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Abstract

The present investigation considers the problem of estimating the mean
of a sensitive quantitative variable pa in a human population survey,
using the scrambled response technique suggested by Ryu, Kim, Heo
and Park (On stratified randomized response sampling, Model Assisted
Statistics and Application 1(1), 31-36, 2005-2006). Specifically, using
the prior estimate (or guessed mean) of the mean of a population, a
family of estimators [iax is presented to estimate the population mean
1a, and its properties are examined. The optimum value of the de-
gree k(0 < k < 1) of the belief in the prior estimate depends, besides
others, on the unknown population parameters, e.g. mean and vari-
ance, so the proposed family of estimators may have limited practical
applications. In an attempt to overcome this problem, another esti-
mator based on the estimated optimum value of k has been proposed.
The proposed estimator has been compared with the Ryu et al. and
Hussain and Shabbir (Improved estimation procedure for the mean of a
sensitive variable using randomized response model, Pakistan Journal
of Statistics 25(2), 205-220, 2009) estimators assuming simple random
sampling with replacement.
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1. Introduction

Since the introduction of randomized response models by Warner (1965) a large num-
ber of theoretical as well as practical studies have been done. Based on these studies it has
been established that deliberate reporting of falsified answers and the refusal to respond
are two major sources of non-sampling errors. The bias produced in the estimators due to
these non-sampling errors sometimes may seriously mislead, particularly when the survey
is about sensitive attributes. The randomized response technique was further enhanced
by Greenberg et al. [6] to the estimation of the mean of sensitive quantitative variables.
Till now, there has been a rich growth in the realm of randomized response models. In
fact, randomized response (RR) models are used as a tool to decrease the evasive answer
bias and, of course, to provide privacy protection to the respondents in order to get them
ready to divulge their response honestly. Some of the recent randomized response models
allowing the scrambling of true responses are Eichhorn and Hayre [4], Gupta et al. [7],
Singh and Mathur [19, 20], Espejo and Singh [5], Singh and Mathur [21, 22], Singh and
Mathur [23, 24, 25], Gupta and Shabbir [8], Bar-Lev et al. [3], Ryu et al. [15], Singh and
Mathur [26], Arnab and Dorffner [2], Singh and Mathur [27], Hussain and Shabbir [9],
Hussain et al. [11], Singh and Mathur [28], and many others.

Using Mangat and Singh [12], Ryu et al. [15] suggested a RR model. A sample of size
n is taken using simple random sample with replacement. The *" respondent selected
in the sample is requested to use the randomization device Ri, which consists of two
statements:

(i) “Report the true response A of the sensitive question,” and
(ii) “Go to randomization device Rz in the second stage”,

represented with probabilities P and (1 — P), respectively. The randomization device R2
consists of two statements:

(i) “Report the true response A of the sensitive question,” and
(ii) “Report the scrambled response AB of the sensitive question,”

represented by probabilities T" and (1—T'), respectively. Using the assumption of a known
distribution of the scrambling variable B such that up = 1 and 0% = ~2, the response
Y; of the it respondent can be written as

(1.1) Yi = aiAi + (1 — ou)[BsAs + (1 — Bs) As Bil,

where a; = 1 if the i*" respondent is randomly assigned to the statement (i) in R1, and
a; = 0 if a respondent is randomly assigned to the statement (ii) in R;. Further, 5; =1
if the i*" respondent is randomly assigned to the statement (i) in R2, and 3; = 0 if the

it" respondent is randomly assigned to the statement (ii) in R2. The expected value of
the observed response is given by

(1.2)  E(Y)) = Pua+ (1= P){Tpa+ (1 =T)paps} = pa,

where «; and (3; are Bernoulli random variables with means P and T respectively. Ryu
et al. [15] proposed an unbiased estimator of the mean pa as

-1y
(13)  fia=— ;Y
The variance of 14 is given by

(L4 Var(a) = L (% + (4 od) (1= PY 7)) = EAUA,

where % (which may or may not be known) is the population variance of the sensitive
2

variable under study, Ua = C% + (1+ Cf\) 1-P)(1—-T)+*and C% = Z_ZA'
A
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Based on knowledge of the conditions of the experiment, nature of the study or from
past experience, sometimes investigators may be able to give some prior estimate (or ini-
tial guess), say po, of the true parameter p. While studying the shrinkage of an unbiased
estimator, /i, towards the prior estimate, po, Thompson [30] suggested an estimator

t(y;p) ={ki+ (1 —k)po}, 0< k<1,

where k is the strength of the belief in the prior estimate. Specifying k closer to 1 depicts
a weak belief in 9. It was established by Thompson [30] that the closer the true mean
w is to the initial prior estimate, the higher the efficiency of the shrinking estimator
t (g; u)7 which is also the case in our study. Based on his observations he concluded that
if a point estimator is available as a prior estimate, it can be used in a better way to
produce a better estimate. Some of the relevant work in this direction is found in Tse
and Tse [32], Ahmed and Rohatgi [1], Tracy et al. [31], Singh and Shukla [29], Shirke and
Nalawade [18] and Saxana [16]. Keeping in view the suggestion made by Thompson [30],
we propose a family of estimators of a4 assuming the availability of the prior estimate
tao. Also, we discuss its properties and give a comparison of the proposed estimator
with the usual Ryu et al. [15] estimator and the Hussain and Shabbir [10] estimator.

2. Proposed estimation method

If some prior information is available about the mean of the study variable it may be
used together with sample information. One of the methods using prior knowledge is the
Bayesian method of estimation, where the prior knowledge is used in the form of a prior
distribution. When prior information is available in the from of a point guess, it can
also be used in shrinking the estimator towards the prior point estimate. Motivated by
Thompson [30] and Mathur and Singh [13], we present a family of estimators to estimate
the population mean p4 of a sensitive quantitative variable as follows

(21)  frax = kjta + (1 — k) pao,

where 0 < k < 1 and pao is the prior estimate of pa (a prior estimate may be available
from past study or simply be an intelligent guess). The value of k& depends upon the
degree of the investigator’s belief in the prior estimate pao. The estimator given in (2.1)
has a bias given by

(2.2)  Bias(ftar) =d(1— k) pa,

where d = (a0—ra)

na
The mean squared error (MSE) of the estimator fiax is given by
) ) k2 2 U
(23)  MSE () = B (fuar — pa)® = =22 4+ 5 (1= k)%,

The proposed estimator fi45 is more efficient than the estimator fi4 if
MSE (ﬂAk) — Var (ﬂA) <0.
From (1.4) and (2.3), we can show easily that MSE (fiax) — Var (fta) < 0, when

UA(1+I€) 2
. P ——— <k<
@4) iy > dh oSkl
or
d’n—Uax
— <k<1.
d?n+Uga <k

Using different values of P, T, pia, 72, 0% and n, we have computed the ranges of values
of k in which the proposed estimator is more efficient than the Ryu et al. [15] estimator.
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The ranges of k for different values of the other parameters are given in Tables 1-3 (see
Appendix).

We have computed the relative efficiency (RE) of the proposed estimator jiar with
respect to the Ryu et al. [15] estimator fia for different values of the parameters and
selection probabilities, as RE (fiax) = %. The REs are given in Tables 4-6 (see
Appendix).

From Tables 1-3, we observe that:

(1) For all values of k, our proposed estimator fiax is more efficient than the Ryu
et al. [15] estimator when n, d and the true value of the population mean are
small.

(2) For fixed P, the range of k squeezes towards 1 when T increases, for all values
of d and n.

(3) For fixed T, the range of k squeezes towards 1 when P increases, for all values
of d and n.

(4) The range of values of k depends on the sample size and the true value of the
population mean. As the population mean increases the range of k squeezes
towards 1 for the other fixed parametric values. The same is the case when the
sample size increases from moderate to large.

From Tables 4-6, we observe that for all values of k, the RE decreases as P and/or T
increases, but it becomes stable when k and d are closer to one. A large reduction in
the MSE of fiar can be gained when the sample size is smaller, by setting P and T
closer to zero, or by setting k closer to 1. When the sample size is increased, then we
have to set k larger if d is larger (closer to 1). This means that the greater the relative
difference between the prior estimated mean and the actual mean, the larger is the weight
we must attach to sample information. Otherwise, we may attach greater weight to the
prior information. It seems a bit more natural to attach a heavy weight to the prior
information if one expects the prior estimate of the mean to be almost accurate, and this
is case with the estimator proposed above.

3. Optimum estimators amongst the family of estimators fi 4,

We can also find an optimum estimator in the family of estimators fi4x by differen-
tiating (2.3) with respect to k and setting it equal to zero. By doing so, the optimum
value of k is given by

Y
d?p% + Var (ia) — d2 4 Y&’

n

(3.1)  Kopt =

Thus the optimum estimator is given by

(3:2)  flaky, = Koptfa + (1 — kopt) pao.

The MSE of fiar,,, is given by

PpZUa

nd?2 + Uy ’

Singh and Mathur [19, 27] and Hussain and Shabbir [10] have used the idea that if it
is difficult to guess the value of k£ or the unknown population parameters, then these

parameters can be replaced by their consistent estimates from the sample. Using the
same idea we can obtain the estimated optimum value of k as

d/\2
d2+%

(3.3)  MSE (fak,,) =

(34)  kop=

)
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where d = (£48=9) UA:(:~3+(1+(:~3) (1-P)(1-T)7*, C% = 4.

Substituting (3.4) in (3.2), we have another estimator of pa as

) 2\ U dPja+U
(35 . = (A“iA)HA + (%)MO - (M)
opt nd? +Ua nd? + Ua nd? + Uy

Using the Ryu et al. [15] model, Hussain and Shabbir [10] proposed an estimator of
the population mean u based on Searls’ [17] technique. Symbolically, the Hussain and
Shabbir [10] estimator is given by

(3.6) fax =Ara, 0 <A< 1L

The bias and mean squared error of their estimator are given by

(3.7) Bias (fiax) = (A —1) ua

(3.8)  MSE (fian) = A2 {4 + Var (jia)} + g (1 — 2)).

Hussain and Shabbir [10] showed that the optimum estimator value of fiax,,, is given by
~3

(39 Aara = T

where

5 1y
3.10 A = .
( ) opt ﬂA +n—18§,

4. Efficiency comparisons

The (RE) of the optimum estimator relative to the Ryu et al. [15] estimator is given
by

RE — Var EMA) 7
MSE (:L"Akopt)
— UA
(4.1) RE—1+nd2.

From (4.1), it is obvious that the proposed optimum estimator is always more efficient
than the Ryu et al. [15] estimator in terms of the variability, but it has a limitation
because the optimum value of k depends on the unknown population mean and population
variance. So its practicability is limited.

We now compare our estimator with the one given in (3.6). On comparing (2.3) and
(3.8), we see that fiar will be more efficient than fiax if fiax — frar > 0. That is, if

(A {uh + Var (fua) } + i (1 —2))] — +dpA (1-k)?| >0,

k24 Ua
n
or if
p2e0-N Ua (K* —2?)
- (1-k)? n(l—k)?

In Tables 7-9, we have calculated the ranges of k in which the proposed estimator will
be more precise than the Hussain and Shabbir [10] estimator for different values of the
other parameters. From Tables 7-9, it is observed that when A and n are smaller, we
have wider range of k in which proposed estimator is more precise, and this range shrinks
towards 1 as d increases. For fixed A and d, the ranges of values of k also shrinks towards
1. Tables 10-12 contain the RE of the proposed estimator relative to the Hussain and
Shabbir [10] estimator. For fixed A and k, the RE of the proposed model decreases as
d increases, which is expected too. Greater efficiency is achieved when n as well as \ is
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smaller, which suggests that when the population can be divided into strata, the proposed
estimator should be preferably used.

Further, if we compare their optimum MSEs, then the efficiency condition reduces to
d? < 1. This shows that the RE of the proposed estimator is dependent on the closeness
of the prior estimate pao to the true mean pa. The closer the prior estimate is to the
true mean, the higher the RE of the proposed estimator.

Derivation of the expressions for the bias and MSE of the estimator [ AT is much too
opt

difficult, even to the first order of approximation, and to the first order of approximation

the bias and MSEr of ﬂAS\opt are derived by Hussain and Shabbir [10]. To compare them,

we have worked out the simulated RE of ﬂA; compared to fi,5 e and the results are
opt o

given in Table 13.

5. Conclusions

When the investigators have some prior knowledge about the true mean of a study
variable, then using Thompson’s [30] proposal, a shrinkage estimator may be used to
give a better estimate. What we have observed is that in the situations where it is
impossible/difficult to study large samples, and it is suspected that the actual mean of
the study variable may be small, the proposed approach to estimation may be fruitfully
used to get precise estimates. To achieve a maximum gain in efficiency, the selection
probabilities P and T should preferably be chosen small. The mean and variance of the
scrambling variable should also be smaller. Compared to the Hussain and Shabbir [10]
estimator, the proposed estimator is more efficient over a wide range of design parameters.
Since the Ryu et al. [15] estimator is more efficient than the Greenberg et al. [6], Eichhorn
and Hayre [4], and Gupta et al. [7] estimators, in sensitive surveys we recommend the
application of the proposed estimator when an initial guess can be obtained (as a point
estimate) from previous experience, and we infer that choosing k such that fiay is better
than f1ax and fia has a great scope, even when p 40 is far away from the true population
mean p4. Further, using the sample values to estimate the optimum values of k and A
results in a superiority of the proposed estimators.

6. Appendix
6.1. Tables 1-13.



Table 1. Range of values of k for different

Improved Estimation of Mean in Randomized Response Models

values of selection probabilities when
ps =1, o3 = 0.5, cj =20,n=15
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Table 2. Range of values of k for different
values of selection probabilities when
ps =1, 05 =0.5, C; =2.0, n =30

d=0.15 d=0.15
P T P T
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
0.1 071 071 071 071 071 0.1 071 071 071 071 071
0.3 071 071 071 071 071 0.3 071 071 071 071 071
0.5 071 071 071 071 071 0.5 071 071 071 071 071
0.7 071 071 071 071 071 0.7 071 071 071 071 071
0.9 071 071 071 071 071 0.9 071 071 071 071 071
d=0.35 d=0.35
0.1 071 071 071 071 071 0.10.0771]0.1171 | 0.1571 | 0.2071 | 0.2471
0.3 071 071 071 071 071 0.3(0.1171)0.1471 | 0.1871 | 0.2171 | 0.2571
0.5 071 071 071 071 071 0.5(0.1571]0.1871 | 0.2071 | 0.2371 | 0.2571
0.7 071 071 071 071 071 0.7]0.2071 {0.2171 { 0.2371 | 0.2471 | 0.2671
0.9 071 071 071 071 071 0.9]0.2471(0.25"1 [ 0.2571|0.2671 | 0.2771
d = 0.50 d = 0.50
0.10.0871(0.1271 [ 0.1671 | 0.2171 | 0.2571 0.10.3571[0.3871|0.4171|0.4471|0.4771
0.3(0.12710.1571 [ 0.1971 | 0.2271 | 0.2671 0.3 03871 0.4071 | 0.4371 | 0.4571 | 0.4871
0.5(0.16710.1971 [ 0.2171 | 0.2471 | 0.2671 0.5(0.41710.4371(0.4471|0.4671 | 0.4871
0.710.2071 ] 0.2271 [ 0.2471 | 0.2571 | 0.2771 0.710.4471)10.4571 [ 0.4671 | 0.4771 | 0.4871
0.9]0.2571(0.2671 | 0.2671 | 0.2771 | 0.2771 090477104871 |0.4871|0.4871|0.4971
d=1.0 d=1.0
0.1 05571 |0.5771|0.5971|0.6071 | 0.6371 0.10.6871[0.6971|0.7171|0.7271 | 0.7471
0.3 05771 0.5871 |0.6071 | 0.6271 | 0.6471 0.30.6971]0.7171 | 0.7271 | 0.7371 | 0.7471
0.5 (05971 0.6071 | 0.6171 | 0.6271 | 0.6471 0.5 (07171 0.7271 | 0.7371 | 0.7471 | 0.7471
0.7 106171 0.6271 | 0.6271 | 0.6371 | 0.6471 0.7 10.7271 1 0.7371 | 0.7471 | 0.7471 | 0.7571
090637106471 |0.6471|0.6471|0.6471 0907471 0.7471 [ 0.7471 | 0.7571 | 0.7571

Range of values of k for different values of

selection probabilities when

ps =1, 05 =0.5, C; = 2.0, n =50

d=0.15
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Table 4. RE of the [ relative 14 when
ps =1, 05 =05, C2 =2.0,n=15

k =0.15,d =0.15
T

P 0.1 0.3 0.5 0.7 0.9
0.1 | 12.928976 | 11.862504 | 10.792546 | 9.719086 | 8.642106
0.3 | 11.862504 | 11.030617 | 10.196613 | 9.360485 | 8.522224
0.5 | 10.792546 | 10.196613 | 9.599596 | 9.001492 | 8.402298
0.7 | 9.719086 9.360485 9.001492 | 8.642106 | 8.282328
0.9 | 8.642106 8.522224 8.402298 | 8.282328 | 8.162315

k=0.15, d = 0.35
0.1 | 2.412910 2.210942 2.008852 | 1.806639 | 1.604303
0.3 | 2.210942 2.053772 1.896527 | 1.739207 | 1.581813
0.5 | 2.008852 1.896527 1.784163 | 1.671762 | 1.559322
0.7 | 1.806639 1.739207 1.671762 | 1.604303 | 1.536830
0.9 ] 1.604303 1.581813 1.559322 | 1.536830 | 1.514336

k = 0.65, d = 0.50
0.1 | 5.846190 5.430315 5.002610 | 4.562565 | 4.109635
0.3 | 5.430315 5.098704 4.759698 | 4.413047 | 4.058490
0.5 | 5.002610 4.759698 4.512885 | 4.262078 | 4.007178
0.7 | 4.562565 4.413047 4.262078 | 4.109635 | 3.955697
0.9 | 4.109635 4.058490 4.007178 | 3.955697 | 3.904049

k=0.85d=1.0
0.1 | 6.529830 6.143726 5.736086 | 5.305059 | 4.848572
0.3 | 6.143726 5.828626 5.499642 | 5.155835 | 4.796181
0.5 | 5.736086 5.499642 5.255636 | 5.003701 | 4.743444
0.7 | 5.305059 5.155835 5.003701 | 4.848572 | 4.690358
0.9 | 4.848572 4.796181 4.743444 | 4.690358 | 4.636919

Table 5. RE of the [i4; relative ji4 when
ps =1, 05 =05, C7 =2.0, n =30
k =0.15,d =0.15
T

P 0.1 0.3 0.5 0.7 0.9
0.1 | 6.559902 | 6.011477 | 5.462598 | 4.913265 | 4.363477
0.3 | 6.011477 | 5.584610 | 5.157469 | 4.730052 | 4.302361
0.5 | 5.462598 | 5.157469 | 4.852199 | 4.546790 | 4.241240
0.7 | 4.913265 | 4.730052 | 4.546790 | 4.363477 | 4.180113
0.9 | 4.363477 | 4.302361 | 4.241240 | 4.180113 | 4.118980

k =0.30, d =0.35
0.1 | 1.775856 | 1.627445 | 1.478901 | 1.330225 | 1.181415
0.3 | 1.627445 | 1.511923 | 1.396320 | 1.280636 | 1.164872
0.5 | 1.478901 | 1.396320 | 1.313697 | 1.231033 | 1.148328
0.7 | 1.330225 1.280636 1.231033 | 1.181415 1.131782
0.9 | 1.181415 1.164872 1.148328 | 1.131782 1.115234

k = 0.65, d = 0.50
0.1 | 3.334966 | 3.066988 | 2.796880 | 2.524615 | 2.250168
0.3 | 3.066988 | 2.857089 | 2.645890 | 2.433377 | 2.219538
0.5 | 2.796880 | 2.645890 | 2.494229 | 2.341895 | 2.188881
0.7 | 2.524615 | 2.433377 | 2.341895 | 2.250168 | 2.158197
0.9 | 2.250168 | 2.219538 | 2.188881 | 2.158197 | 2.127485

k=0.85,d=1.0
0.1 | 4.272835 | 3.948116 | 3.617686 | 3.281393 | 2.939079
0.3 | 3.948116 | 3.691616 | 3.431590 | 3.167965 | 2.900666
0.5 | 3.617686 | 3.431590 | 3.243659 | 3.053863 | 2.862176
0.7 | 3.281393 | 3.167965 | 3.053863 | 2.939079 | 2.823609
0.9 | 2.939079 | 2.900666 | 2.862176 | 2.823609 | 2.784965
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Table 6. RE of the [i4) relative to 14 when
ps =1, 03 =0.5, C2 =2.0, n =50

k=0.15, d = 0.15
T

P 0.1 0.3 0.5 0.7 0.9
0.1 | 44.79634 | 43.39322 | 41.81893 | 40.04012 | 38.01418
0.3 | 43.39322 | 42.18514 | 40.85843 | 39.39470 | 37.77157
0.5 | 41.81893 | 40.85843 | 39.82811 | 38.72006 | 37.52515
0.7 | 40.04012 | 39.39470 | 38.72006 | 38.01418 | 37.27484
0.9 | 38.01418 | 37.77157 | 37.52515 | 37.27484 | 37.02054
k = 0.65, d = 0.35
0.1 | 4.135159 | 3.799031 | 3.460918 | 3.120804 | 2.778670
0.3 | 3.799031 | 3.536227 | 3.272214 | 3.006985 | 2.740529
0.5 | 3.460918 | 3.272214 | 3.082889 | 2.892940 | 2.702364
0.7 | 3.120804 | 3.006985 | 2.892940 | 2.778670 | 2.664173
0.9 | 2.778670 | 2.740529 | 2.702364 | 2.664173 | 2.625957
k = 0.65, d = 0.50
0.1 | 3.933113 | 3.616242 | 3.297000 | 2.975357 | 2.651289
0.3 | 3.616242 | 3.368149 | 3.118607 | 2.867606 | 2.615130
0.5 | 3.297000 | 3.118607 | 2.939470 | 2.759583 | 2.578941
0.7 | 2.975357 | 2.867606 | 2.759583 | 2.651289 | 2.542722
0.9 | 2.651289 | 2.615130 | 2.578941 | 2.542722 | 2.506472
k=0.85d=1.0
0.1 | 5.823400 | 5.376943 | 4.923208 | 4.462289 | 3.993737
0.3 | 5.376943 | 5.024738 | 4.668103 | 4.306953 | 3.941202
0.5 | 4.923298 | 4.668103 | 4.410604 | 4.150771 | 3.888571
0.7 | 4.462289 | 4.306953 | 4.150771 | 3.993737 | 3.835845
0.9 | 3.993737 | 3.941202 | 3.888571 | 3.835845 | 3.783022

Table 7. Range of values of k for different Table 8. Ranges of values of k for different

values of the selection probabilities when values of the selection probabilities when
ps =1, 0% =0.5, C; =2.0, n =15, and ps =1, 03 =0.5, C; =2.0, n =15, and
A=0.1 A=0.5
d=0.15 d=0.15
P T P T
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
0.1 071 071 071 071 071 0.1 071 071 071 071 071
0.3 071 071 071 071 071 0.3 071 071 071 071 071
0.5 071 071 071 071 071 0.5 071 071 071 071 071
0.7 071 071 071 071 071 0.7 071 071 071 071 071
0.9 071 071 071 071 071 0.9 071 071 071 071 071
d=0.35 d=0.35
0.1 071 071 071 071 071 0.1 071 071 071 071 071
0.3 071 071 071 071 071 0.3 071 071 071 071 071
0.5 071 071 071 071 071 0.5 071 071 071 071 071
0.7 071 071 071 071 071 0.7 071 071 071 071 071
0.9 071 071 071 071 071 0.9 071 071 071 071 071
d = 0.50 d = 0.50
0.1 071 071 071 071 071 0.1 071 071 071 071 071
0.3 071 071 071 071 071 0.3 071 071 071 071 071
0.5 071 071 071 071 071 0.5 071 071 071 071 071
0.7 071 071 071 071 071 0.7 071 071 071 071 071
0.9 071 071 071 071 071 0.9 071 071 071 071 071
d=1.0 d=1.0
0.10.0971]0.1071 | 0.1071 | 0.1071 | 0.1071 0.104671)|0.4671|0.4671| 0477104771
0.3|0.1071 { 0.1071 | 0.1071 | 0.1071 | 0.1071 0.3]0.4671 04671 |0.4771|0.4771 | 0.4771
0.5|0.1071 { 0.1071 | 0.1071 | 0.1071 | 0.1071 0.5]0.4671 (04771 | 0.4771 | 0.4771 | 0.4771
0.7|0.1071 { 0.1071 | 0.1071 | 0.1071 | 0.1071 0.7]0.4771 (04771 04771 |0.4771 | 0.4771
0.9(0.1071]0.1071 | 0.1071 | 0.1071 | 0.1071 090477104771 (0477104771 04771
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Table 9. Ranges of values of k for different values of the
selection probabilities when
ps =1, o3 = 0.5, cj =2.0, n =15, and X\ = 0.9

d=0.15
P T
0.1 0.3 0.5 0.7 0.9
0.1 071 071 071 071 071
0.3 071 071 071 071 071
0.5 071 071 071 071 071
0.7 071 071 071 071 071
0.9 071 071 071 071 071
d=0.35
0.1 071 071 071 071 071
0.3 071 071 071 071 071
0.5 071 071 071 071 0.0171
0.7 071 071 071 071 0.0171
0.9 071 071 0.0171 0.0171 0.0271
d = 0.50

0.1 0.1571 0.1871 0.2271 0.2671 0.3071
0.3 0.1871 0.2171 0.2471 0.2771 0.3071
0.5 0.2271 0.2471 0.2671 0.2971 0.3171
0.7 0.2671 0.2771 0.2971 0.3071 0.3171
0.9 0.3071 0.3071 0.3171 0.3171 0.3271

0.1 0.5871 0.6071 0.6271 0.6471 0.6671
0.3 0.6071 0.6171 0.6371 0.6471 0.6671
0.5 0.6271 0.6371 0.6471 0.6571 0.6671
0.7 0.6471 0.6471 0.6571 0.6671 0.6671
0.9 0.6671 0.6671 0.6671 0.6671 0.6771

Table 10. RE of the ji4; relative to 14y when
pus =1, 0% = 0.5, cg =2.0,n=15and A =0.1

k=0.15 d = 0.15
T

P 0.1 0.3 0.5 0.7 0.9

0.1 | 48.98996 | 49.05901 | 49.12827 | 49.19777 | 49.26750
0.3 | 49.05901 | 49.05901 | 49.16686 | 49.22099 | 49.27526
0.5 | 49.12827 | 49.16686 | 49.20551 | 49.24423 | 49.28302
0.7 | 49.19777 | 49.22099 | 49.24423 | 49.26750 | 49.29079
0.9 | 49.26750 | 49.27526 | 49.28302 | 49.29079 | 49.29856
k=0.25d=0.35
0.1 | 11.63541 | 11.64534 | 11.65530 | 11.66527 | 11.67527
0.3 | 11.64534 | 11.65308 | 11.66084 | 11.66860 | 11.67638
0.5 | 11.65530 | 11.66084 | 11.66638 | 11.67194 | 11.67750
0.7 | 11.66527 | 11.66860 | 11.67194 | 11.67527 | 11.67861
0.9 | 11.67527 | 11.67638 | 11.67750 | 11.67861 | 11.67972
k =0.35, d = 0.50
0.1 | 7.563589 | 7.572280 | 7.580994 | 7.589732 | 7.598494
0.3 | 7.572280 | 7.579055 | 7.585845 | 7.592650 | 7.599469
0.5 | 7.580994 | 7.585845 | 7.590704 | 7.595571 | 7.600444
0.7 | 7.589732 | 7.592650 | 7.595571 | 7.598494 | 7.601420
0.9 | 7.598494 | 7.599469 | 7.600444 | 7.601420 | 7.602396
k=0.50,d=1.0
0.1 | 3.202809 | 3.205892 | 3.208982 | 3.212080 | 3.215185
0.3 | 3.205892 | 3.208295 | 3.210702 | 3.213114 | 3.215530
0.5 | 3.208982 | 3.210702 | 3.212424 | 3.214149 | 3.215876
0.7 | 3.212080 | 3.213114 | 3.214149 | 3.215185 | 3.216221
0.9 | 3.215185 | 3.215530 | 3.215876 | 3.216221 | 3.216567
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Table 11. RE of the [i4j relative to 14\ when
ps =1, 05 =05, C; =2.0,n=15and A=0.5

k=0.15,d = 0.15
T

P 0.1 0.3 0.5 0.7 0.9

0.1 | 18.31270 | 18.07068 | 17.82787 | 17.58427 | 17.33987
0.3 | 18.07068 | 17.88190 | 17.69264 | 17.50289 | 17.31267
0.5 | 17.82787 | 17.69264 | 17.55716 | 17.42143 | 17.28545
0.7 | 17.58427 | 17.50289 | 17.42143 | 17.33987 | 17.25823
0.9 | 17.33987 | 17.31267 | 17.28545 | 17.25823 | 17.23099
k =0.45, d = 0.35
0.1 | 7.599130 | 7.532305 | 7.464656 | 7.396170 | 7.326830
0.3 | 7.532305 | 7.479761 | 7.426713 | 7.373152 | 7.319072
0.5 | 7.464656 | 7.426713 | 7.388508 | 7.350039 | 7.311303
0.7 | 7.396170 | 7.373152 | 7.350039 | 7.326830 | 7.303524
0.9 | 7.326830 | 7.319072 | 7.311303 | 7.303524 | 7.295733
k =0.55, d = 0.50
0.1 | 5.524982 | 5.479283 | 5.432973 | 5.386038 | 5.338466
0.3 | 5.479283 | 5.443318 | 5.406976 | 5.370252 | 5.333141
0.5 | 5.432973 | 5.406976 | 5.380784 | 5.354395 | 5.327807
0.7 | 5.386038 | 5.370252 | 5.354395 | 5.338466 | 5.322465
0.9 | 5.338466 | 5.333141 | 5.327807 | 5.322465 | 5.317115
k=0.65d=1.0
0.1 [ 2.361835 | 2.336040 | 2.310040 | 2.283832 | 2.257414
0.3 | 2.336040 | 2.315835 | 2.295506 | 2.275050 | 2.254466
0.5 | 2.310040 | 2.295506 | 2.280907 | 2.266244 | 2.251515
0.7 | 2.283832 | 2.275050 | 2.266244 | 2.257414 | 2.248561
0.9 | 2.257414 | 2.254466 | 2.251515 | 2.248561 | 2.245605

Table 12. RE of the [i4 relative to 14\ when
ps =1, 05 =05, C2 =20, n=15and A =0.9

k=0.15 d = 0.15

T

P 0.1 0.3 0.5 0.7 0.9

0.1 | 11.075689 | 10.212830 | 9.347152 | 8.478640 | 7.607280

0.3 | 10.212830 | 9.539769 | 8.864996 | 8.188504 | 7.510286

0.5 | 9.347152 8.864996 | 8.381963 | 7.898051 | 7.413256

0.7 | 8.478640 8.188504 | 7.898051 | 7.607280 | 7.316192

0.9 | 7.607280 7.510286 | 7.413256 | 7.316192 | 7.219091

k =0.35,d = 0.35

0.1 | 3.431537 3.167750 | 2.902506 | 2.635792 | 2.367597

0.3 | 3.167750 2.961576 | 2.754514 | 2.546559 | 2.337705

0.5 | 2.902506 2.754514 | 2.606066 | 2.457161 | 2.307795

0.7 | 2.635792 2.546559 | 2.457161 | 2.367597 | 2.277867

0.9 | 2.367597 2.337705 | 2.307795 | 2.277867 | 2.247920

k =0.55, d = 0.50

0.1 | 3.341560 3.096673 | 2.848507 | 2.596996 | 2.342071

0.3 | 3.096673 2.903942 | 2.709196 | 2.512403 | 2.313532

0.5 | 2.848507 2.709196 | 2.568840 | 2.427429 | 2.284951

0.7 | 2.596996 2.512403 2.427429 | 2.342071 | 2.256326

0.9 2.342071 2.313532 2.284951 | 2.256326 | 2.227657

k=0.75,d=1.0

0.1 | 2.603013 2.419467 | 2.232340 | 2.041525 | 1.846914

0.3 | 2.419467 2.274238 | 2.126794 | 1.977082 | 1.825051

0.5 2.310040 2.232340 2.020091 | 1.912213 | 1.803139

0.7 | 2.041525 1.977082 1.912213 | 1.846914 | 1.781180

0.9 1.846914 1.825051 1.803139 | 1.781180 | 1.759171
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Table 13. Simulated RE of [LA?
opt

Z. Hussain, J. Shabbir

ps =1, 05 =05, C2 =2.0,n=15

compared to ﬂAS‘opf for

pnao = 1.1
T

P 0.1 0.3 0.5 0.7 0.9

0.1 1.703554 2.019900 2.107988 2.044867 1.987658
0.3 2.205389 2.116791 2.020169 2.154635 2.074227
0.5 2.017404 1.783298 2.178234 1.940251 2.155637
0.7 2.015288 2.271955 1.995428 1.634276 1.803476
0.9 1.913121 1.972407 2.068359 2.009539 2.055349

pnao = 1.2
0.1 3.431537 3.167750 2.902506 2.635792 2.367597
0.3 3.167750 2.961576 2.754514 2.546559 2.337705
0.5 2.902506 2.754514 2.606066 2.457161 2.307795
0.7 2.635792 2.546559 2.457161 2.367597 2.277867
0.9 2.367597 2.337705 2.307795 2.277867 2.247920
k = 0.55, d = 0.50
0.1 3.341560 3.096673 2.848507 2.596996 2.342071
0.3 3.096673 2.903942 2.709196 2.512403 2.313532
0.5 2.848507 2.709196 2.568840 2.427429 2.284951
0.7 2.596996 2.512403 2.427429 2.342071 2.256326
0.9 2.342071 2.313532 2.284951 2.256326 2.227657
k=0.75,d=1.0

0.1 2.603013 2.419467 2.232340 2.041525 1.846914
0.3 2.419467 2.274238 2.126794 1.977082 1.825051
0.5 2.310040 2.232340 2.020091 1.912213 1.803139
0.7 2.041525 1.977082 1.912213 1.846914 1.781180
0.9 1.846914 1.825051 1.803139 1.781180 1.759171

6.2. Derivation of Equation (1.4). Applying variance on (1.3), we get

1 1
i f— f f— f .
Var (fia) = Var - LE 1 Y| = - Var (Y;)

We know that

Var(Y;) = E(Y;") — {E(Yi)}*.

Now

E(Y?) =

+2E(8; — B)E(A]E(B)) }

+2B{ai (1 — ;) }E(ADE{B; + (1 — 8:)Bi}

= P(u% +03) + (1 — P){T(u% + 63)

+ (1= T)(ph + 62) (4B + 0B) +2(T — T) (1 + 62)}
= P(p% + 62) + (1 = P){T(u2a + 62) + (1 — T)(u2a + 62) (1 + %)}

Using the above equation in (A.2), we get
Var(Yi) = P(ph +64) + (1 = P) {T (s’ + 64

WA+ {P+(1=P)T+(1-P)1=-T)(1+~)} — 4
{1+(1-P)Q-T)1"} -4
+ (44 + 62) (1 — P)(1 = T)y* — pi4,

(
(

ph + 6%
i + 6%

)
)

(A.2)

E(af)E(A7) + E(L + af — 200){E(B))E(A]) + E(1 - ) E(AIBY)

)+ (1= T)(ih +82) (L +7°)} — s
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so
Var(Yi) = 64 + (44 + 63)(1 - P)(1 = T)y™. (A3)
Substituting (A.3) in (A.1), we get

Var(a) = = {83+ (44 +83)(1 — P)(1~ T)*)

La{B s Dya-pa-ny)
n T
_ pAUA
n
Hence we have Equation (1.4).

6.3. Derivation of Equation (2.3). Applying variance on (2.1), we get

Var (fiar) = k*Var (fia) . (A.4)
As we know that

MSE (ftax) = Var (far) + {Bias (frar)}*, (A.5)
then using (2.2) and (A.4) in (A.5), we get

) k2 2U
MSE (fuae) = =22 4 du (1 - k)*

Hence we have Equation (2.3).
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