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Abstract

T.G. Bhaskar and V. Lakshmikantham (Fixed point theorems in par-

tially ordered metric spaces and applications, Nonlinear Analysis 65,
1379–1393, 2006), V. Lakshmikantham and Lj. B. Ćirić (Coupled fixed

point theorems for nonlinear contractions in partially ordered metric

spaces, Nonlinear Analysis 70, (2009) 4341–4349, 2009) introduced the
concept of a coupled coincidence point of a mapping F from X×X into
X and a mapping g from X into X. In the present paper, we prove a
coupled coincidence fixed point theorem in the setting of a generalized
metric space in the sense of Z. Mustafa and B. Sims.
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1. Introduction

The study of common fixed points of mappings satisfying certain contractive condi-
tions has been researched extensively by many mathematicians since fixed point theory
plays a major role in mathematics and applied sciences. For a survey of coincidence
point theory in metric and cone metric spaces, we refer the reader (as examples) to
[1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 17, 18, 19, 24]. Mustafa and Sims [14] introduced a new
notion of generalized metric space called a G-metric space. Mustafa, Sims and others
studied fixed point theorems for mappings satisfying different contractive conditions (see
[13, 15, 16, 21, 22, 23]). Abbas and Rhoades [2] obtained some common fixed point
theorems for non commuting maps without continuity, satisfying different contractive
conditions in the setting of generalized metric spaces. While V. Lakshmikantham et al.
in [5, 11] introduced the concept of a coupled coincidence point of a mapping F from
X × X into X and a mapping g from X into X, and studied fixed point theorems in
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partially ordered metric spaces. In [20] S. Sedghi et al. proved a coupled fixed point the-
orem for contractive mappings in complete fuzzy metric spaces. The aim of the present
paper is to prove a coupled coincidence fixed point theorem in the setting of a generalized
metric space in the sense of Z. Mustafa and B. Sims.

2. Basic Concepts.

The following definition was introduced by Mustafa and Sims [14].

2.1. Definition. see [14]. Let X be a nonempty set and G : X × X × X → R+ a
function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., symmetry in all three variables,
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then the function G is called a generalized metric, or, more specifically, a G-metric on
X, and the pair (X,G) is called a G-metric space.

2.2. Definition. [14]. Let (X,G) be aG-metric space and (xn) a sequence of points ofX.
A point x ∈ X is said to be the limit of the sequence (xn), if limn,m→+∞ G(x, xn, xm) = 0,
and we say that the sequence (xn) is G-convergent to x or that (xn) G-converges to x.

Thus, xn → x in a G-metric space (X,G) if for any ε > 0, there exists k ∈ N such
that G(x, xn, xm) < ε for all m,n ≥ k.

2.3. Proposition. [14] Let (X,G) be a G-metric space. Then the following are equiva-

lent:

(1) (xn) is G-convergent to x.

(2) G(xn, xn, x) → 0 as n → +∞.

(3) G(xn, x, x) → 0 as n → +∞.

(4) G(xn, xm, x) → 0 as n,m → +∞.

2.4. Definition. [12] Let (X,G) be a G-metric space. A sequence (xn) is called G-
Cauchy if for every ε > 0, there is k ∈ N such that G(xn, xm, xl) < ε, for all n,m, l ≥ k;
that is G(xn, xm, xl) → 0 as n,m, l → +∞
2.5. Proposition. [14] Let (X,G) be a G-metric space. Then the following are equiva-

lent:

(1) The sequence (xn) is G-Cauchy.

(2) For every ǫ > 0, there is k ∈ N such that G(xn, xm, xm) < ǫ, for all n,m ≥ k.

2.6. Definition. [14] Let (X,G) and (X ′, G′) be G-metric spaces and f : (X,G) →
(X ′, G′) a function. Then f is said to be G-continuous at a point a ∈ X if and only
if for every ε > 0, there is δ > 0 such that x, y ∈ X and G(a, x, y) < δ implies
G′(f(a), f(x), f(y)) < ε. A function f is G-continuous at X if and only if it is G-
continuous at all a ∈ X.

2.7. Proposition. [14] Let (X,G) be a G-metric space. Then the function G(x, y, z) is

jointly continuous in all three of its variables.

The following are examples of G-metric spaces.

2.8. Example. [14] Let (R, d) be the usual metric space. Define Gs by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

for all x, y, z ∈ R. Then it is clear that (R, Gs) is a G-metric space.
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2.9. Example. [14] Let X = {a, b}. Define G on X ×X ×X by

G(a, a, a) = G(b, b, b) = 0,

G(a, a, b) = 1, G(a, b, b) = 2

and extend G to X × X × X by using the symmetry in the variables. Then it is clear
that (X,G) is a G-metric space.

2.10. Definition. [14] A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence in (X,G) is G-convergent in (X,G).

2.11. Definition. [5] An element (x, y) ∈ X × X is called a coupled fixed point of a
mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

2.12. Definition. [11] An element (x, y) ∈ X ×X is called a coupled coincidence point
of the mappings F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

2.13. Definition. [11] Let X be a nonempty set. Then we say that the mappings
F : X ×X → X and g : X → X are commutative if gF (x, y) = F (gx, gy).

3. Main Results

We start our work by proving the following crucial lemma.

3.1. Lemma. Let (X,G) be a G-metric space. Let F : X ×X → X and g : X → X be

two mappings such that

(3.1) G(F (x, y), F (u, v), F (z, w)) ≤ k(G(gx, gu, gz) +G(gy, gv, gw))

for all x, y, z, w, u, v ∈ X. Assume that (x, y) is a coupled coincidence point of the

mappings F and g. If k ∈ [0, 1

2
), then

F (x, y) = gx = gy = F (y, x).

Proof. Since (x, y) is a coupled coincidence point of the mappings F and g, we have
gx = F (x, y) and gy = F (y, x). Assume gx 6= gy. Then by (3.1), we get

G(gx, gy, gy) = G(F (x, y), F (y, x), F (y, x))

≤ k(G(gx, gy, gy) +G(gy, gx, gx)).

Also by (3.1), we have

G(gy, gx, gx) = G(F (y, x), F (x, y), F (x, y))

≤ k(G(gy, gx, gx) +G(gx, gy, gy)).

Therefore

G(gx, gy, gy) +G(gy, gx, gx) ≤ 2k(G(gx, gy, gy) +G(gy, gx, gx)).

Since 2k < 1, we get

G(gx, gy, gy) +G(gy, gx, gx) < G(gx, gy, gy) +G(gy, gx, gx),

which is a contradiction. So gx = gy, and hence

F (x, y) = gx = gy = F (y, x). �

3.2. Theorem. Let (X,G) be a G-metric space. Let F : X ×X → X and g : X → X

be two mappings such that

(3.2) G(F (x, y), F (u, v), F (z, w)) ≤ k(G(gx, gu, gz) +G(gy, gv, gw))

for all x, y, z, w, u, v ∈ X. Assume that F and g satisfy the following conditions:

(1) F (X ×X) ⊆ g(X),
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(2) g(X) is G-complete, and

(3) g is G-continuous and commutes with F .

If k ∈
(

0, 1

2

)

, then there is a unique x in X such that gx = F (x, x) = x.

Proof. Let x0, y0 ∈ X. Since F (X × X) ⊆ g(X), we can choose x1, y1 ∈ X such that
gx1 = F (x0, y0) and gy1 = F (y0, x0). Again since F (X × X) ⊆ g(X), we can choose
x2, y2 ∈ X such that gx2 = F (x1, y1) and gy2 = F (y1, x1). Continuing this process,
we can construct two sequences (xn) and (yn) in X such that gxn+1 = F (xn, yn) and
gyn+1 = F (yn, xn). For n ∈ N, by (3.2) we have

G(gxn, gxn+1, gxn+1) = G(F (xn−1, yn−1), F (xn, yn), F (xn, yn))(3.3)

≤ k(G(gxn−1, gxn, gxn) +G(gyn−1, gyn, gyn)).(3.4)

From

G(gxn−1, gxn, gxn) = G(F (xn−2, yn−2), F (xn−1, yn−1), F (xn−1, yn−1))

≤ k(G(gxn−2, gxn−1, gxn−1) +G(gyn−2, gyn−1, gyn−1)),

and

G(gyn−1, gyn, gyn) = G(F (yn−2, xn−2), F (yn−1, xn−1), F (yn−1, xn−1))

≤ k(G(gyn−2, gyn−1, gyn−1) +G(gxn−2, gxn−1, gxn−1)),

we have

G(gxn−1, gxn, gxn) +G(gyn−1, gyn, gyn) ≤ 2k(G(gxn−2, gxn−1, gxn−1)

+G(gyn−2, gyn−1, gyn−1))

holds for all n ∈ N. Thus, we get that

G(gxn, gxn+1, gxn+1) ≤ k(G(gxn−1, gxn, gxn) +G(gyn−1, gyn, gyn))

≤ 2k2(G(gxn−2, gxn−1, gxn−1) +G(gyn−2, gyn−1, gyn−1))

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

≤ 1

2
(2k)n(G(gx0, gx1, gx1) +G(gy0, gy1, gy1)).

Thus for each n ∈ N, we have

(3.5) G(gxn, gxn+1, gxn+1) ≤
1

2
(2k)n(G(gx0, gx1, gx1) +G(gy0, gy1, gy1)).

Let m,n ∈ N with m > n. By Axiom G5 of the definition of G-metric spaces, we have

G(gxn, gxm, gxm) ≤ G(gxn, gxn+1, gxn+1) +G(gxn+1, gxn+2, gxn+2)

+ · · ·+G(gxm−1, gxm, gxm).

Since 2k < 1, by (3.5) we get that

G(gxn, gxm, gxm) ≤ 1

2

(m−1
∑

i=n

(2k)i
)

(G(gx0, gx1, gx1) +G(gy0, gy1, gy1))

≤ (2k)n

2(1− 2k)
(G(gx0, gx1, gx1) +G(gy0, gy1, gy1)).

Letting n,m → +∞, we have

lim
n,m→+∞

G(xn, gxm, gxm) = 0.

Thus (gxn) is G-Cauchy in g(X). Similarly, we may show that (gyn) is G-Cauchy in
g(X). Since g(X) is G-complete, we get that (gxn) and (gyn) are G-convergent to
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some x ∈ X and y ∈ X respectively. Since g is G-continuous, we have (ggxn) is G-
convergent to gx and (ggyn) is G-convergent to gy. Also, since g and F commute, we
have ggxn+1 = g(F (xn, yn)) = F (gxn, gyn), and

ggyn+1 = g(F (yn, xn)) = F (gyn, gxn).

Thus

G(ggxn+1, F (x, y), F (x, y)) = G(F (gxn, gyn), F (x, y), F (x, y))

≤ k(G(ggxn, gx, gx) +G(ggyn, gy, gy)).

Letting n → +∞, and using the fact that G is continuous on its variables, we get that

G(gx,F (x, y), F (x, y)) ≤ k(G(gx, gx, gx) +G(gy, gy, gy)) = 0.

Hence gx = F (x, y). Similarly, we may show that gy = F (y, x). By Lemma 3.1, (x, y) is
a coupled fixed point of the mappings F and g. So

gx = F (x, y) = F (y, x) = gy.

Since (gxn+1) is subsequence of (gxn) we have that (gxn+1) is G convergent to x. Thus

G(gxn+1, gx, gx) = G(gxn+1, F (x, y), F (x, y))

= G(F (xn, yn), F (x, y), F (x, y))

≤ k(G(gxn, gx, gx) +G(gyn, gy, gy)).

Letting n → +∞, and using the fact that G is continuous on its variables, we get that

G(x, gx, gx) ≤ k(G(x, gx, gx) +G(y, gy, gy)).

Similarly, we may show that

G(y, gy, gy) ≤ k(G(x, gx, gx) +G(y, gy, gy)).

Thus

G(x, gx, gx) +G(y, gy, gy) ≤ 2k(G(x, gx, gx) +G(y, gy, gy)).

Since 2k < 1, the last inequality happens only if G(x, gx, gx) = 0 and G(y, gy, gy) = 0.
Hence x = gx and y = gy. Thus we get

gx = F (x, x) = x.

To prove the uniqueness, let z ∈ X with z 6= x such that

z = gz = F (z, z).

Then

G(x, z, z) = G(F (x, x), F (z, z), F (z, z))

≤ 2kG(gx, gz, gz)

= 2kG(x, z, z).

Since 2k < 1, we get G(x, z, z) < G(x, z, z), which is a contradiction. Thus F and g have
a unique common fixed point. �

3.3. Corollary. Let (X,G) be a G-metric space. Let F : X ×X → X and g : X → X

be two mappings such that

(3.6) G(F (x, y), F (u, v), F (u, v)) ≤ k(G(gx, gu, gu) +G(gy, gv, gv))

for all x, y, u, v ∈ X. Assume F and g satisfy the following conditions:

(1) F (X ×X) ⊆ g(X),
(2) g(X) is G-complete, and

(3) g is G-continuous and commutes with F .
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If k ∈
(

0, 1

2

)

, then there is a unique x in X such that gx = F (x, x) = x.

Proof. Follows from Theorem 3.1 by taking z = u and v = w. �

3.4. Corollary. Let (X,G) be a complete G-metric space. Let F : X × X → X be a

mapping such that

(3.7) G(F (x, y), F (u, v), F (u, v)) ≤ k(G(x, u, u) +G(y, v, v))

for all x, y, u, v ∈ X. If k ∈
[

0, 1

2

)

, then there is a unique x in X such that F (x, x) = x.

Proof. Define g : X → X by gx = x. Then F and g satisfy all the hypothesis of
Corollary 3.1. Hence the result follows. �

Now, we introduce some examples of our theorem.

3.5. Example. Let X = [0, 1]. Define G : X ×X ×X → R+ by

G(x, y, z) = |x− y|+ |x− z|+ |y − z|
for all x, y, z ∈ X. Then (X,G) is a complete G-metric space. Define a map

F : X ×X → X

by F (x, y) = 1

6
xy for x, y ∈ X. Also, define g : X → X by g(x) = 1

2
x for x ∈ X. Since

|xy − uv| ≤ |x− u|+ |y − v|
holds for all x, y, u, v ∈ X, we have

G(F (x, y), F (u, v), F (z, w)) =
1

6
|xy − uv|+ 1

6
|xy − zw|+ 1

6
|uv − zw|

≤ 1

6

(

|x− u|+ |y − v|
)

+
1

6

(

|x− z|+ |y −w|
)

+
1

6

(

|u− z|+ |v − w|
)

≤ 1

3

(

G(gx, gu, gz) +G(gy, gv, gw)
)

holds for all x, y.u, v, z, w ∈ X. It is an easy matter to see that F and g satisfy all the
hypothesis of Theorem 3.1. Thus F and g have a unique common fixed point. Here
F (0, 0) = g(0) = 0.

3.6. Example. Let X = [−1, 1]. Define G : X ×X ×X → R+ by

G(x, y, z) = |x− y|+ |x− z|+ |y − z|
for all x, y, z ∈ X. Then (X,G) is a complete G-metric space. Define a map

F : X ×X → X

by

F (x, y) =
1

8
x
2 +

1

8
y
2 − 1

for x, y ∈ X. Then F (X ×X) =
[

− 1,− 3

4

]

. Also,

G(F (x, y), F (u, v), F (u, v)) =
1

4
(|x2 − u

2 + y
2 − v

2|)

≤ 1

4
(2|x− u|+ 2|y − v|)

=
1

4
(G(x, u, u) +G(y, v, v)).

Then by Corollary 3.2, F has a unique fixed point. Here x = 2− 2
√
2 is the unique fixed

point of F ; that is, F (x, x) = x.
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