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Abstract

In this article, we study the equation

∂

∂t
u(x, t) = c2 ⊗m,k

B u(x, t)

with the initial condition u(x, 0) = f(x) for x ∈ R
+
n . Here the operator

⊗m,k
B is called the Generalized Bessel Diamond Operator, iterated k

times, and is defined by

⊗m,k
B =

[ (

Bx1
+ Bx2

+ · · · + Bxp

)m

−
(

Bxp+1
+ · · · + Bxp+q

)m]k
,

where k and m are positive integers, p + q = n, Bxi
=

∂2

∂x2
i

+
2vi

xi

∂

∂xi

,

2vi = 2αi + 1, αi > − 1
2
, xi > 0, i = 1, 2, . . . , n, n being the dimension

of the space R
+
n , u(x, t) is an unknown function of the form (x, t) =

(x1, . . . , xn, t) ∈ R
+
n × (0,∞), f(x) is a given generalized function and c

a constant. We obtain the solution of this equation, which is related to
the spectrum and the kernel, the so called generalized Bessel diamond
heat kernel. Moreover, the generalized Bessel diamond heat kernel is
shown to have interesting properties and to be related to the kernel of
an extension of the heat equation.
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1. Introduction

The casual fundamental solution h(x, t) is the particular solution of

∂E

∂t
− a∆E = δ(x)δ(t),

which vanishes identically for t < 0. Thus h(x, t) satisfies

∂h

∂t
− a∆h = δ(x)δ(t), h ≡ 0 for t < 0.

The causal fundamental solution h(x, t) has a direct physical interpretation; it is the
temperature distribution in a medium, which is at zero temperature up to the time t = 0,
when a concentrated source is introduced at x = 0, this source instantaneously releasing
a unit of heat. Although h is defined for all t and x, its calculation presents a problem
only for t > 0 (h = 0 for t < 0). This immediately suggests a slightly different point of
view; for t > 0 no sources are present, so that h satisfies the homogeneous equation and
must reduce, at t = 0+, to a certain initial temperature. This initial temperature is the
one to which the medium has been raised just after the introduction of the instantaneous
concentrated source of unit strength. We now show that this initial temperature is δ(x).

It is known that the one-dimensional diffusion equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
,

where u(x, t) is the temperature of some object and D is a constant called the “ther-
mal diffusivity” of the material that makes up the object (we could equally well have
modeled the diffusion of chemical by letting u(x, t) represent the concentration of some
chemical and D the constant “diffusivity” of the chemical species inside the material
that makes up the object). The diffusion equation describes such a physical situation as
heat conduction in a one-dimensional solid body, spread of a die in a stationary fluid,
population dispersion, and other similar processes. In [2], Chou and Jiang described the
diffusion onto a small surface patch on a spherical molecule with an attractive potential
all around it. A similar model has been presented by Zhou, who takes into account the
attractive interaction and the influence from the heterogeneous surface reactivity only
in a thin spherical shell around the target molecule [19]. In this way, the interaction
required to hold the reactants together long enough for them to find the reactive site can
be estimated. Both of these models indicate that the short range Van der Waals’ force
could provide sufficient interaction to overcome the orientational constraint of the target
molecule. For a recent discussion of these and some other models for heterogeneous sur-
face reactivity see also Chou and Zhou [4]. We refer the reader to the papers [1, 3, 20, 21]
for these subjects.

It is known that for the heat equation

(1.1)
∂u(x, t)

∂t
= c2∆u(x, t),

with the initial condition u(x, 0) = f(x), where

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
n

denotes the Laplacian operator and u(x, t) = (x1, x2, . . . , xn, t) ∈ R
n × (0,∞). We can

obtain the solution as

u(x, t) =
1

(4c2πt)
n
2

∫

Rn

f(x − y)e
−

|x|2

4c2t dy,
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or in the classical convolution form

(1.2) u(x, t) = E(x, t) ∗ f(x),

where

(1.3) E(x, t) =
1

(4c2πt)
n
2

e
−

|x|2

4c2t

and the symbol ∗ denotes the classical convolution.

On the other hand, in [11], we have studied the solutions of the Bessel Diamond Heat
Equation

(1.4)
∂

∂t
u(x, t) = c2

3
k
Bu(x, t)

under the initial condition u(x, 0) = f(x), where the k-times iterated Bessel diamond

operator 3
k
B is defined by

3
k
B =

[

(

Bx1
+ Bx2

+ · · · + Bxp

)2
−
(

Bxp+1
+ · · · + Bxp+q

)2
]k

,

p + q = n is the dimension of R
+
n = {x : x = (x1, x2, . . . , xn) , xi > 0, i = 1, 2, . . . , n}, k

is a positive integer, Bxi
=

∂2

∂x2
i

+
2vi

xi

∂

∂xi

, 2vi = 2αi +1, αi > − 1
2
, xi > 0, i = 1, 2, . . . , n,

u(x, t) is an unknown function, f(x) is the given generalized function and c is a constant.
Moreover, such a Bessel diamond heat kernel has interesting properties and is also related
to the kernel of an extension of the heat equation.

We obtain u(x, t) = E(x, t) ∗B f(x), the symbol ∗B being the B-convolution in (2.1),
as a solution of (1.6), which satisfies (1.7), where

(1.5) E(x, t) = Cυ

∫

Ω+

e
c2t

[

(y2
1+...+y2

p)
2
−(y2

p+1+...+y2
p+q)2

]k n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy,

Ω+ ⊂ R
+
n is the spectrum of E(x, t) for any fixed t > 0, and Jυi−

1
2
(xiyi) is the normalized

Bessel function [11].

The purpose of this work is to study the solutions of following equation:

(1.6)
∂

∂t
u(x, t) = c2 ⊗m,k

B u(x, t)

under the initial condition

(1.7) u(x, 0) = f(x), for x ∈ R
+
n ,

where the k-times iterated generalized Bessel diamond operator ⊗m,k
B is defined by

(1.8) ⊗m,k
B =

[(

Bx1
+ Bx2

+ · · · + Bxp

)m
−
(

Bxp+1
+ · · · + Bxp+q

)m]k
,

p + q = n is the dimension of R
+
n = {x : x = (x1, x2, . . . , xn) , xi > 0, i = 1, 2, . . . , n}, k

and m are positive integers, Bxi
=

∂2

∂x2
i

+
2vi

xi

∂

∂xi

, 2vi = 2αi + 1, αi > − 1
2
, xi > 0,

i = 1, 2, . . . , n, u(x, t) is an unknown function, f(x) is the given generalized function and
c is a constant. To this end, we figure out some interesting properties of the generalized
Bessel heat kernel which is closely related to the kernel of an extension of the heat
equation.
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We obtain u(x, t) = E(x, t) ∗B f(x), the symbol ∗B being the B-convolution in (2.1),
as a solution of (1.6), which satisfies (1.7), where

(1.9) E(x, t) = Cυ

∫

Ω+

e(−1)mkc2t[(y2
1+···+y2

p)
m

−(y2
p+1+···+y2

p+q)m]k
n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy,

Ω+ ⊂ R
+
n is the spectrum of E(x, t) for any fixed t > 0, and Jυi−

1
2
(xiyi) is the normalized

Bessel function.

2. Preliminaries

The generalized shift operator T y
x has the following form [7, 16, 13]:

T y
x ϕ(x) = C∗

v

π
∫

0

· · ·

π
∫

0

ϕ

(

√

x2
1 + y2

1 − 2x1y1 cos θ1, . . . ,
√

x2
n + y2

n − 2xnyn cos θn

)

×

(

n
∏

i=1

sin2vi−1 θi

)

dθ1 · · · dθn,

where x, y ∈ R
+
n ,

C∗

v =
n
∏

i=1

Γ(vi + 1)

Γ( 1
2
)Γ(vi)

and

d2ϕ

dx2
i

+
2vi

xi

dϕ

dxi

=
d2ϕ

dy2
i

+
2vi

yi

dϕ

dyi

ϕ(xi, 0) = f(xi)

ϕyi
(xi, 0) = 0,

where xi, yi ∈ R
+, i = 1, . . . , n. We remark that this shift operator is closely connected

with the Bessel differential operator and is called the generalized shift operator [7].

The convolution operator determined by the T y
x is as follows

(2.1) (f ∗B ϕ)(x) =

∫

R
+
n

f(y)T y
x ϕ(x)

(

n
∏

i=1

y2vi
i

)

dy.

The convolution in (2.1) is known as the B-convolution. We note the following properties
of the B-convolution and of the generalized shift operator:

(a) T y
x · 1 = 1,

(b) T 0
x · f(x) = f(x),

(c) If f(x), g(x) ∈ C(R+
n ), g(x) is a bounded function for x ∈ R

+
n and

∫

R
+
n

|f (x)|

(

n
∏

i=1

y2vi
i

)

dx < ∞,

then
∫

R
+
n

T y
x f(x)g(y)

(

n
∏

i=1

y2vi
i

)

dy =

∫

R
+
n

f(y)T y
x g(x)

(

n
∏

i=1

y2vi
i

)

dy.
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(d) From (c), we have the following equality for g(x) = 1,

∫

R
+
n

T y
x f(x)

(

n
∏

i=1

y2vi
i

)

dy =

∫

R
+
n

f(y)

(

n
∏

i=1

y2vi
i

)

dy.

(e) (f ∗B g)(x) = (g ∗B f)(x)

The Fourier-Bessel transformation and its inverse transformation are defined as follows
[13]–[18]:

(FBf) (x) = Cv

∫

R
+
n

f(y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy,(2.2)

(

F−1
B f

)

(x) = (FBf) (−x) , Cv =

(

n
∏

i=1

2vi−
1
2 Γ

(

vi +
1

2

)

)

−1

,(2.3)

where Jvi−
1
2

(xiyi) is the normalized Bessel function, which is the eigenfunction of the

Bessel differential operator. The following equalities for Fourier-Bessel transformation
are known (see [6, 5, 16]).

FBδ (x) = 1

FB(f ∗B g)(x) = FBf(x) · FBg(x).(2.4)

2.1. Definition. The spectrum of the kernel E(x, t) defined in (1.9), is the bounded
support of the Fourier Bessel transform FBE(y, t) for any fixed t > 0.

2.2. Definition. Let x = (x1, x2, . . . , xn) ∈ R
+
n . Then

Γ+ =
{

x ∈ R
+
n : x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
p+q > 0

}

denotes the interior of the forward cone, and Γ+ its closure.

Let Ω+ be the spectrum of E(x, t) defined by (1.9) and Ω+ ⊂ Γ+. Let FBE(y, t) be
the Fourier Bessel transform of E(x, t), which is defined by

(2.5) FBE(y, t) =

{

e(−1)mkc2t[(y2
1+···+y2

p)
m

−(y2
p+1+···+y2

p+q)m]k for x ∈ Ω+,

0 for x /∈ Ω+.

2.3. Lemma. [Fourier Bessel transform of the operator ⊗m,k
B ]

FB ⊗m,k
B u(x) = (−1)mkV k(x)FBu(x),

where V k(x) =

(

(

p
∑

i=1

x2
i

)m

−

(

p+q
∑

j=p+1

x2
j

)m)k

.
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Proof. We use mathematical induction. For k = 1, we have

FB

(

⊗m,1
B u

)

(x)

= Cv

∫

R
+
n

(

⊗m,1
B u(y)

)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= Cv

∫

R
+
n

[(

By1
+ By2

+ . . . + Byp

)m
−
(

Byp+1
+ · · · + Byp+q

)m]

u(y)

×

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= Cv

∫

R
+
n

(

By1
+ By2

+ . . . + Byp

)m
u(y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

− Cv

∫

R
+
n

(

Byp+1
+ · · · + Byp+q

)m
u(y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= I1 − I2.

Here,

I1 = Cv

∫

R
+
n

(

By1
+ By2

+ · · · + Byp

)m
u(y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= Cv

∫

R
+
n

(

By1
+ By2

+ · · · + Byp

) (

By1
+ By2

+ · · · + Byp

)m−1
u(y)

×

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= Cv

∫

R
+
n

(

By1
+ By2

+ · · · + Byp

)

g (y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy,

= −
(

x2
1 + . . . + x2

p

)

FB (g) (x).

Note that above we have used the following equality [7],

∞
∫

0

u(y)Byi
Jvi−

1
2

(xi, yi) y2vi
i dyi = −x2

i

∞
∫

0

u(y)Jvi−
1
2

(xi, yi) y2vi
i dyi.

Applying the same arguments successively for a total of (m − 1) times, we have following
equality

I1 = Cv

∫

R
+
n

(

By1
+ By2

+ · · · + Byp

)m
u(y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= (−1)m
(

x2
1 + · · · + x2

p

)m
FB (u) (x),

where

g (y) =
(

By1
+ By2

+ · · · + Byp

)m−1
u(y).
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Similarly,

I2 = Cv

∫

R
+
n

(

Byp+1
+ · · · + Byp+q

)m
u(y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= (−1)m
(

x2
p+1 + . . . + x2

p+q

)m
FB (u) (x).

Hence,

FB

(

⊗m,1
B u

)

(x) = (−1)m
[

(

x2
1 + · · · + x2

p

)m
−
(

x2
p+1 + · · · + x2

p+q

)m
]

×

∫

R
+
n

u(y)

(

n
∏

i=1

Jvi−
1
2

(xiyi) y2vi
i

)

dy

= (−1)m V (x)FBu(x),

where V (x) =
(

x2
1 + · · · + x2

p

)m
−
(

x2
p+1 + · · · + x2

p+q

)m
. Then, applying the inverse

Fourier transform we finally obtain

⊗m,1
B u(x) = (−1)m F−1

B V (x)FBu(x).

Now assume the statement is true for (k − 1), i.e,

⊗m,k−1
B u(x) = (−1)m(k−1)F−1

B V k−1(x)FBu(x).

Then, we must prove that it is also true for k ∈ N. So, we have

⊗m,k
B u(x) = ⊗m,1

B u(x)
(

⊗m,k−1
B u(x)

)

= (−1)mF−1
B V (x)FB(−1)m(k−1)F−1

B V k−1(x)FBu(x)

= (−1)mkF−1
B V k(x)FBu(x).

This completes the proof. �

2.4. Lemma. For t, υ > 0 and x, y ∈ R
+, we have

(2.6)

∞
∫

0

e−c2x2tx2υdx =
Γ(υ)

2c2υ+1tυ+ 1
2

and

(2.7)

∞
∫

0

e−c2x2tJυ−
1
2
(xy)x2υ dx =

Γ(υ + 1
2
)

2(c2t)υ+ 1
2

e
−

y2

4c2t ,

where c is a constant. �

3. Main results

In this section, we will state our main results and give their proofs.

3.1. Lemma. Let the operator L be defined by

(3.1) L =
∂

∂t
− c2⊗m,k

B ,

where the k-times iterated generalized Bessel diamond operator ⊗m,k
B is given by

⊗m,k
B u(x) =

[(

Bx1
+ Bx2

+ · · · + Bxp

)m
−
(

Bxp+1
+ · · · + Bxp+q

)m]k
,

Bxi
=

∂2

∂x2
i

+
2υi

xi

∂

∂xi

,
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p + q = n is the dimension of R
+
n , k and m are positive integers, (x1, . . . , xn) ∈ R

+
n , and

c is a constant. Then,

(3.2) E(x, t) = Cυ

∫

Ω+

e(−1)mkc2t[(y2
1+···+y2

p)
m

−(y2
p+1+···+y2

p+q)m]k
n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy

is the elementary solution of (3.1) in the spectrum Ω+ ⊂ R
+
n for t > 0.

Proof. Let E(x, t) be the kernel of the elementary solution of L and δ the Dirac-delta
distribution. Thus, we have

∂

∂t
E(x, t) − c2 ⊗m,k

B E(x, t) = δ(x)δ(t).

Applying the Fourier Bessel transform, which is defined by (2.2), to both sides of the
above equation, and using FBδ(x) = 1 in Lemma 2.3, we obtain

∂

∂t
FBE(x, t)−(−1)mkc2

[

(

x2
1 + · · · + x2

p

)m
− (x2

p+1 + · · · + x2
p+q)

m
]k

FBE(x, t) = δ(t).

Thus, we get

FBE(x, t) = H(t)e(−1)mkc2t[(x2
1+···+x2

p)
m

−(x2
p+1+···+x2

p+q)m]k ,

where H is the Heaviside function, which satisfies H(t) = 1 for t ≥ 0. Therefore,

FBE(x, t) = e(−1)mkc2t[(x2
1+···+x2

p)
m

−(x2
p+1+···+x2

p+q)m]k ,

which coincides with (2.5). Thus from (2.3), we have

E(x, t) = Cv

∫

R
+
n

e(−1)mkc2t[(x2
1+...+x2

p)
m

−(x2
p+1+···+x2

p+q)m]k
n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy,

where Ω+ is the spectrum of E(x, t). Thus for t > 0, we have

E(x, t) = Cv

∫

Ω+

e(−1)mkc2t[(x2
1+···+x2

p)
m

−(x2
p+1+···+x2

p+q)m]k
n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy.

�

3.2. Theorem. Let us consider the equation

(3.3)
∂

∂t
u(x, t) − c2 ⊗m,k

B u(x, t) = 0

under the initial condition

(3.4) u(x, 0) = f(x),

where the k-times iterated generalized Bessel diamond operator ⊗m,k
B is defined by

⊗m,k
B =

[(

Bx1
+ Bx2

+ · · · + Bxp

)m
−
(

Bxp+1
+ · · · + Bxp+q

)m]k
,

Bxi
=

∂2

∂x2
i

+
2υi

xi

∂

∂xi

,

p + q = n is the dimension of R
+
n , k and m are positive integers, u(x, t) is an unknown

function for (x, t) = (x1, . . . , xn, t) ∈ R
+
n × (0,∞), f(x) is the given generalized function,

and c is a constant. Then

(3.5) u(x, t) = E(x, t) ∗B f(x)

is a solution of (3.3) which satisfies (3.4), where E(x, t) is given by (3.2).
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Proof. Taking the Fourier Bessel transform, defined by (2.2), of both sides of (3.3) for
x ∈ R

+
n , and using Lemma 2.3, we obtain

(3.6)
∂

∂t
FBu(x, t) = (−1)mkc2

[

(

x2
1 + · · · + x2

p

)m
− (x2

p+1 + · · · + x2
p+q)

m
]k

FBu(x, t).

Thus, if we consider the initial condition (2.7) then we have the following equality for
(3.6)

(3.7) u(x, t) = f(x) ∗B F−1
B e

(−1)mkc2t
[

(x2
1+···+x2

p)
2
−(x2

p+1+···+x2
p+q)2

]k

.

Here, if we use (2.2) and (2.3), then we have

(3.8)

u(x, t) = f(x) ∗B F−1
B e(−1)mkc2t[(x2

1+···+x2
p)

m
−(x2

p+1+···+x2
p+q)m]k

=

∫

R
+
n

F−1
B e(−1)mkc2t[(x2

1+···+x2
p)

m
−(x2

p+1+···+x2
p+q)m]kT y

x f(x)

(

n
∏

i=1

y2υi
i

)

dy

=

∫

R
+
n

[

Cυ

∫

R
+
n

e(−1)mkc2tV k(z)
n

Π
i=1

Jυi−
1
2
(yizi)z

2υi
i dz

]

T y
x f(x)

(

n
∏

i=1

y2υi
i

)

dy,

where V (z) =
(

z2
1 + z2

2 + · · · + z2
p

)m
−
(

z2
p+1 + z2

p+2 + · · · + z2
p+q

)m
. Set

(3.9) E(x, t) = Cυ

∫

R
+
n

e(−1)mkc2t[(y2
1+···+y2

n)m
−(y2

p+1+···+y2
p+q)m]k

n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy.

Since the integral in (3.9) is divergent, we choose Ω+ ⊂ R
+
n to be the spectrum of E(x, t),

and by (3.2) we have

(3.10)

E(x, t) = Cυ

∫

R
+
n

e(−1)mkc2t[(y2
1+···+y2

p)
m

−(y2
p+1+···+y2

p+q)m]k
n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy

= Cυ

∫

Ω+

e(−1)mkc2t[(y2
1+···+y2

p)
m

−(y2
p+1+···+y2

p+q)m]k
n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy.

Thus (3.8) can be written in the convolution form

u(x, t) = E(x, t) ∗B f(x).

Moreover, since E(x, t) exists, we see that

(3.11)

lim
t→0

E(x, t) = Cυ

∫

Ω+

n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy

= Cυ

∫

R
+
n

n
∏

i=1

Jυi−
1
2
(xiyi)y

2υi
i dy

= δ(x),

for x ∈ R
+
n (also, see [13]).
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Thus, for the solution u(x, t) = E(x, t) ∗B f(x) of (3.3) we have

u(x, 0) = lim
t→0

u(x, t)

= lim
t→0

E(x, t) ∗ f(x)

= δ ∗ f(x)

= f(x),

which satisfies (3.4). This completes the proof. �

3.3. Theorem. The kernel E(x, t) defined by (3.10) has the following properties:

i. E(x, t) ∈ C∞(R+
n × (0,∞)), the space of infinitely many times differentiable

functions,

ii. ( ∂
∂t

− c2⊗m,k
B )E(x, t) = 0 for all x ∈ R

+
n , t > 0,

iii. limt→∞ E(x, t) = δ(x) for all x ∈ R
+
n .

Proof. i. From (3.10), and

∂n

∂tn
E(x, t)

= Cυ
Ω+

∫

∂n

∂tn
e(−1)mkc2t[(y2

1+···+y2
p)

m
−(y2

p+1+···+y2
p+q)m]k n

Π
i=1

Jυi−
1
2
(xiyi)y

2υi
i dy,

we have E(x, t) ∈ C∞ for x ∈ R
+
n , t > 0.

ii. We have u(x, t) = E(x, t) since u(x, t) = E(x, t) ∗B f(x) holds. Note here that we
use the fact f(x) = δ(x) by the Fourier Bessel transformation. Then, we easily obtain

(

∂

∂t
− c2⊗m,k

B

)

E(x, t) = 0

by direct computation.

iii. This case is obvious by (3.11). �

3.4. Remark. We consider the operator ⊗m,k
B defined in Lemma 2.3, Theorem 3.2 and

Theorem 3.3. Here, as υ → 0 and m = 1, we obtain results in [10].

3.5. Remark. We consider the operator ⊗m,k
B defined in Lemma 2.3, Theorem 3.2 and

Theorem 3.3. Here, for m = 2 we obtain results in [11].
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