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Abstract

Warped product semi-invariant submanifolds were defined and studied
in locally Riemannian product manifolds in (K. Matsumoto, On sub-
manifolds of locally product Riemannian manifolds, TRU Math. 18 (2),
145–157, 1982). In this paper, we go on to study warped product
semi-invariant submanifolds in locally decomposable Riemannian man-
ifolds. We prove several fundamental properties of warped product
semi-invariant submanifolds, and establish a general inequality for a
warped product semi-invariant submanifold in a locally decomposable
Riemannian manifold. After that, we investigate warped product semi-
invariant submanifolds in a locally decomposable Riemannian manifold
which satisfy the equality case of the inequality and obtain some new
results.
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1. Introduction

It is well known that the notation of warped product plays an important role in
differential geometry as well as in physics. R L Bishop and B. O’Neill studied warped
product manifolds from a differential geometric point of view.

Generalizing the geometry of invariant and anti-invariant submanifolds, A. Bejancu
defined CR-submanifolds in almost Hermitian (Kaehlerian) manifolds, and defined semi-
invariant submanifods of locally product Riemannian manifolds [2]. Similar definitions
were applied to submanifolds of almost contact metric manifolds by many geometers [see
references].
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In [4], B-Y. Chen introduced the notion of a CR-warped product submanifold in a
Kaehler manifold. He investigated such submanifolds and established a sharp relationship
between the warping function f of a CR-warped product submanifold M1×f M2 and the
squared norm of the second fundamental form ‖ h ‖.

Firstly, S. Tachibana [7] introduced and studied a class of locally Riemannian product
manifolds. Later, A. Bejancu [2] and K. Matsumoto [5] defined and studied the geometry
of semi-invariant submanifolds of locally Riemannian product manifolds.

In [1], we defined semi-invariant submanifolds of a Riemannian product manifold
and studied the fundamental properties of these submanifolds. Necessary and sufficient
conditions were given for a semi-invariant submanifold of a Riemannian product manifold
to be a locally Riemannian product manifold. Moreover, the integrability of invariant
distributions and anti-invariant distributions were investigated.

In this paper, we go on to study the geometry of warped product semi-invariant
submanifolds of a locally decomposable Riemannian manifold. We obtain an inequality
for the squared norm of the second fundamental form in terms of the warping function
for a warped product semi-invariant submanifold in a locally decomposable Riemannian
manifold. After that we consider warped product semi-invariant submanifolds in a locally
decomposable Riemannian manifold which satisfy the equality case of the inequality, and
some applications are derived.

2. Preliminaries

In this section, we give the definitions and terminology used throughout this paper.
We recall some necessary facts and formulas from the theory of submanifolds in any
Riemannian manifold. For an arbitrary submanifold M of any Riemannian manifold M̄ ,
the Gauss and Weingarten formulas are, respectively, given by

(2.1) ∇̄XY = ∇XY + h(X,Y )

and

(2.2) ∇̄XV = −AV X +∇⊥

XV

for any vector fields X,Y tangent to M and V normal to M , where ∇̄, ∇ denote the
Levi-Civita connections on M̄ and M , respectively. Moreover, h : Γ(TM)× Γ(TM) −→
Γ(TM⊥) is the second fundamental form of M in M̄ , where Γ(TM) denotes the Lie
algebra of vector fields on M . ∇⊥ is the normal connection on the normal bundle
Γ(TM⊥) and AV is the shape operator of M with respect to V . Furthermore, AV and
h are related by the formula

(2.3) g(AV X, Y ) = g(h(X,Y ), V )

for any X,Y ∈ Γ(TM) and V ∈ Γ(TM⊥), where g denotes the Riemannian metric on
M as well as on M̄ .

Now, if we denote the Riemannian curvature tensors of the connections ∇̄ and ∇ by
R̄ and R, respectively, then the equations of Gauss, Codazzi and Ricci are, respectively,
given by formulas

g(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(h(X,W ), h(Y,Z))

− g(h(X,Z), h(Y,W ))
(2.4)

g(R̄(X,Y )ξ, η) = g(R̄(X,Y )⊥ξ, η)− g([Aξ, Aη]X,Y )(2.5)

and

(2.6) {R̄(X,Y )Z}⊥ = (∇̄Xh)(Y,Z) − (∇̄Y h)(X,Z)
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for any vector fields X,Y, Z,W tangent to M and ξ, η normal to M , where {R̄(X,Y )Z}⊥

denotes the normal component of R̄(X,Y )Z and the covariant derivative ∇̄h is defined
by

(∇̄Xh)(Y,Z) = ∇⊥

Xh(Y,Z)− h(∇XY,Z) − h(∇XZ, Y )

for any vector fields X, Y, Z tangent to M .

2.1. Definition. Let M be an n-dimensional submanifold of a Riemannian manifold M̄ .
The mean-curvature vector field H of M is defined by the formula

H =
1

n

n
∑

j=1

h(ej , ej),

where {ej}, 1 ≤ j ≤ n, is a locally orthonormal basis of Γ(TM). If a submanifold M

satisfies one of the conditions;

h = 0, H = 0, h(X, Y ) = g(X,Y )H

then it is said to be a totally geodesic, minimal and totally-umbilical submanifold, respec-
tively [3].

Furthermore, the norm of h is defined by

(2.7) ‖h‖2 =

n
∑

i,j=1

g(h(ei, ej), h(ei, ej)).

3. Locally decomposable Riemannian manifolds

let M̄ be an m-dimensional manifold with a tensor field F of type (1, 1) such that

(3.1) F
2 = I, F 6= ±I.

Then we say that M̄ is an almost product manifold with almost structure F . If we set

P =
1

2
(F + I), Q =

1

2
(I − F ),

then we can easily see that

P +Q = I, P
2 = P, Q

2 = Q and F = P −Q.

Thus P and Q define two orthogonal complementary distributions denoted by D and D⊥

on M̄ . If an almost product manifold M̄ admits a Riemannian metric g such that

(3.2) g(FX,FY ) = g(X,Y )

for any vector fields X and Y on M̄ , then M̄ is said to be an almost product Riemannian
manifold. The covariant derivative of almost product structure F is defined by

(∇̄XF )Y = ∇̄XFY − F (∇̄XY )

for any vector fields X and Y on M̄ , where ∇̄ denotes the Riemannian connection on
M̄ . If (∇̄XF )Y = 0, the almost product Riemannian manifold M̄ is said to be a locally
decomposable Riemannian manifold [6].

Since F 2 = I , we can easily see that the eigenvalues of F are 1 or −1. An eigenvector
corresponding to the eigenvalue 1 is in P and an eigenvector corresponding to −1 is in
Q.

3.1. Definition. Let M be a submanifold of a locally decomposable Riemannian mani-
fold M̄ .

1.) A submanifold M is said to be an invariant submanifold if F preserves any
tangent space of M , i.e., F (TxM) ⊂ TxM for each x ∈ M .
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2.) A submanifold M is said to be an anti-invariant submanifold if F maps any
tangent space of M into its normal space, i.e., F (TxM) ⊂ TxM

⊥ for each x ∈ M .
3.) As a general case, a submanifold M is said to be a semi-invariant submanifold

if it admits an invariant distribution D whose orthogonal complementary distri-
bution D⊥ is anti-invariant, that is, TxM = Dx ⊕D⊥

x and F (D⊥

x ) ⊂ TxM
⊥ for

each x ∈ M .

In this paper we are concerned with Case 3.) as a general case. Now, if we denote the
orthogonal complementary distribution of F (D⊥) in TM⊥ by ν, then we have the direct
sum

(3.3) TM
⊥ = F (D⊥)⊕ ν.

It is easily seen that ν is an invariant subbundle with respect to F .

If M̄1(c1) is a real space form with sectional curvature c1, and M̄2(c2) is a real space
form with sectional curvature c2, then the Riemannian curvature tensor R̄ of the locally
Riemannian product manifold M̄ = M̄1(c1)× M̄2(c2) is given by

(3.4)

R̄(X,Y )Z =
1

4
(c1 + c2){g(Y,Z)X − g(X,Z)Y + g(FY,Z)FX

− g(FX,Z)FY }+
1

4
(c1 − c2){g(FY,Z)X − g(FX,Z)Y

+ g(Y,Z)FX − g(X,Z)FY }

for any vector fields X, Y and Z tangent to M̄ [6].

4. Warped product semi-invariant submanifolds in locally decom-

posable Riemannian manifolds

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive definite differ-
entiable function on M1. The warped product of manifolds M1 and M2 is the Riemannian
manifold

(4.1) M = M1 ×f M2 = (M1 ×M2, g),

where g = g1 + f2g2 and f is called the warping function. If the warping function is
constant, then it is said to be a usual Riemannian product. A warped product manifold
M = M1 ×f M2 is characterized by the fact that M1 and M2 are totally geodesic and
totally umbilical submanifolds of M , respectively.

We recall the general formulae on a warped product

(4.2) ∇ZX = ∇XZ = (X ln f)Z

for any X ∈ Γ(TM1) and Z ∈ Γ(TM2), where ∇ denotes the Levi-Civita connection on
M [3].

In [1] it was proved that there is no warped product semi-invariant submanifold such
that totally geodesic and totally umbilical submanifolds of a warped product are invariant
and anti-invariant submanifolds of a locally Riemannian product manifold, respectively.
In [1] it was shown that a warped product semi-invariant submanifold exists which has
totally umbilical and totally geodesic submanifolds of a warped product which are existent
invariant and anti-invariant submanifolds of a locally Riemannian product manifold, that
is, warped product semi-invariant submanifolds in a locally decomposable Riemannian
manifold, are of the form M⊥×f MT , where M⊥ and MT are anti-invariant and invariant
submanifolds of M̄ , respectively (see example 4.1).

This paper deals with the cases of inequality and equality between the squared norm
of the second fundamental form, and the norm of the gradient of the warping function.
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4.1. Theorem. Let M = M⊥ ×f MT be a warped product semi-invariant submanifold
of a locally decomposable Riemannian manifold M̄ . Then we have

i.) The squared norm of the second fundamental form of M satisfies

(4.3) ‖h‖2 ≥ q‖∇ ln f‖2,

where ∇ ln f is the gradient of ln f and q = dim(MT ).
ii.) If the equality sign of (4.3) holds identically, then M⊥ and MT are totally geo-

desic anti-invariant and totally umbilical invariant submanifolds of M̄ , respec-
tively.

Proof. Let M = M⊥×f MT be a warped product semi-invariant submanifold of a locally
decomposable Riemannian manifold M̄ . Then by using (2.1) and (4.2) we have

(4.4)
g(h(FZ,W ), FX) = g(∇̄WFZ,FX) = g(F ∇̄WZ, FX) = g(∇̄WZ,X)

= −g(∇XW,Z) = −X(ln f)g(Z,W ),

for any X ∈ Γ(TM⊥) and Z,W ∈ Γ(TMT ). On the other hand, we denote by hT the
second fundamental form of MT in M̄ , then we have

(4.5)
g(hT (Z,W ), X) = g(∇ZW,X) = −g(∇ZX,W )

= −(X ln f)g(Z,W ),

for any X ∈ Γ(TM⊥) and Z,W ∈ Γ(TMT ), that is,

(4.6) hT (Z,W ) = −∇ ln fg(Z,W ).

Now, let {e1, e2, . . . , ep, e
1, e2, . . . , eq} be a locally orthonormal frame of Γ(TM) such that

{ei} and {ej}, 1 ≤ i ≤ p, 1 ≤ j ≤ q, are tangent to M⊥ and MT , respectively. Moreover,
let {Fe1, F e2, . . . , F ep, N1, N2, . . . , Ns} be a locally orthonormal basis of Γ(TM⊥) such
that {Fei} and {Nr}, 1 ≤ i ≤ p, 1 ≤ r ≤ s, are tangent to Γ(F (TM⊥)) and Γ(ν),
respectively.

Here, we note that {Fej}qj=1
are also orthonormal basis vectors of Γ(TMT ) for MT is

an invariant submanifold with respect to F . So we have

(4.7)

‖h‖2 =

p
∑

i,k=1

g(h(ei, ek), h(ei, ek)) + 2

p
∑

i=1

q
∑

j=1

g(h(ei, e
j), h(ei, e

j))

+

q
∑

j,ℓ=1

g(h(ej, eℓ), h(ej , eℓ)).

Furthermore, by the rules of linear algebra, we know that

h(FZ,W ) =

p
∑

i=1

g(h(FZ,W ), F ei)Fei +
s

∑

r=1

g(h(FZ,W ),Nr)Nr,

for any Z,W ∈ Γ(TMT ). Thus we have

(4.8) ‖h(FZ,W )‖2 =

p
∑

i=1

g(h(FZ,W ), F ei)
2 +

s
∑

r=1

g(h(FZ,W ),Nr)
2
.

By using (4.4) and (4.8), we obtain

(4.9)

2
∑

k,ℓ=1

‖h(Fe
k
, e

ℓ)‖2 =

p
∑

i=1

q
∑

k,ℓ=1

(ei(ln f))
2
g(ek, eℓ)

=

p
∑

i=1

q
∑

ℓ=1

(ei(ln f))
2
g(eℓ, eℓ) = q

p
∑

i=1

g(ei,∇ ln f)2.
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So we have

(4.10) ‖h‖2 ≥ q

p
∑

i=1

(ei ln f)
2 = q

p
∑

i=1

g(∇ ln f, ei)
2 = q‖∇ ln f‖2,

which proves our assertion.

If the equality sign in (4.3) holds identically, we have

(4.11) h(D⊥
, D

⊥) = 0, h(D,D) ∈ Γ(F (D⊥)) and h(D,D
⊥) ∈ Γ(F (D⊥)).

The first condition in (4.11) implies that M⊥ is totally geodesic in M̄ because M⊥ is
a totally geodesic submanifold in M . Since MT is a totally umbilical submanifold in
M , the second condition in (4.11) implies that MT is a totally umbilical submanifold in
M̄ . �

4.2. Theorem. Let M = M⊥ ×f MT be a warped product semi-invariant submani-
fold satisfying ‖h‖2 = q‖∇ ln f‖2 in a locally decomposable Riemannian manifold M̄ =
M1(c1)×M2(c2). Then we have

i.) M⊥ is a totally geodesic anti-invariant submanifold of M = M1(c1) × M2(c2).
Hence M⊥ is a real space form of constant sectional curvature 1

4
(c1 + c2).

ii.) MT is a totally umbilical invariant submanifold of M̄ = M1(c1)×M2(c2). More-
over, MT is a totally umbilical invariant submanifold satisfying g(FZ,W ) = 0,
for any Z,W ∈ Γ(TMT ), then MT is a real space form of constant sectional
curvature ǫ = 1

4
(c1 + c2) + ‖∇ ln f‖2.

iii.) If q > 1, then the warping function f satisfies ‖∇f‖2 = f2(4ǫ− c1 − c2).

Proof. If we denote the Riemannian curvature tensor of M⊥ by R⊥, then by using (2.4),
(3.4) and taking into account that MT is totally geodesic and anti-invariant in M̄ , we
have

(4.12) R⊥(X,Y, V, U) =
1

4
(c1 + c2)

for any X,Y, U, V ∈ Γ(TM⊥), which gives i.).

If the equality (4.3) is satisfied, then from Theorem 4.1, we know that MT is a totally
umbilical invariant submanifold of M̄ = M⊥ ×f MT . If g(FZ,W ) = 0, then by using
(2.4), (3.4) and (4.6), we obtain

g(RT (Z,W )U,V ) =
1

4
(c1 + c2 + ‖∇ ln f‖2){g(W,U)g(Z,V )− g(W,V )g(Z,U)},

for any Z,W,U, V ∈ Γ(TMT ), where RT denotes the Riemannian curvature tensor of
MT . In this case, the warping function f satisfies ‖∇f‖2 = f2(4ǫ − c1 − c2).

Here, we note that the condition g(FZ,W ) = 0, for any Z,W ∈ Γ(TMT ), is not
important to differential geometry. Since MT is an invariant submanifold of a locally
decomposable Riemannian manifold M̄ , it is also locally decomposable Riemannian man-
ifold. Choosing vector fields PZ and QZ which have the same length, then from (3.1)
and (3.2), FZ and Z are orthogonal, which proves our assertion. Thus the proof is
complete. �

Next, we will give an example for warped product semi-invariant submanifolds in a
locally decomposable Riemannian manifold to illustrate our results.

4.3. Example. Let M be a submanifold in R
4 with coordinates (x1, x2, y1, y2) given by

x1 = u cos θ, x2 = u sin θ, y1 = u cosβ, and y2 = u sin β,

where u > 0, θ and β denote arbitrary parameters.
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It is easy to check that the tangent bundle of M is spanned by the vectors

Z1 = cos θ
∂

∂x1

+ sin θ
∂

∂x2

+ cos β
∂

∂y1
+ sin β

∂

∂y2
,

Z2 = −u sin θ
∂

∂x1

+ u cos θ
∂

∂x2

Z3 = −u sin β
∂

∂y1
+ u cosβ

∂

∂y2
.

We have defined the almost Riemannian product structure of R4 by

F
( ∂

∂xi

)

= −
∂

∂xi

and F
( ∂

∂yi

)

=
∂

∂yi
, i = 1, 2.

Then the space F (TM) becomes

FZ1 = − cos θ
∂

∂x1

− sin θ
∂

∂x2

+ cos β
∂

∂y1
+ sin β

∂

∂y2
, FZ2 = u sin θ

∂

∂x1

− u cos θ
∂

∂x2

FZ3 = −u sin β
∂

∂y1
+ u cos β

∂

∂y2
.

Since FZ1 is orthogonal to TM , FZ2 and FZ3 are tangent to TM , TM⊥ and TMT

can be chosen as the subspaces sp{Z1} and sp{Z2, Z3}, respectively. Furthermore the
Riemannian metric tensor of M = M⊥ ×f MT is given by

g = 2du2 + u
2(dθ2 + dβ

2) = gM⊥
×u2 gMT

.

Thus M is a 3-dimensional warped product semi-invariant submanifold of the locally
decomposable Riemannian manifold R

4 with the warping function f = u.
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