫ ∞

0
f(x)g(x)dx ≤ K(t, f, Lp(∥m∥), L∞(∥m∥)) ≤ 2

(∫ tp

0
(f∗(x))pdx

) 1
p

.

�
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5. Interpolation of weighted Lorentz spaces
Let a and b be two real numbers such that a < b. The notation φ(t) ∈ Q[a, b] means

that φ(t)t−a is nondecreasing and φ(t)t−b is nonincreasing for all t > 0. Moreover, we
say that φ(t) ∈ Q(a, b), wherever φ(t) ∈ Q[a + ϵ, b − ϵ] for some ϵ > 0. The notation
φ(t) ∈ Q(a,−) means that φ(t) ∈ Q(a, b) for some real number b. In this paper we shall
consider the interpolation spaces (A0, A1)ϱ,q with a parameter function ϱ = ϱ(t) ∈ Q(0, 1),
which means that, for some ϵ > 0, ϱ(t)t−ϵ is increasing and ϱ(t)t−1+ϵ is decreasing. To
prove the main result of this section, we need the following lemma which is proved by
Persson [25].

Lemma 5.1. Let 0 < q ≤ ∞, 0 < p < ∞ and ψ(t) ∈ Q(−,−). Let h(t) be a positive and
nonincreasing function. If φ(t) ∈ Q(−, 0), then(∫ ∞

0
(φ(t))q

(∫ t

0
(h(u)ψ(u))p du

u

) q
p dt

t

) 1
q

≤ C

(∫ ∞

0
(φ(t)h(t)ψ(t))q dt

t

) 1
q

.

Now we have the following fundamental interpolation theorem for couples of weighted
Lorentz spaces with respect to a vector measure.

Theorem 5.2. Let φi(t) ∈ Q(0,−), i = 0, 1 be two weights, φ0(t)/φ1(t) ∈ Q(0, 1) or
φ0(t)/φ1(t) ∈ Q(1, 0), and ϱ ∈ Q(0, 1) be a parameter function. If 1 ≤ p0, p1, q ≤ ∞, then

(Λp0(φ0),Λp1(φ1))ϱ,q = Λq(φ), (5.1)

where φ(t) = φ0(t)/ϱ(φ0(t)/φ1(t)).

Proof. First we show that if 1 ≤ q ≤ ∞ and ϱ ∈ Q(0, 1), then

(L1(m), L∞(m))ϱ,q = Λq
(

t

ϱ(t)

)
. (5.2)

Let f be a function in L1(m), t > 0 and 1 ≤ q < ∞. From Proposition 4.2 we have∫ ∞

0

(
tf∗(t)
ϱ(t)

)q dt

t
≤
∫ ∞

0

(
k(t, f)
ϱ(t)

)q dt

t
. (5.3)

Now, if f ∈ (L1(m), L∞(m))ϱ,q, then the right-hand side in (5.3) is finite and so f ∈
Λq( t

ϱ(t)). Thus we have proved that

(L1(m), L∞(m))ϱ,q ⊆ Λq( t

ϱ(t)
).

To obtain the opposite inclusion in (5.2), since 1
ϱ(t) ∈ Q(−1, 0) by Lemma 1.1 in [25], so

we apply Proposition 4.1 and Lemma 5.1 for p = 1, to the nonnegative decreasing function
f∗(s), therefor∫ ∞

0

(
k(t, f, L1(m), L∞(m)

ϱ(t)

)q
dt

t
≤

∫ ∞

0
( 1
ϱ(t)

)q
(∫ t

0
f∗(s)ds

)q dt

t

≤
∫ ∞

0

(
tf∗(t)
ϱ(t)

)q dt

t
.

Now, from the definition of weighted Lorentz spaces, we deduce that

Λq
(

t

ϱ(t)

)
⊆
(
L1(m), L∞(m)

)
ϱ,q
.
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When q = ∞, by Proposition 4.2, we get

∥f∥Λ∞( t
ϱ(t) ) = sup

t>0

tf∗(t)
ϱ(t)

≤ C sup
t>0

k(t, f, L1(m), L∞(m)
ϱ(t)

= C∥f∥(L1(m),L∞(m))ϱ,∞ .

Hence, (L1(m), L∞(m))ϱ,∞ ⊆ Λ∞( t
ϱ(t)). For the converse, since ϱ(t) ∈ Q(0, 1), then there

exist a constant ϵ > 0 such that ϱ(t)t−ϵ is nondecreasing on (0,∞). So we have

∥f∥(L1(m),L∞(m))ϱ,∞ = C sup
t>0

k(t, f, L1(m), L∞(m))
ϱ(t)

≤ C sup
t>0

∫ t
0 f∗(s)ds
ϱ(t)

≤ C sup
s>0

sf∗(s)
ϱ(s)

. sup
t>0

ϱ(t)t−ϵ
∫ t

0 s
ϵ−1ds

ϱ(t)
≤ C∥f∥Λ∞( t

ϱ(t) ).

Hence, Λ∞( t
ϱ(t)) ⊆ (L1(m), L∞(m))ϱ,∞. Then the proof of the assertion is completed.

Put ϱi(t) = t
φi(t) so by Lemma 1.1(c) in [25] we see that ϱi(t) ∈ Q(0, 1). According to

(5.2), we obtain
Λpi(φi) = (L1(m), L∞(m))ϱi,pi , i = 0, 1

It follows from [25, Corollary 4.4] that

(Λp0(φ0),Λp1(φ1))ϱ,q =
(
(L1(m), L∞(m))ϱ0,p0 , (L1(m), L∞(m))ϱ1,p1

)
ϱ,q

=
(
L1(m), L∞(m)

)
κ,q

= Λq( t

κ(t)
) = Λq(φ),

where κ(t) = ϱ0(t)ϱ(ϱ1(t)/ϱ0(t)) = t
φ(t) . Note that κ(t) ∈ Q(0, 1) by [25, Lemma 3.3].

Thus (5.1) holds and the proof is complete. �
According to Theorem 5.2 we have the following corollary.

Corollary 5.3. Let 1 ≤ q ≤ ∞ and 1 ≤ p0 < p1 ≤ ∞ and ϱ ∈ Q(0, 1). If p0 ̸= p1, then

(Lp0,q0(∥m∥), Lp1,q1(∥m∥))ϱ,q = Λq(t
1

p0 /ϱ(t
1

p0
− 1

p1 )).

Remark 5.4. Let 0 < θ < 1 and 1 ≤ q ≤ ∞. Putting ϱ(t) = tθ in (5.2) we obtain(
L1(m), L∞(m)

)
θ,q

= Λq(t1−θ) = Lp,q(∥m∥)

where 1 < p < ∞ and θ = 1 − 1
p .

The following result is a simple application of Theorem 5.2 by replacing parameter
function ϱ = ϱ(t) by tθ.

Corollary 5.5. Under the same hypothesis of Theorem 5.2, we have
(Λp0(φ0),Λp1(φ1))θ,q = Λq(φ1−θ

0 φθ
1).

Remark 5.6. For φ(t) = t
1
q (1 + | log t|)α with 1 ≤ p, q ≤ +∞ and −∞ < α < +∞,

Λp(φ) is the Lorentz-Zygmund space Lq,p
∥m∥(logL)α (this is the Lorentz space Lq,p(∥m∥) if

α = 0). So, interpolation with a suitable parameter function ϱ can be used to describe
the interpolation spaces for couples of these Lorentz-Zygmund with respect to a vector
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measure. For example if ϱ(t) = tθ(1 + | log t|)γ , φ0(t) = t
1
p (1 + | log t|)α0 and φ1(t) =

t
1
p (1 + | log t|)α1 , then

(Lp,q
∥m∥(logL)α0 , Lp,q

∥m∥(logL)α1)ϱ,q = Λq(t
1
p (1 + | log t|)α0(1−θ)+α1θ(1 + | log(1 + | log t|)|)γ)

= Lp,q
∥m∥(logL)α0(1−θ)+α1θ(log logL)γ .

The above results are like those for the Lorentz-Zygmund space of a positive measure,
described for example in [13,22,23]

Corollary 5.7. Let 0 < θ < 1 ≤ q ≤ ∞ and 1 ≤ p0 < p1 ≤ ∞, then
(Lp0,q0(∥m∥), Lp1,q1(∥m∥))θ,q = Lp,q(∥m∥)

= (Lp0(m), Lp1(m))θ,q

= (Lp0
w (m), Lp1(m))θ,q

= (Lp0
w (m), Lp1

w (m))θ,q.

where 1
p = 1−θ

p0
+ θ

p1
.

Proof. By [14, Corollary 17] it is enough to show that (Lp0,q0(∥m∥), Lp1,q1(∥m∥))θ,q =
Lp,q(∥m∥). To this end, we consider φi(t) = t

1
pi and ϱ(t) = tθ, then the equality follows

from Theorem 5.2. �
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