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Abstract

A right R-module N is called GP-flat if for any a ∈ R, there exists
a positive integer n (depending on a) such that the sequence 0 →
N ⊗ Ran → N ⊗ R is exact. A left R-module M is said to be GP-
injective if for any a ∈ R, there exists a positive integer n (depending
on a) such that every homomorphism from Ran to M extends to one
from R to M . R is said to be a left GP-coherent (resp. GPF, GPP)
ring in case for any a ∈ R, there exists a positive integer n (depending
on a) such that Ran is finitely presented (resp. flat, projective). We
study GP-coherent, GPF, GPP and π-regular rings using GP-flat and
GP-injective modules.

Keywords: GP-flat module, GP-injective module, GP-coherent ring, GPF ring, GPP
ring, π-regular ring.
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1. Introduction

Recall that a left R-module M is P -injective [32] or divisible [12] if for any a ∈
R, any homomorphism from Ra to M extends to one from R to M , equivalently,
Ext1(R/Ra,M) = 0. In [33], the concept of P -injectivity is weakened to GP-injectivity.
A left R-module M is called GP-injective if for any a ∈ R, there exists a positive integer
n (depending on a) such that any homomorphism from Ran to M extends to one from R
to M , equivalently, Ext1(R/Ran,M) = 0. Let us note that GP-injective modules defined
here are different from the GP-injective modules defined in [21]. For any left R-module
M and any t ∈ R, there exists the isomorphism Ext1(R/Rt,M) ∼= rM lR(t)/tM (see [12,
p.148]). So, M is a P -injective left R-module if and only if rM lR(a) = aM for any a ∈ R;
M is a GP-injective left R-module if and only if for any a ∈ R, there exists a positive
integer n (depending on a) such that rM lR(an) = anM . R is said to be a left P -injective
(resp. GP-injective) ring if R is P -injective (resp. GP-injective) as a left R-module. We
also recall that a right R-module N is P -flat [22] or torsionfree [12] if for any a ∈ R,
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the sequence 0 → N ⊗ Ra → N ⊗ R is exact, equivalently, Tor1(N,R/Ra) = 0. There
exists an intimate connection between P -flat and P -injective modules. For example, N
is a P -flat right R-module if and only if its character module N+ is a P -injective left
R-module. P -flat, P -injective and GP-injective modules have been extensively studied
for many years (see, for example, [6, 9, 10, 12], [18] - [20], [22, 23], [30] - [36]). These
modules play important roles in the research on von Neumann regular rings, coherent
rings, V -rings and their generalizations. It is natural for us to consider the properties of
those modules whose character modules are GP-injective.

On the other hand, we recall that R is a left PP ring if every principal left ideal of R
is projective. R is a left GPP ring [13, 24] if for any a ∈ R, there exists a positive integer
n (depending on a) such that Ran is projective, equivalently, if for any a ∈ R, the left
annihilator of an is generated by an idempotent for some positive integer n (depending
on a). As a generalization of GPP rings and PF rings (i.e., rings which have flat principal
left ideals [15]), the concept of GPF rings is first introduced in [1]. R is a left GPF ring
if for any a ∈ R, there exists a positive integer n (depending on a) such that Ran is flat.
See [1, 13, 14, 17, 24, 25] for more details about GPP and GPF rings.

Motivated by these facts, in this paper, we first introduce a new class of modules,
called GP-flat modules, which is a generalization of P -flat modules. We find that the
relationship between GP-flat modules and GP-injective modules has an analogue between
P -flat modules and P -injective modules. Then several important rings, such as GPF,
GPP and π-regular rings, are characterized in terms of GP-flat and GP-injective modules,
where R is said to be a π-regular ring [13] if for any a ∈ R, there exist b ∈ R and a
positive integer m such that am = ambam. Finally, as a generalization of both left P -
coherent rings (i.e., rings which have principal left ideals finitely presented [20]) and left
GPP rings, we introduce a new class of rings, called left GP-coherent rings, which is also
closely related to GP-flat and GP-injective modules.

Next let us describe the contents of the paper in more detail.

In Section 2, after the concept of GP-flat module is introduced, we obtain several
characteristic properties of GP-flat modules. For instance, we prove that N is a GP-flat
right R-module if and only if N+ is GP-injective, if and only if for any a ∈ R, there
exists a positive integer n such that NlR(an) = lN (an), if and only if for any a ∈ R,
there exists a positive integer n such that any homomorphism from R/anR to M factors
through a free right R-module. We also show that a simple module over a commutative
ring is GP-flat if and only if it is GP-injective. When R is a left P -coherent ring, we
obtain some special properties of GP-flat and GP-injective modules.

Section 3 is devoted to the investigation on GPF, GPP and π-regular rings using
GP-flat and GP-injective modules. For example, we prove that R is a left GPF ring if
and only if every right ideal is GP-flat; R is a π-regular ring if and only if every right R-
module is GP-flat. For a commutative ring R, we show that the following are equivalent:
(1) R is π-regular ring. (2) R is a GP-injective GPP ring. (3) Every cyclic R-module is
GP-injective. (4) Every cyclic R-module is GP-flat.

In Section 4 of this paper, we introduce and study the class of GP-coherent rings.
We will call R a left GP-coherent ring if for any a ∈ R, there exists a positive integer
n (depending on a) such that Ran is finitely presented. We prove that the following
conditions are equivalent for a ring R: (1) R is a left GP-coherent ring. (2) Any direct
product of copies of RR is GP-flat. (3) Any direct limit of injective left R-modules is
GP-injective. Finally, we get that GP-coherence coincides with P -coherence if R is a
reduced ring.
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Throughout this paper, R represents an associative ring with identity and all modules
are unitary. MR (RM) denotes a right (left) R-module. For a subset X of R, the left
(resp. right) annihilator of X in NR (resp. RM) is denoted by lN (X) (resp. rM (X)). If
X = {a}, we usually abbreviate this to lN(a) (resp. rM (a)). For an R-module M , the
dual module HomR(M,R) is denoted by M∗, and the character module M+ is defined by
M+ = HomZ(M,Q/Z). Let M and N be R-modules. Hom(M,N) (resp. Extn(M,N))
means HomR(M,N) (resp. ExtnR(M,N)), and similarly M ⊗ N (resp. Torn(M,N))
denotes M ⊗RN (resp. TorRn (M,N)) for an integer n ≥ 1 unless otherwise specified. For
unexplained concepts and notations, we refer the reader to [2, 9, 18, 26, 30].

2. GP-flat modules and GP-injective modules

We start with the following

2.1. Definition. A right R-module N is said to be generalized P -flat (GP-flat for short)
if for any a ∈ R, there exists a positive integer n (depending on a) such that the sequence
0 → N ⊗ Ran → N ⊗ R is exact, equivalently, for any a ∈ R, there exists a positive
integer n (depending on a) such that Tor1(N,R/Ra

n) = 0.

Obviously, every P -flat module is GP-flat. But the converse is not true as shown in
Example 3.4.

Now we give some characteristic properties of GP-flat modules.

2.2. Theorem. The following are equivalent for a right R-module N :

(1) N is GP-flat.
(2) N+ is GP-injective.
(3) For any a ∈ R, there exists a positive integer n such that NlR(an) = lN(an).
(4) For any a ∈ R, there exists a positive integer n such that σ : N⊗lR(an) → lN(an)

is an epimorphism, where σ is defined by σ(a⊗b) = ab for a ∈ N and b ∈ lR(an).
(5) For any a ∈ R, there exists a positive integer n such that any homomorphism

from R/anR to N factors through a free right R-module.
(6) There exists an exact sequence 0 → K → F → N → 0 with F free such that for

any a ∈ R, there exists a positive integer n satisfying Kan = K ∩ Fan.

Proof. (1)⇔(2) Let a ∈ R and n be a positive integer. Then the sequence 0 → N⊗Ran →
N ⊗R is exact if and only if the sequence (N ⊗R)+ → (N ⊗Ran)+ → 0 is exact, if and
only if the sequence Hom(R,N+) → Hom(Ran, N+) → 0 is exact. So, N is GP-flat if
and only if N+ is GP-injective.

(1)⇔(3) By the proof of [12, Proposition 1], for a ∈ R and a positive integer n, we
have the isomorphism Tor1(N,R/Ra

n) ∼= lN (an)/NlR(an). So Tor1(N,R/Ra
n) = 0 if

and only if NlR(an) = lN(an).

(3)⇔(4) is obvious by only noting that im(σ) = NlR(an).

(1)⇒(5) Let a ∈ R. By (1), there is a positive integer n such that Tor1(N,R/Ra
n) = 0.

In addition, there exists an exact sequence 0 → K → F
π
→ N → 0 with F free, which

induces the exact sequence

0 = Tor1(N,R/Ra
n) → K ⊗ (R/Ran) → F ⊗ (R/Ran).

Let f : R/anR → N be any homomorphism. Then there exists x ∈ F such that π(x) =
f(1). Hence π(xan) = π(x)an = f(1)an = f(an) = 0, and so xan ∈ K. Since xan ⊗ 1 =
x⊗ an = 0 in F ⊗ (R/Ran), we have xan ⊗ 1 = 0 in K ⊗ (R/Ran). By [9, Lemma 6.1,
p.33], there is k ∈ K such that xan = kan. Define δ : R/anR→ F by δ(r) = (x− k)r for
r ∈ R. It is easy to check that δ is well-defined and πδ = f . So f factors through F .
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(5)⇒(1) Let a ∈ R. Then there exists a positive integer n such that any homomor-
phism from R/anR to N factors through a free right R-module. There exists an exact

sequence 0 → K → F
π
→ N → 0 with F free, which yields the exact sequence

0 = Tor1(F,R/Ra
n) → Tor1(N,R/Ra

n) → K ⊗ (R/Ran) → F ⊗ (R/Ran).

Next we show that the sequence 0 → K ⊗ (R/Ran) → F ⊗ (R/Ran) is exact. Let
k⊗1 ∈ K⊗(R/Ran) be such that k⊗1 = 0 in F⊗(R/Ran). Then there exists p ∈ F such
that k = pan by [9, Lemma 6.1, p.33]. Define f : R/anR→ N by f(r) = π(p)r for r ∈ R.
Then f is well-defined. By (5), there exist a free right R-module G, homomorphisms
β : R/anR → G and γ : G → N such that f = γβ. Therefore there exists δ : G → F
such that γ = πδ. So k = pan = (p− δβ(1))an. Since π(p− δβ(1)) = f(1) − γβ(1) = 0,
p− δβ(1) ∈ K. Hence k⊗ 1 = (p− δβ(1))an⊗ 1 = (p− δβ(1))⊗ an = 0 in K ⊗ (R/Ran),
as desired. Thus Tor1(N,R/Ra

n) = 0, and so N is GP-flat.

(1)⇔(6) There exists an exact sequence 0 → K → F → N → 0 with F free.
Let a ∈ R and n be a positive integer. By [26, Exercise 2.7, p.27], there exists ψ :
Tor1(N,R/Ra

n) → (K ∩ Fan)/Kan such that the following diagram with exact rows is
commutative:

0 // Tor1(N,R/Ra
n)

ψ

��

// K ⊗ (R/Ran) //

α

��

F ⊗ (R/Ran)

β

��

0 // (K ∩ Fan)/Kan // K/Kan // F/Fan,

where α and β are isomorphisms. So Tor1(N,R/Ra
n) ∼= (K ∩ Fan)/Kan by the Five

Lemma. Thus N is GP-flat if and only if Kan = K ∩ Fan. �

2.3. Proposition. The following are true for a ring R:

(1) If N is a GP-flat right R-module, then ⊕N is GP-flat.
(2) If M is a P -flat right R-module and N is a GP-flat right R-module, then M⊕N

is GP-flat.
(3) If M is a GP-injective left R-module, then ⊕M and ΠM are GP-injective.
(4) If M is a P -injective left R-module and N is a GP-injective left R-module, then

M ⊕N is GP-injective.
(5) The class of all GP-injective left R-modules and the class of all GP-flat right

modules are closed under pure submodules.

Proof. (1), (2), (3) and (4) are routine.

(5) Let N be a pure submodule of a GP-injective left R-module M . For any a ∈ R,
there exists a positive integer n such that Ext1(R/Ran,M) = 0. So we have the exact
sequence

Hom(R/Ran,M) → Hom(R/Ran,M/N) → Ext1(R/Ran, N) → 0.

But the sequence Hom(R/Ran,M) → Hom(R/Ran,M/N) → 0 is exact since R/Ran is
finitely presented. So Ext1(R/Ran, N) = 0, i.e., N is GP-injective.

Let A be a pure submodule of a GP-flat right R-module B. Then the exact sequence
0 → A → B → B/A → 0 induces the split exact sequence 0 → (B/A)+ → B+ → A+ →
0. Thus A+ is GP-injective since B+ is GP-injective by Theorem 2.2. So A is GP-flat
by Theorem 2.2 again. �

2.4. Proposition. The following are true for a ring R:

(1) For a right ideal I of R, if R/I is a GP-flat right R-module, then for any a ∈ I,
there exist a positive integer n and r ∈ I such that an = ran.
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(2) If I is a GP-injective right ideal of R, then R/I is a GP-flat right R-module.
The converse holds if R is a right P -injective ring.

(3) If any maximal right ideal of R is GP-injective, then every simple right R-module
is GP-flat.

(4) A simple module over a commutative ring is GP-flat if and only if it is GP-
injective.

Proof. (1) For any a ∈ I , there exists a positive integer n such that (R/I)lR(an) =
lR/I(a

n) by Theorem 2.2. Since 1 ∈ lR/I(a
n), 1 ∈ (R/I)lR(an). So there exists t ∈ lR(an)

such that 1 = 1t = t. Thus 1 − t ∈ I , and hence an = (1 − t)an.

(2) If I is a GP-injective right ideal of R, then for any a ∈ R, there exists a positive
integer n such that lIrR(an) = Ian. Since I ∩Ran ⊆ lIrR(an) = Ian, we have I ∩Ran =
Ian. So R/I is a GP-flat right R-module by Theorem 2.2.

Conversely, if R/I is a GP-flat right R-module, then by Theorem 2.2, for any a ∈ R,
there exists a positive integer n such that any homomorphism from R/anR to R/I factors
through a free right R-module. So Hom(R/anR,R) → Hom(R/anR,R/I) is epic. On
the other hand, since R is right P -injective, the exact sequence 0 → I → R → R/I → 0
gives rise to the exact sequence

Hom(R/anR,R) → Hom(R/anR,R/I) → Ext1(R/anR, I) → Ext1(R/anR,R) = 0.

Thus Ext1(R/anR, I) = 0, and so I is GP-injective.

(3) is clear by (2).

(4) Let {Si}i∈I be the irredundant set of representatives of all simple R-modules and
E the injective envelope of ⊕i∈ISi. Then E is an injective cogenerator by [2, Corol-
lary 18.19]. Let S be a simple R-module. For any a ∈ R and any positive integer n,
there is the isomorphism

Ext1(R/anR,Hom(S,E)) ∼= Hom(Tor1(R/a
nR,S), E).

Note that Hom(S,E) ∼= S by the proof of [29, Lemma 2.6]. Thus Tor1(R/a
nR,S) = 0 if

and only if Ext1(R/anR,S) = 0, and so S is GP-flat if and only if S is GP-injective. �

The following propositions exhibit that GP-flat and GP-injective modules have several
special properties when the ring in question is P -coherent. Recall from [20] that R is a
left P -coherent ring if every principal left ideal of R is finitely presented.

2.5. Proposition. Let R be a left P -coherent ring. Then,

(1) A left R-module M is GP-injective if and only if M+ is GP-flat.
(2) Every GP-flat right R-module is P -flat if and only if every GP-injective left

R-module is P -injective.
(3) R is a left GPP ring if and only if R is a left GPF ring.

Proof. (1) Let M be a left R-module, n a positive integer and a ∈ R. Consider the
following commutative diagram:

0 // M+ ⊗Ran

θ1

��

// M+ ⊗R

θ2

��

// M+ ⊗ (R/Ran)

θ3

��

// 0

0 // Hom(Ran,M)+ // Hom(R,M)+ // Hom(R/Ran,M)+ // 0.

Note that Ran is finitely presented since R is left P -coherent. So θ1, θ2 and θ3 are isomor-
phisms by [5, Lemma 2]. Thus the first row is exact if and only if the second row is exact,
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if and only if the sequence 0 → Hom(R/Ran,M) → Hom(R,M) → Hom(Ran,M) → 0
is exact. So M is GP-injective if and only if M+ is GP-flat.

(2) =⇒ Let M be any GP-injective left R-module. Then M+ is GP-flat by (1), and
so M+ is P -flat. Thus M is P -injective by [20, Theorem 2.7].

⇐= Let N be any GP-flat right R-module. Then N+ is GP-injective by Theo-
rem 2.2, and so N+ is P -injective. Hence N is P -flat.

(3) is obvious. �

2.6. Lemma. The following are equivalent for a ring R:

(1) R is a left GP-injective ring.
(2) For any a ∈ R, there exists a positive integer n such that anR = rRlR(an)
(3) For any a ∈ R, there exists a positive integer n such that R/anR is torsionless.

Proof. (1) ⇐⇒ (2) is clear.

(2) ⇐⇒ (3) follows from [2, Lemma 25.2]. �

2.7. Proposition. The following are equivalent for a left P -coherent ring R:

(1) R is a left GP-injective ring.
(2) Every injective right R-module is GP-flat.
(3) Every flat left R-module is GP-injective.
(4) For any a ∈ R, there exists a positive integer n such that R/anR embeds in a

free right R-module.

Proof. (1) =⇒ (2) Let E be an injective right R-module. Then there exists an exact se-
quence 0 → E → Π(RR)+. Note that ⊕RR is GP-injective by (1) and Proposition 2.3 (3),
so Π(RR)+ ∼= (⊕RR)+ is GP-flat by Proposition 2.5 (1). Thus E is GP-flat.

(2) =⇒ (3) Let M be a flat left R-module. Then M+ is injective, and so M+ is
GP-flat by (2). Thus M is GP-injective by Proposition 2.5 (1).

(3) =⇒ (1) is clear.

(1) =⇒ (4) For any a ∈ R, there exists a positive integer n such that R/anR is
torsionless by Lemma 2.6. So there exists an exact sequence 0 → R/anR → ΠRR. By
[20, Theorem 2.7], ΠRR is P -flat. So R/anR embeds in a free right R-module by [35,
Theorem 4.3].

(4) =⇒ (1) follows from Lemma 2.6. �

3. GPF rings, GPP rings and π-regular rings

We first characterize GPF rings using GP-flat modules as follows.

3.1. Theorem. The following are equivalent for a ring R:

(1) R is a left GPF ring.
(2) Every submodule of any P -flat right R-module is GP-flat.
(3) Every right ideal of R is GP-flat.
(4) For any right R-module N and any a ∈ R, there exists a positive integer n such

that Tor2(N,R/Ra
n) = 0.
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Proof. (1) =⇒ (2) Let N be a submodule of a P -flat right R-module M and a ∈ R. Then
there exists a positive integer n such that Ran is flat. Consider the following commutative
diagram:

N ⊗Ran
γ

//

α

��

N ⊗R

��

M ⊗Ran
β

// M ⊗R.

Since Ran is flat and M is P -flat, α and β are monomorphisms, and so γ is a monomor-
phism. Thus N is GP-flat.

(2) =⇒ (4) For any right R-module N , there exists an exact sequence 0 → K → F →
N → 0 with F free. Then K is GP-flat by (2). For any a ∈ R, there is a positive integer
n such that Tor1(K,R/Ra

n) = 0. Consider the induced exact sequence

0 = Tor2(F,R/Ra
n) → Tor2(N,R/Ra

n) → Tor1(K,R/Ra
n) = 0.

So Tor2(N,R/Ra
n) = 0.

(4) =⇒ (3) For any right ideal I of R and any a ∈ R, there exists a positive integer n
such that Tor2(R/I,R/Ra

n) = 0 by (4). In addition, the exact sequence 0 → I → R →
R/I → 0 induces the exact sequence

0 = Tor2(R/I,R/Ra
n) → Tor1(I,R/Ra

n) → Tor1(R,R/Ra
n) = 0.

So Tor1(I,R/Ra
n) = 0. Thus I is GP-flat.

(3) =⇒ (1) Let I be any right ideal of R and a ∈ R. Then I is GP-flat, and so there

exists a positive integer n such that the sequence 0 → I⊗Ran
g
→ I⊗R is exact. Consider

the following commutative diagram:

I ⊗Ran
f

//

g

��

R⊗Ran

��

I ⊗R
h

// R⊗R.

Since g and h are monic, f is monic. Hence Ran is flat, so R is a left GPF ring. �

The equivalence of (1) through (3) in the following theorem has been established by
the author (see [19, Theorem 2.1]). But we here include a different proof.

3.2. Theorem. The following are equivalent for a ring R:

(1) R is a left GPP ring.
(2) Every quotient of any P -injective left R-module is GP-injective.
(3) Every quotient of any injective left R-module is GP-injective.
(4) For any left R-module M and any a ∈ R, there exists a positive integer n such

that Ext2(R/Ran,M) = 0.

Proof. (1) =⇒ (2) Let X be any P -injective left R-module and N any submodule of X.
We will show that X/N is GP-injective. Let a ∈ R. Then there exists a positive integer n
such that Ran is projective by (1). Let ι : Ran → R be the inclusion and π : X → X/N
the canonical map. For any f : Ran → X/N , there exists g : Ran → X such that πg = f .
So there is h : R→ X such that hι = g since X is P -injective. It follows that (πh)ι = f ,
and (2) holds.

(2) =⇒ (3) is trivial.
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(3) =⇒ (4) Let M be any left R-module. Then there exists an exact sequence 0 →
M → E → L → 0 with E injective. By (3), L is GP-injective. So for any a ∈ R,
there exists a positive integer n such that Ext1(R/Ran, L) = 0. From the induced exact
sequence

0 = Ext1(R/Ran, L) → Ext2(R/Ran,M) → Ext2(R/Ran, E) = 0,

we have Ext2(R/Ran,M) = 0.

(4) =⇒ (1) Let M be any left R-module and a ∈ R. Then there exists a positive
integer n such that Ext2(R/Ran,M) = 0 by (4). The exact sequence 0 → Ran → R →
R/Ran → 0 yields the exact sequence

0 = Ext1(R,M) → Ext1(Ran,M) → Ext2(R/Ran,M) = 0.

Thus Ext1(Ran,M) = 0, and so Ran is projective. Hence R is a left GPP ring. �

Now we turn to the characterizations of π-regular rings. Recall from [13] that R is
a π-regular ring if for any a ∈ R, there exist b ∈ R and a positive integer m such that
am = ambam. A left R-module M is called cotorsion [8] if Ext1(F,C) = 0 for any flat
left R-module F .

3.3. Theorem. The following are equivalent for a ring R:

(1) R is a π-regular ring.
(2) Every left R-module is GP-injective.
(3) Every cotorsion left R-module is GP-injective.
(4) Every right R-module is GP-flat.
(5) Every cotorsion right R-module is GP-flat.
(6) R is a left GP-injective ring and every quotient of any GP-injective left R-module

is GP-injective.

Proof. (1) ⇐⇒ (2) follows from [36, Theorem 3].

(2) =⇒ (3), (2) =⇒ (6) and (4) =⇒ (5) are trivial.

(3) =⇒ (4) Let N be any right R-module. Since N+ is pure-injective and hence
cotorsion, N+ is GP-injective by(3). So N is GP-flat by Theorem 2.2.

(5) =⇒ (2) Let M be any left R-module. Then M+ is GP-flat by (5). Thus M++

is GP-injective by Theorem 2.2. Note that M is a pure submodule of M++, so M is
GP-injective by Proposition 2.3 (5).

(6) =⇒ (2) For any left R-module M , there exists an exact sequence ⊕RR→M → 0.
Since RR is GP-injective, ⊕RR is GP-injective by Proposition 2.3 (3). So M is GP-
injective by (6). �

3.4. Example. Let R =

(

Z2 Z2

0 Z2

)

=

{(

a b
0 c

)

: a, b, c ∈ Z2

}

. It is easily checked that

every element of R is either nilpotent or idempotent or invertible. So R is a π-regular
ring. But R is clearly not a von Neumann regular ring. Thus there exists a GP-flat right
R-module which is not P -flat by Theorem 3.3 and [22, Theorem 2], and there exists a
GP-injective left R-module which is not P -injective by Theorem 3.3 and [32, Lemma 2].

The following remark may be viewed as a further illustration of the usefulness of
GP-flat modules.
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3.5. Remark. Let R =

(

S SNT
0 T

)

=

{(

a b
0 c

)

: a ∈ S, b ∈ N, c ∈ T

}

be the formal

triangular matrix ring constructed from a pair of rings S, T and a bimodule SNT . We
claim that N is a GP-flat right T -module if R is a left GPP ring. Similarly, N is a GP-flat
left S-module if R is a right GPP ring.

In fact, assume that R is a left GPP ring, then for any t ∈ T , there exists a positive

integer n such that R

(

0 0
0 t

)n

=

(

0 Ntn

0 T tn

)

is a projective left R-module. By [11,

Proposition 4.5], N ⊗T T t
n → N ⊗

T
T is a monomorphism. So N is a GP-flat right

T -module.

In the same fashion, we can prove that N is a GP-flat left S-module if R is a right
GPP ring.

Next we discuss how GPP rings are close to π-regular rings.

3.6. Theorem. The following are true for a ring R:

(1) If R is a left GPP ring, then for any right annihilator A in R and any a ∈ A,
there exists a positive integer n such that an ∈ Aan.

(2) If R is a left GPP left GP-injective ring, then for any a ∈ R, there exist b ∈ R
and a positive integer n such that an = aban.

(3) If R is a left GPP left P -injective ring, then R is a π-regular ring.
(4) If R is a left GPP ring and every maximal right ideal of R is P -injective, then

R is a π-regular ring.

Proof. (1) Let A be a right annihilator in R and a ∈ A. Since R is left GPP, there exists
a positive integer n such that lR(an) = Re for some e2 = e ∈ R. Thus an = (1 − e)an.
Note that (1 − e)R = rR(Re) = rRlR(an) ⊆ rRlR(a) ⊆ rRlR(A) = A. Hence an ∈ Aan.

(2) Let a ∈ R. Then there exists a positive integer m such that rRlR(am) = amR by
Lemma 2.6. Let c = am and A = rRlR(am). By (1), there exist a positive integer t and
u ∈ R such that ct = cuct. Let n = mt. Then an = a(am−1u)an.

(3) Let M be any left R-module. Then there exists an exact sequence ⊕RR→M → 0.
Since ⊕RR is P -injective, M is GP-injective by Theorem 3.2. Thus R is a π-regular ring
by Theorem 3.3.

(4) Let I = υ1R + υ2R + · · · + υnR be a finitely generated proper right ideal of R.
Then there exists a maximal right ideal K containing I . For any υ ∈ K, the inclusion
υR → K extends to f : R → K since K is P -injective. So f(υ) = υ. By [26, Theorem
3.57], there exists θ : R → K such that θ(υi) = υi (i = 1, 2, · · · , n). Thus (1 − θ(1))I =
0 and so lR(I) 6= 0.

On the other hand, for any a ∈ R, there exists a positive integer m such that Ram is
projective. So Ram is a direct summand of R by [3, Theorem 5.4]. Thus R is a π-regular
ring. �

3.7. Theorem. The following are equivalent for a commutative ring R:

(1) R is a π-regular ring.
(2) R is a GP-injective GPP ring.
(3) Every cyclic R-module is GP-injective.
(4) Every cyclic R-module is GP-flat.

Proof. (2) =⇒ (1) For any a ∈ R, there exist a positive integer n and b ∈ R such that
an = aban by Theorem 3.6 (2). So an = (ab)(ab)an = · · · = anbnan. Thus R is a
π-regular ring.
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(3) =⇒ (1) Let a ∈ R. Then Ra is GP-injective. So there exists a positive integer n
such that the inclusion Ran → Ra extends to a homomorphism R → Ra. Thus there is
b ∈ R such that an = anba. So an = an(ba)2 = · · · = an(ba)n = anbnan. Hence R is a
π-regular ring.

(4) =⇒ (1) For any a ∈ R, R/aR is GP-flat by (4). So there exist a positive integer
n and c ∈ R such that an = acan by Proposition 2.4 (1). Thus an = ancnan, and so R is
a π-regular ring.

The rest are clear by Theorem 3.3. �

4. GP-coherent rings

4.1. Definition. A ring R is called a left generalized P -coherent (GP-coherent for short)
if for any a ∈ R, there exists a positive integer n (depending on a) such that Ran is finitely
presented.

Obviously, the concept of left GP-coherent rings is a generalization of both left P -
coherent rings and left GPP rings. The following examples show that this generalization
is proper.

4.2. Example. LetK be a field with a subfield L such that dimLK = ∞, and there exists
a field isomorphism ϕ : K → L (for instance, K = Q(x1, x2, x3, · · · ), L = Q(x2, x3, · · · )).
Let R = K ×K with multiplication

(x, y)(x′, y′) = (xx′, ϕ(x)y′ + yx′), x, y, x′, y′ ∈ K.

Let a = (0, 1) ∈ R. Then lR(a) is not finitely generated (see [18, Example 4.46 (e)]).
Thus R is not left P -coherent. On the other hand, it is easy to see that R has exactly
three right ideals: (0), R, and (0,K) = (0, 1)R. So R is a local ring with the Jacobson
radical J(R) = (0,K). Thus every element of R is either nilpotent or invertible. So R is
a left GP-coherent ring.

4.3. Example. Let R be the 2× 2 full matrix ring over Z[x]. Then R is not a left GPP
ring by [14, Example 4]. But Z[x] is a coherent ring by [18, Example 4.61 (b)]. So R is
a left coherent ring, in particular, a left GP-coherent ring.

Recall that a left R-moduleM is FP -injective [27] or absolutely pure [7] if Ext1(N,M) =
0 for any finitely presented left R-module N .

The following theorem characterizes left GP-coherent rings in terms of, among others,
GP-flat and GP-injective modules.

4.4. Theorem. The following are equivalent for a ring R:

(1) R is a left GP-coherent ring.
(2) For any a ∈ R, there exists a positive integer n such that lR(an) is a finitely

generated left ideal.
(3) For any a ∈ R, there exists a positive integer n such that (R/anR)∗ is a finitely

generated left R-module.
(4) Any direct product of P -flat right R-modules is GP-flat.
(5) Any direct product of copies of RR is GP-flat.
(6) Any direct limit of (P -)injective left R-modules is GP-injective.
(7) For any projective left R-module M , M∗ is GP-flat.
(8) For any FP -injective left R-module M and any a ∈ R, there exists a positive

integer n such that Ext2(R/Ran,M) = 0.
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Proof. (1) ⇐⇒ (2) is obvious by the exact sequence 0 → lR(an) → R→ Ran → 0.

(2) ⇐⇒ (3) follows from the standard isomorphism: (R/anR)∗ ∼= lR(an).

(1) =⇒ (4) Let {Mi} be a family of P -flat right R-modules and a ∈ R. Then there
exists a positive integer n such that Ran is finitely presented by (1). Consider the
following commutative diagram:

(ΠMi) ⊗Ran
ϕ

//

α

��

(ΠMi) ⊗R

��

Π(Mi ⊗Ran)
β

// Π(Mi ⊗R).

Since α is an isomorphism by [28, Lemma 13.2] and β is a monomorphism, ϕ is a
monomorphism. So ΠMi is GP-flat.

(4) =⇒ (5) is trivial.

(5) =⇒ (1) Let a ∈ R. By (5), there exists a positive integer n such that (ΠRR) ⊗

Ran
γ
→ (ΠRR) ⊗R is a monomorphism. Consider the following commutative diagram:

(ΠRR) ⊗Ran
γ

//

δ

��

(ΠRR) ⊗R

��

Π(R⊗Ran) // Π(R⊗R).

Then δ is a monomorphism. But δ is also an epimorphism by [28, Lemma 13.1]. So δ is
an isomorphism. Thus Ran is finitely presented by [28, Lemma 13.2]. Hence R is a left
GP-coherent ring.

(1) ⇐⇒ (6) Let a ∈ R, n be a positive integer and {Mj : j ∈ J} a family of (P -
)injective left R-modules, where J is a directed set. Consider the following commutative
diagram:

lim
→

Hom(R,Mj)

��

α
// lim
→

Hom(Ran,Mj)

γ

��

Hom(R, lim
→

Mj)
ψ

// Hom(Ran, lim
→

Mj).

Since α is an epimorphism, we have ψ is an epimorphism if and only if γ is an epimor-
phism, if and only if Ran is finitely presented by [16, Proposition 2.5]. Thus R is a left
GP-coherent ring if and only if lim

→

Mj is GP-injective.

(5) =⇒ (7) For any projective left R-module M , there is a projective left R-module
N such that M ⊕N ∼= ⊕RR. So we have

M∗ ⊕N∗ ∼= (⊕RR)∗ ∼= ΠRR.

Thus M∗ is GP-flat since ΠRR is GP-flat by (5).

(7) =⇒ (5) is obvious by choosing M to be ⊕RR.

(1) =⇒ (8) Let M be any FP -injective left R-module and a ∈ R. Then there exists a
positive integer n such that Ran is finitely presented by (1), and so Ext1(Ran,M) = 0.
The exact sequence 0 → Ran → R→ R/Ran → 0 yields the exact sequence

0 = Ext1(Ran,M) → Ext2(R/Ran,M) → Ext2(R,M) = 0.

Thus Ext2(R/Ran,M) = 0.
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(8) =⇒ (1) Let M be any FP -injective left R-module and a ∈ R. Then there exists a
positive integer n such that Ext2(R/Ran,M) = 0. The exact sequence 0 → Ran → R→
R/Ran → 0 induces the exact sequence

0 = Ext1(R,M) → Ext1(Ran,M) → Ext2(R/Ran,M) = 0.

Thus Ext1(Ran,M) = 0, and so Ran is finitely presented by [7]. Hence R is a left
GP-coherent ring. �

4.5. Corollary. If M+ is GP-flat for any GP-injective left R-module M , then R is a
left GP-coherent ring.

Proof. Note that ⊕(RR)+ is GP-injective. So Π(RR)++ ∼= (⊕(RR)+)+ is GP-flat by
hypothesis. Since ΠRR is a pure submodule of Π(RR)++ by [4, Lemma 1 (2)], ΠRR is
GP-flat by Proposition 2.3 (5). So R is left GP-coherent by Theorem 4.4. �

Recall that R is a reduced ring if R has no non-zero nilpotent element. Let R be a
reduced ring and a, b ∈ R. It is easy to see that ab = 0 if ba = 0.

4.6. Proposition. Let R be a reduced ring. Then

(1) lR(a) = lR(an) for any a ∈ R and any positive integer n.
(2) Every GP-flat right R-module is P -flat.
(3) Every GP-injective left R-module is P -injective.
(4) R is left GP-coherent if and only if R is left P -coherent.
(5) R is left GPP if and only if R is left GP-coherent left GPF.

Proof. (1) Let x ∈ l(an). Then xan = 0.

If n = 1, we are done.

If n > 1, then (xa)an−1 = 0, and so an−1(xa) = 0. Thus (xa)(an−2xa) = 0, and
hence an−2(xa)2 = 0. Inductively, (xa)n = 0. Therefore xa = 0, and so x ∈ lR(a).
Hence lR(a) = lR(an).

(2) Let N be any GP-flat right R-module and a ∈ R. Then there exists a positive
integer n such that lN (a) ⊆ lN (an) = NlR(an) = NlR(a) by (1) and Theorem 2.2. So
lN(a) = NlR(a). Thus N is P -flat by [22, Lemma 2].

(3) Let M be any GP-injective left R-module and a ∈ R. Then there exists a positive
integer n such that rM lR(a) = rM lR(an) = anM ⊆ aM by (1). So, rM lR(a) = aM .
Hence M is P -injective.

(4) and (5) are clear by (1) and Theorem 4.4. �

We end this paper by raising two questions, which are motivated by Proposition 2.3
and Theorem 3.7.

4.7. Question. (1) Is the direct sum of any two GP-flat right R-modules (resp. GP-
injective left R-modules) again GP-flat (resp. GP-injective)?

(2) In general, is R a π-regular ring if R satisfies any one of the following conditions: (i)
Every cyclic right R-module is GP-flat. (ii) Every cyclic left R-module is GP-injective?
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[24] Ôhori, M. On non-commutative generalized P.P . rings, Math. J. Okayama Univ. 26, 157–
167, 1984.
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