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Abstract

The Wiener index of a graph G is defined as W (G) =
∑

u,v
dG(u, v),

where dG(u, v) is the distance between u and v in G, and the sum goes
over all pairs of vertices. In this paper, we characterize the connected
unicyclic graph with minimum Wiener indices among all connected
unicyclic graphs of order n and girth g with k pendent vertices.
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1. Introduction

All graphs considered here are finite and simple. For undefined terminology and
notation refer to [3]. For x ∈ V (G), we denote the neighborhood and the degree of x by
NG(x) and dG(x), respectively. A pendent vertex is a vertex of degree 1. For two vertices
x and y (x 6= y), the distance between x and y is the number of edges in a shortest path
joining x and y. The distance of a vertex x ∈ V (G), denoted by DG(v), is the sum of
distances between x and all other vertices of G. The girth of a graph G is the length of a
shortest cycle in G, with the girth of an acyclic graph being infinite. We will use G − x
or G − xy to denote the graph that arises from G by deleting the vertex x ∈ V (G) or
the edge xy ∈ E(G). Similarly, G + xy is a graph that arises from G by adding an edge
xy /∈ E(G), where x, y ∈ V (G).
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The Wiener index is a well-known distance-based topological index introduced as
a structural descriptor for acyclic organic molecules [12]. It is defined as the sum of
distances between all pairs of vertices of a simple graph G:

W (G) =
∑

u,v

dG(u, v).

The graphical invariant W (G) has been studied by many researchers (see, for example,
[1]-[2], [4]-[11]) under different names such as distance, transmission, total status and
sum of all distances. Apparently, the chemist Harry Wiener was the first to point out in
1947 that W (G) is well correlated with certain physico-chemical properties of the organic
compound from which G is derived. In 1976, Entringer, Jackson and Snyder published a
paper [8] which is historically the first mathematics paper on W (G). For the results and
further references the reader may refer to a recent survey [5].

A quantity closely related to W (G) is the mean distance, or the average distance
between the vertices. When G represents a network (e.g., an interconnection network
connecting many processors), the average distance of G between the nodes of the network
is a measure of the average delay of messages for traversing from one node to another.

A unicyclic graph is a connected graph with n vertices and n edges. Let G be a
unicyclic graph of order n and girth g with k pendent vertices. If g = n or k = 0, then
G ∼= Cn, a cycle of order n. Therefore, in the following, we assume that 3 ≤ g ≤ n − 1
and 1 ≤ k ≤ n − 3. Let Un,g,k = {G : G is a connected unicyclic graph of order n and
girth g with k pendent vertices, 3 ≤ g ≤ n − 1, 1 ≤ k ≤ n − 3}.

In this paper, the minimum Wiener indices of unicyclic graphs in the set Un,g,k are
characterized.

2. Lemmas

First we give some lemmas which are used in the proof of our results.

2.1. Lemma. Let H, X, Y be three connected pairwise vertex-set disjoint graphs. Suppose
that u, v are two vertices of H, v′ is a vertex of X, u′ is a vertex of Y . Let G be the
graph obtained from H,X, Y by identifying v with v′ and u with u′, respectively. Let
G∗

1 be the graph obtained from H,X, Y by identifying vertices v, v′, u′, and let G∗
2 be the

graph obtained from H,X, Y by identifying vertices u, v′, u′ (see Figure 1). Then

W (G∗
1) < W (G) or W (G∗

2) < W (G). �

Figure 1
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2.2. Lemma. [10] Let G be a non-trivial connected graph, and P = v0v1v2 · · · vk, Q =
u0u1u2 · · ·um two paths of lengths k, m (k ≥ m ≥ 1), respectively, where vi /∈ V (G), 0 ≤
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i ≤ k and uj /∈ V (G), 0 ≤ j ≤ m. Suppose that v ∈ V (G). Let G∗
k,m be the graph

obtained from G, P, Q by identifying v, v0, u0 as a single vertex v. Then

W (G∗
k,m) < W (G∗

k+1,m−1).

2.3. Lemma. Let H1, H2, H3 be three connected pairwise vertex-set disjoint graphs. Sup-
pose that v is a vertex of H1, u is a vertex of H2, and w is a vertex of H3. Let G be the
graph obtained from H1, H2, H3 by adding a path P of length s ≥ 1 joining u with v and
identifying vertices u with w, respectively. Let G∗ be the graph obtained from H1, H2, H3

by adding a path P of length s ≥ 1 joining u with v and identifying v with w, respectively
(see Figure 2). If |V (H1)| > |V (H2)|, then

W (G∗) < W (G). �

Figure 2
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Proof. We have

W (G) − W (G∗) =
∑

x∈V (H1),y∈V (H3)

[dG(x, y) − dG∗(x, y)]

+
∑

x∈V (H2),y∈V (H3)

[dG(x, y) − dG∗(x, y)]

= s|V (H3)|(|V (H1)| − |V (H2)|)

> 0. �

3. Conclusions

In this section, we will give the minimum Wiener index in the set Un,g,k. In order to
formulate our results, we need to define some unicyclic graphs (see Figure 3) as follows.

Let Un,g,k(q1, . . . , qk) (see Figure 3(a)) be a unicyclic graph of order n created from
a cycle Cg of order g by attaching k (k ≥ 1) paths of length pi to one vertex of Cg,

respectively, where n = g +
∑k

i=1 qi, qi ≥ 1, i = 1, . . . , k.

Let U∗
n,g,k(q0, q1, . . . , qk) (see Figure 3(b)) be a unicyclic graph of order n created from

a unicyclic graph Ug+q0,g,1(q0) of order g by attaching k (k ≥ 2) paths of length pi to

one pendent vertex of Ug+q0,g,1(q0), respectively, where n = g +
∑k

i=0 qi, qi ≥ 1, i =
0, 1, . . . , k.

Figure 3. (a) Un,g,k(q1, . . . , qk), (b) U∗
n,g,k(q0, q1, . . . , qk)
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Denote Un,g,k(q1, . . . , qk) with |qi−qj | ≤ 1, 1 ≤ i, j ≤ n by Un,g,k, and U∗
n,g,k(q0, q1, . . . , qk)

with |qi − qj | ≤ 1, 1 ≤ i, j ≤ n and qi − g− q0 ≤ 1 for 1 ≤ i ≤ k by U∗
n,g,k. Then we have

the following results.

3.1. Proposition.

(i) W (Un,g,k+1) < W (Un,g,k) for g > ⌊n−g

k
⌋;

(ii) W (U∗
n,g,k) < W (U∗

n,g,k−1) for g ≤ ⌊n−g

k
⌋ and n − g 6≡ 0(mod k);

(iii) W (Un,g,k) = W (U∗
n,g,k) for n = (k + 1)g.

Proof. Using Lemma 2.2 repeatedly, (i) and (ii) hold. From the proof of Lemma 2.3, (iii)
holds. �

Now we present two propositions that will be used in the proof of our main results.
In the following two propositions, we always assume that G ∈ Un,g,k, and let C be the
unique cycle of order g in G.

3.2. Proposition. Suppose that G be chosen such that W (G) is as small as possible.
Then there is a unique vertex w ∈ V (C) such that dG(w) ≥ 3.

Proof. Assume that dG(wi) ≥ 3 for wi ∈ V (C), i = 1, 2. Let NG(w1) = {x1, . . . , xs, u1, u2}
and NG(w2) = {y1, . . . , yt, v1, v2}, where u1, u2, v1, v2 ∈ V (C) and s, t ≥ 1. Set G∗

1 = G−
{w2y1, . . . , w2yt}+{w1y1, . . . , w1yt} and G∗

2 = G−{w1x1, . . . , w1xs}+{w2x1, . . . , w2xs}.
Then G∗

1, G
∗
2 ∈ Un,g,k.

By Lemma 2.1, we have W (G∗
1) < W (G) or W (G∗

2) < W (G), a contradiction. Thus
there is a unique vertex w ∈ V (C) such that dG(w) ≥ 3. �

3.3. Proposition. Suppose that G be chosen such that W (G) is as small as possible.
Then G ∼= Un,g,k(q1, . . . , qk) or G ∼= U∗

n,g,k(q0, q1, . . . , qk).

Proof. By Proposition 3.2, we may let w ∈ V (C) be the unique vertex with dG(w) ≥ 3.
Then G is a graph obtained from C by attaching a tree T with k pendent vertices at w.

Suppose that G 6∼= Un,g,k(q1, . . . , qk). We will first show that there is a unique vertex
u ∈ V (G) \ V (C) satisfying dG(u) ≥ 3. Otherwise, we let u, v ∈ V (G) \ V (C) with
dG(u) ≥ 3, dG(v) ≥ 3. Set NG(u) = {u1, . . . , ua} and NG(v) = {v1, . . . , vb}. Then
a, b ≥ 3. Since u, v /∈ V (C), there is a unique (u, v)-path Puv in G. Similarly, there is a
unique (w, v)-path Pwv and a unique (w, u)-path Pwu in G. Without loss of generality,
we may assume that u1, v1 ∈ V (Puv) (possibly u1 = v1 or u1 = v, v1 = u), and that
u2 ∈ V (Pwu) (or v2 ∈ V (Pwv), resp.) if u ∈ V (Pwv) (or v ∈ V (Pwu), resp.). Set
G∗

1 = G−{uu3, . . . , uua}+{vu3, . . . , vua} and G∗
2 = G−{vv3, . . . , vvb}+{uv3, . . . , uvb}.

Then G∗
1 , G∗

2 ∈ Un,g,k. By Lemma 2.1, we have W (G∗
1) < W (G) or W (G∗

2) < W (G), a
contradiction.

Therefore, in the following, we may let v be the unique vertex of V (G) \ V (C) with
dG(v) ≥ 3. Put NG(v) = {v1, . . . , vb}, b ≥ 3 and NG(w) = {w′, w′′, w1, . . . , wm}, m ≥ 1,
where w′, w′′ ∈ V (C) and w1, v1 are the two vertices that belong to the unique (w, v)-
path (possibly w1 = v1). Let P 0

qi
be a (v, ui)-path of length qi, where ui are the pendent

vertices of G, 2 ≤ i ≤ b.

Next we will show that G ∼= U∗
n,g,k(q1, . . . , qk). Otherwise, we have dG(w) ≥ 4 and

m ≥ 2. Set X = C and Y =
⋃

3≤l≤b
P 0

ql
. Let G∗

1 = G − {ww′, ww′′} + {vw′, vw′′} and

G∗
2 = G − {vv3, . . . , vvb} + {wv3, . . . , wvb}. Then G∗

1, G
∗
2 ∈ Un,g,k. By Lemma 2.1, we

have W (G∗
1) < W (G) or W (G∗

2) < W (G), a contradiction. Thus G ∼= U∗
n,g,k(q1, . . . , qk).

Therefore the proof of the proposition is complete. �
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3.4. Theorem. Suppose that G ∈ Un,g,k, 1 ≤ k ≤ n − 3, 3 ≤ g ≤ n − 1. If g > ⌊n−g

k
⌋,

then W (G) ≥ W (Un,g,k) and equality holds if and only if G ∼= Un,g,k.

Proof. We have to prove that if G ∈ Un,g,k, then W (G) ≥ W (Un,g,k) with equality only
if G ∼= Un,g,k. If k = 1, then G ∼= Un,g,1, and hence the result holds. Therefore in the
following, we assume that k ≥ 2. Let C be the unique cycle of order g in G. Choose G
such that W (G) is as small as possible. Then by Proposition 3.2, we may let w be the
unique vertex of C with dG(w) ≥ 3.

If G 6∼= Un,g,k(q1, . . . , qk), then by Proposition 3.3, G ∼= U∗
n,g,k(q0, q1, . . . , qk). Let

w0 be the unique vertex of V (G) \ {w} with dG(w0) = k + 1 ≥ 3, and let P 0
qi

be a
(w0, vi)-path of length qi, where the vi denote the pendent vertices of G, 1 ≤ i ≤ k.
Let NG(w0) = {w′

0, w
′
1, . . . , w

′
k}, where w′

0 belongs to the unique (w, w0)-path (possibly
w′

0 = w). Assume, without loss of generality, that q1 = min{qj : 1 ≤ j ≤ k}. Then
g > q1 + 1 as g > ⌊n−g

k
⌋. Set H1 = C, H2 = P 0

q1
, H3 =

⋃

2≤l≤k
P 0

ql
. Let G∗ =

G − {w0w
′
2, . . . , w0w

′
k} + {ww′

2, . . . , ww′
k}. Then G∗ ∈ Un,g,k. By Lemma 2.3, we have

W (G) > W (G∗), a contradiction with our choice. Therefore G ∼= Un,g,k(q1, . . . , qk), and
hence, by Lemma 2.2, G ∼= Un,g,k.

Therefore the proof of the theorem is complete. �

3.5. Theorem. Suppose that G ∈ Un,g,k, 2 ≤ k ≤ n−3, 3 ≤ g ≤ n−1. If g ≤ ⌊n−g

k
⌋ and

n− g 6≡ 0(mod k), then W (G) ≥ W (U∗
n,g,k), and equality holds if and only if G ∼= U∗

n,g,k.

Proof. We have to prove that if G ∈ Un,g,k, then W (G) ≥ W (U∗
n,g,k), with equality only

if G ∼= U∗
n,g,k. Let C be the unique cycle of order g in G. Choose G such that W (G) is

as small as possible. Then by Proposition 3.2, we may let w be the unique vertex of C
with dG(w) ≥ 3. Set NG(w) = {w′, w′′, w1, . . . , wm}, where w′, w′′ ∈ V (C) and m ≥ 1.

If G ∼= Un,g,k(q1, . . . , qk), then we let Pqi
be a (w, vi)-path of length qi with wi ∈

V (Pqi
) for 1 ≤ i ≤ k, where vi denote the pendent vertices of G. Assume, without

loss of generality, that q1 = max{qj : 1 ≤ j ≤ k}. Then q1 > g as g ≤ ⌊n−g

k
⌋ and

n − g 6≡ 0(mod k). Set H1 = C, H2 = Pq1 , H3 =
⋃

2≤l≤m
Pql

. Let G∗ = G −

{ww2, . . . , wwk} + {w1w2, . . . , w1wk}. Then G∗ ∈ Un,g,k. By Lemma 2.3, we have
W (G) > W (G∗), a contradiction with our choice. Hence G 6∼= Un,g,k(q1, . . . , qk), and
thus by Proposition 3.3, G ∼= U∗

n,g,k(q0, q1, . . . , qk). By Lemma 2.2, G ∼= U∗
n,g,k.

Therefore the proof of the theorem is complete. �

3.6. Theorem. Suppose that G ∈ Un,g,k, 2 ≤ k ≤ n−3, 3 ≤ g ≤ n−1. If n = (k +1)g,
then W (G) ≥ W (Un,g,k) = W (U∗

n,g,k), and equality holds if and only if G ∼= Un,g,k or
G ∼= U∗

n,g,k.

Proof. We have to prove that if G ∈ Un,g,k, then W (G) ≥ W (Un,g,k) = W (U∗
n,g,k), with

equality only if G ∼= Un,g,k or G ∼= U∗
n,g,k. Choose G such that W (G) is as small as

possible. By an argument similar to the proofs of Theorems 3.4 and 3.5, G ∼= Un,g,k or
G ∼= U∗

n,g,k.

Therefore the proof of the theorem is complete. �

By Lemma 3.1 and Theorems 3.4–3.6, we have the following result.

3.7. Corollary. [11] Let G be a unicyclic graph of order n and girth g. Then

W (Un,g,n−g) ≤ W (G) ≤ W (Un,g,1),

and equality on the left holds if and only if G ∼= Un,g,n−g, and equality on the right holds
if and only if G ∼= Un,g,1. �



68 Y. Hong, H. Liu, X. Wu

Acknowledgements. The authors would like to thank the anonymous referees for their
valuable comments and suggestions.

References

[1] An, X. and Wu, B. The Wiener index of the kth power of a graph, Appl. Math. Lett. 21,
436–440, 2008.

[2] Balakrishnan, Sridharanb, R.N. and Viswanathan, K. Iyer, Wiener index of graphs with
more than one cut-vertex, Appl. Math. Lett. 21, 922–927, 2008.

[3] Bondy, J. A. and Murty, U. S.R. Graph Theory with Applications (Macmillan, London,
1976).

[4] Deng, H. The trees on n ≥ 9 vertices with the first to seventeenth greatest Wiener indices
are chemical trees, MATCH Commun. Math. Comput. Chem. 57, 393–402, 2007.

[5] Dobrynin, A., Entringer, R. and Gutman, I. Wiener index of trees: theory and applications,
Acta Appl. Math. 66, 211–249, 2001.
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