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Abstract

A bias correction estimator (BCE) for a dynamic panel data model
with fixed effects is given, based on the alternating iterative maximum
likelihood estimator (AIMLE). The new estimator is asymptotically un-
biased and consistent. Monte Carlo studies are conducted to evaluate
the finite sample properties of the MLE, AIMLE and BCE. It is shown
that the BCE based on AIMLE appears to dominate the AIMLE ap-
proach both in terms of the median bias (Bias) and median absolute
error (MAE) of the estimators.
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1. Introduction

In this paper, we consider the estimation of a dynamic panel data model with fixed
effects. The model is in the following form:

(1) yit = γyit−1 + ηi + εit, i = 1, . . . , N ; t = 1, . . . , T.

Here, yit is an observed dependent variable, εit is an unobservable error term which is iid
across units and time periods with normal distribution N(0, σ2), ηi are fixed effects, as
parameters to be estimated (nuisance parameters) and γ is the parameter of interest to
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be estimated. We assume that the initial observations, yi0, are observable. The number
of parameters increases with the increase in the number of individuals N , the maximum
likelihood estimator (MLE) would lead to inconsistent estimates of the parameter γ. This
is the well-known incidental parameter problem proposed by Neyman and Scott [12].

The inconsistency of the MLE in dynamic panel data models has led to the develop-
ment of a range of new estimators, see e.g., Nickell [13], Arellano and Bond [2], Arellano
and Bover [3], Kiviet [10], Ahn and Schmidt [1], Blundell and Bond [4], Hansen [8], Hahn
and Kuersteiner [7], Hsiao et al. [9], Bun and Carree [5], Bun and Carree [6].

In this paper, we give the definition of the alternating iterative maximum likelihood
estimator (AIMLE), based on the alternating iterative method (AIM) proposed by Shi
et al. [15] and derive the asymptotic normality of the AIMLE. In fact, the AIMLE is just
an algorithm to compute the MLE, which can also be applied to the binary panel data
model. Also, a new bias correction estimator of the AIMLE using iterative bootstrap
bias correction is proposed, which is asymptotically unbiased and consistent, though the
approach we use may be all that new, and was adopted in Kuk [11]. The obtained
simulation results are desirable. The bias correction estimator based on AIMLE can
potentially be extended to the binary panel data model.

The remainder of the paper is organized as follows. The MLE, AIMLE and the bias
correction estimator (BCE) based on AIMLE are introduced in Section 2. In Section 3,
we report some simulation results. Section 4 concludes the paper.

2. Bias correction estimator

The traditional approach to the bias correction of estimating model (1) is based on
MLE (Hahn and Kuersteiner [7]). In this section, we will firstly give another method
to compute the MLE, i.e. AIMLE, which is obtained by using the alternating iterative
algorithm, and derive the asymptotic normality of the AIMLE. Secondly, we adjust the
biased estimator AIMLE, and propose a bias correction estimator based on AIMLE.

The MLE γ̂MLE and η̂MLE = (η̂1, . . . , η̂N ) maximize the following log-likelihood func-
tion

(2) l(γ, η) =

N
∑

i=1

li(γ, ηi) =

N
∑

i=1

T
∑

t=1

{− (yit − γyit−1 − ηi)
2

2σ2
+

1

2
log

1

σ2
} + c,

where c is any constant. It is well known that the MLE of γ and ηi have an explicit
expression
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η̂iMLE =
1

T

T
∑

t=1

(yit − γ̂MLEyit−1), i = 1, . . . , N.(4)

If T → ∞, γ̂MLE is consistent. If T is finite and |γ| < 1, then as N tends to infinity, we
know that γ̂MLE is inconsistent. The inconsistency of the MLE of the common parameter,
γ̂MLE, is due to the classical incidental parameters problem in which the number of
parameters increases with the number of observations (Neyman and Scott [12]). The
introduction of exogenous variables does not help to solve this incidental parameters
problem.
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Next, we will use another method to obtain the MLE of γ and η, which is not an
explicit expression. If the parameter γ is given, from the first order condition of ηi,

∂li(γ, ηi)

∂ηi

=
T

∑

t=1

(yit − γyit−1 − ηi), the MLE of ηi, solves

(5)
T

∑

t=1

yit =
T

∑

t=1

(γyit−1 + ηi).

If the fixed effects ηi are given, the MLE of γ can be obtained by the first condition of γ

(6)
∂l(γ, η)

∂γ
=

N
∑

i=1

T
∑

t=1

yit−1(yit − γyit−1 − ηi) = 0.

According to (5) and (6), we can obtain the MLE of γ and η by the following alternating
iterative algorithm, which is similar to AIM proposed by Shi et al. [15]:

Algorithm:

Step 0 For any fixed γ(0), find η(0), the maximum point of l
(

γ(0), η
)

on RN , i.e. solve
Equation (5);

Step (n,1) Fix η(n−1), find γ(n), the maximum point of l
(

γ, η(n−1)
)

on R, i.e. solve
Equation (6);

Step (n,2) Fix γ(n), find η(n), the maximum point of l
(

γ(n), η
)

on RN , i.e. solve
Equation (5).

We stop the AIM at Step(n,1) if
∣

∣γ(n+1) − γ(n)
∣

∣ ≤ 10−m for some integers m ≥ 1.

From the above algorithm, we can obtain two point estimation sequences {γ(n)} ⊂ R

and {η(n)} ⊂ RN . It can also be seen that, for n ≥ 1

(7) l
(

γ(n), η(n)) ≤ l
(

γ(n+1), η(n)) ≤ l
(

γ(n+1), η(n+1)).

The proof of the following Theorem 2.1 is similar to those of Shi et al. [15], and is given
in the Appendix.

2.1. Theorem. The point estimation sequences {γ(n), η(n)} given in the above algorithm

converge to γ̂, η̂, respectively.

Since the sequences {γ(n)} and {η(n)} are obtained alternately, the estimators γ̂ and
η̂ are also called the alternating iterative maximum likelihood estimator (AIMLE) which
converges to the MLE. The AIMLE can be used to obtain the MLE when the MLE does
not have an explicit expression.

It is well known that the profile likelihood function l(γ, η̂) is not a true likelihood

function, for example Eγ

{

∂l(γ, η̂)

∂γ

}

6= 0, i.e. the estimating equation obtained by using

the profile likelihood function l(γ, η̂) is biased.

From a first order expansion of the concentrated score
∂l(γ, η̂)

∂γ
around the value γ⋆,

which is not the true value γ and is called a pseudo true value, we obtain the usual
expression for the AIMLE γ̂,

(8) HN

√
N(γ̂ − γ⋆) = − 1√

N

∂l(γ, η̂)

∂γ

∣

∣

∣

∣

γ=γ⋆

+ Op

(

1√
N

)

,

where γ⋆ = g(γ) is contained in the following Equation (9) for given η̂,

(9) Eγ

{

∂l(γ, η̂)

∂γ

∣

∣

∣

∣

γ=γ⋆

}

= 0
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and

(10) HN =
1

N

∂2l(γ, η̂)

∂γ2

∣

∣

∣

∣

γ=γ⋆

.

A standard central limit theorem applies to the concentrated score
∂l(γ, η̂)

∂γ

∣

∣

∣

∣

γ=γ⋆

, given

(9) we have

(11)
1√
N

∂l(γ, η̂)

∂γ

∣

∣

∣

∣

γ=γ⋆

d−→ N(0, VN ),

where

(12) VN =
1

N
Eγ{(∂l(γ, η̂)

∂γ
|γ=γ⋆ )2}.

Finally, combining (8) and (11), we give the following Theorem 2.2:

2.2. Theorem. (Asymptotic normality of AIMLE) When the sample size N → ∞,

(13)
√

N
(

γ̂AIMLE − γ⋆
) d−→ N(0, Λ),

where

(14) Λ = VN/H2
N .

Our approach is not to modify the biased estimating equation to make it unbiased.
We will adjust the γ̂AIMLE, which is a biased estimator, using the iterative bootstrap
bias correction method as in Kuk [11], to obtain asymptotically unbiased and consistent
estimators. The estimator γ̂AIMLE has an asymptotic bias given by

(15) b(γ) = γ⋆ − γ = g(γ) − γ.

The following is the bias correction procedure, proposed by Kuk [11]. Let b(0) be an
initial estimate of the bias of γ̂. In the k + 1 step, the updated estimate of the bias of
γ̂AIMLE can be written as

(16) b(k+1) = g
(

γ̂AIMLE − b(k)) −
(

γ̂AIMLE − b(k)).

The k + 1 step updated bias corrected estimate of γ can be denoted by

(17) γ̃
(k+1)
BCE = γ̂AIMLE − b(k+1).

Assuming that the limit of b(k) exists, we can let k → ∞ in equation (16) to obtain

(18) b = g(γ̃BCE) − (γ̂AIMLE − b),

so that

(19) γ̃BCE = g−1(γ̂AIMLE).

Assuming that g( · ) is one to one and differentiable, from the above expression (13) and
Slutsky’s Theorem, we can obtain the following Theorem 2.3:

2.3. Theorem. (Bias correction of AIMLE) When N → ∞,

(20)
√

N
(

γ̃BCE − γ
) d−→ N

(

0, ΛD2
)

,

where D =
dg−1(γ)

dγ

∣

∣

∣

∣

γ=γ⋆

. Thus the estimator γ̃BCE defined by equation (19) is asymp-

totically unbiased and consistent.
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The equations (16) and (17) are at the very core of the subject about iterative bias
correction of γ̂AIMLE. Except for very simple problems, the function γ⋆ = g(γ) does not
have an explicit expression, and is usually a complicated integral equation. Just because
of the complexity of the function g( · ), the implementation of iterative bias correction is
difficult. From (13), we can find that g(γ) = γ∗ is the asymptotic mean of γ̂AIMLE. We
propose to approximate g(γ) by gM (γ), which is the average of γ̂AIMLE over simulated
samples. gM (γ) can be written as the following:

(21) gM (γ) =
1

M

M
∑

i=1

γ̂AIMLE(yi),

where y1, . . . ,yM are simulated from the model with the parameters set at γ, η̂(γ) and

σ̂2(γ), where σ̂2(γ) =
N
∑

i=1

T
∑

t=1

(

yit − γyit−1 − η̂i(γ)
)2

/NT . Replacing gM (γ) in equations

(16) and (17), we have

(22) b
(k+1)
M = gM

(

γ̂AIMLE − b
(k)
M

)

−
(

γ̂AIMLE − b
(k)
M

)

as the bootstrap estimate of the bias of γ̂AIMLE at the k + 1th iteration and

(23) γ̃
(k+1)
BCE = γ̂AIMLE − b

(k+1)
M

as the updated bootstrap iterative bias correction estimator of γ.

3. A simulation study

In this section we present a small Monte Carlo study to illustrate the usefulness of
our bias correction estimator. The simulation is based on the following dynamic panel
data model

(24) yit = γyit−1 + ηi + εit,

where yit ∈ R, γ ∈ {0.0, 0.3, 0.6, 0.9}, ηi ∼ N(0, 1) independent across i, and εit ∼ N(0, 1)
is independent across i and t. We generate ηi and εit such that they are independent of
each other.

As in Hahn and Kuersteiner [7], the initial observations yi0 are assumed to be gen-

erated by the normal distribution N

(

ηi

1 − γ
,

1

1 − γ2

)

. For each simulated sample we

have reported the results for the MLE γ̂MLE, the AIMLE γ̂AIMLE and the bias correction
estimator γ̃BCE. Throughout, we show the mean, median, SD (standard deviation), the
median bias (Bias) and median absolute error (MAE) of these three estimator based on
100 replications for each design with different T . We compute the MLE γ̂MLE based on
formulation (3). Using the AIM, we can obtain the AIMLE γ̂AIMLE. Both MLE and

AIMLE are biased estimators. Here we stop the AIM if |γ(n+1) − γ(n)| ≤ 10−3.

The bootstrap iterative bias corrected estimator γ̃BCE is obtained from γ̂AIMLE iter-

atively by using equations (22) and (23), with starting value b(0) = 0, so that γ̃
(0)
BCE =

γ̂AIMLE. To save computation, we set M = 10. Table 1 reports results for T = 5, 10
and 20 (to conserve space, we consider only N = 100). Finite sample properties of these
three estimators obtained by 100 Monte Carlo runs are summarized in Table 1. The
most striking feature of these results is that the γ̂AIMLE is inferior in terms of median
bias (Bias) and median absolute error (MAE) to the γ̃BCE. We have simulated four dif-
ferent values of γ, namely γ = 0, 0.3, 0.6, 0.9. As expected, we find that as γ increases,
the bias increases dramatically.
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Table 1. Various estimators of γ with different T values (N = 100)

T Mean Median SD Bias MAE

True value γ = 0.0

MLE γ̂MLE 5 -0.197 -0.196 0.045 -0.196 0.196

10 -0.101 -0.104 0.030 -0.104 0.104

20 -0.051 -0.051 0.022 -0.051 0.051

AIMLE γ̂AIMLE 5 -0.195 -0.195 0.045 -0.195 0.195

10 -0.100 -0.103 0.030 -0.103 0.103

20 -0.051 -0.050 0.022 -0.050 0.050

BCE γ̂BCE 5 -0.024 -0.023 0.058 -0.023 0.048

10 -0.004 -0.006 0.034 -0.006 0.024

20 -0.002 -0.003 0.024 -0.003 0.018

True value γ = 0.3

MLE γ̂MLE 5 0.025 0.025 0.048 -0.274 0.274

10 0.164 0.166 0.027 -0.133 0.133

20 0.232 0.233 0.021 -0.066 0.066

AIMLE γ̂AIMLE 5 0.027 0.028 0.047 -0.271 0.271

10 0.162 0.164 0.027 -0.135 0.135

20 0.230 0.231 0.021 -0.068 0.068

BCE γ̂BCE 5 0.234 0.238 0.058 -0.061 0.062

10 0.288 0.288 0.033 -0.011 0.027

20 0.293 0.292 0.023 -0.007 0.014

True value γ = 0.6

MLE γ̂MLE 5 0.234 0.234 0.052 -0.365 0.365

10 0.420 0.422 0.030 -0.177 0.177

20 0.513 0.511 0.019 -0.088 0.088

AIMLE γ̂AIMLE 5 0.225 0.225 0.053 -0.374 0.374

10 0.414 0.416 0.031 -0.183 0.183

20 0.508 0.505 0.019 -0.094 0.094

BCE γ̂BCE 5 0.418 0.417 0.059 -0.182 0.182

10 0.551 0.551 0.034 -0.048 0.048

20 0.582 0.579 0.022 -0.020 0.023

True value γ = 0.9

MLE γ̂MLE 5 0.443 0.440 0.045 -0.459 0.459

10 0.657 0.655 0.029 -0.244 0.244

20 0.776 0.777 0.016 -0.122 0.122

AIMLE γ̂AIMLE 5 0.310 0.303 0.055 -0.596 0.596

10 0.585 0.586 0.034 -0.313 0.313

20 0.733 0.733 0.017 -0.166 0.166

BCE γ̂BCE 5 0.346 0.343 0.065 -0.556 0.556

10 0.618 0.622 0.041 -0.277 0.277

20 0.753 0.752 0.021 -0.147 0.147
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From Table 1, we can also find that the two estimators MLE and AIMLE perform
similarly, i.e. the AIMLE will converge to the MLE.

4. Conclusion

In this paper, we apply the bias correction estimator (BCE) proposed by Kuk [11]
to a dynamic panel data model with fixed effects, using iterative bootstrap. It is shown
that the BCE is asymptotically unbiased and consistent. Moreover, we give a definition
of the alternating iterative maximum likelihood estimator (AIMLE), which is a useful
algorithm to compute the MLE, and the algorithm can be applied to binary panel data.
A Monte Carlo Simulation shows that the bias correction estimator (BCE) proposed here
performs better than the AIMLE.

5. Appendix

The following Lemma 5.1 is well known:

5.1. Lemma. Let {yn} be a bounded infinite sequence in Rk. If every convergent subse-

quence of {yn} has a common limit point ŷ, then {yn} converges. �

5.2. Lemma. For the iterative sequence {γ(n)}, when n → ∞, |γ(n+1) − γ(n)| → 0.

Proof. We need to prove first that l′(γ(n+1), η(n)) × (γ(n) − γ(n+1)) ≤ 0 for all n ≥ 1. If

there exists n0 ≥ 1 such that l′(γ(n0+1), η(n0)) × (γ(n0) − γ(n0+1)) > 0, then

l
(

γ(n0+1) + t(γ(n0) − γ(n0+1)), η(n0))

= l
(

γ(n0+1), η(n0)) + l′
(

γ(n0+1), η(n0)) ×
(

γ(n0) − γ(n0+1)) + o(t)

> l
(

γ(n0+1), η(n0)).

This contradicts l
(

γ(n0+1), η(n0)
)

= max
γ∈R

l
(

γ, η(n0)
)

, so the above claim is true.

Secondly, from (2), we know that l′′(γ, η0) = −
N
∑

i=1

T
∑

t=1

y2

it−1

σ2 < M < 0. So we can

prove that there exists M < 0 such that

(γ1 − γ2)
2 × l′′(γ, η0) ≤ M × |γ1 − γ2|2,

for any γ, γ1, γ1 ∈ R.

Since l(γ, η) has continuous second-order partial derivatives on some open set contain-
ing RN+1, then

l
(

γ(n), η(n)) = l
(

γ(n+1), η(n)) + l′
(

γ(n+1), η(n)) ×
(

γ(n) − γ(n+1))

+
1

2
l′′

(

ξ(n+1), η(n)) ×
(

γ(n) − γ(n+1))2
,

where ξ(n) = t(n)γ(n) +
(

1 − t(n)
)

γ(n+1), for 0 < t(n) < 1. Hence

M

2

∣

∣

∣
γ(n) − γ(n+1)

∣

∣

∣

2

≥ 1

2
l′′

(

ξ(n+1), η(n)) ×
(

γ(n) − γ(n+1))2

= l
(

γ(n), η(n)
)

− l
(

γ(n+1), η(n)
)

− l′
(

γ(n+1), η(n)
)

×
(

γ(n) − γ(n+1))

≥ l
(

γ(n), η(n)) − l
(

γ(n+1), η(n))

= f2n − f2n+1.
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From (7), the sequence {fn} is a monotone increasing sequence and f(γ∗, η∗) is its upper
bound, so {fn} is convergent. Because f2n − f2n+1 → 0 as n → ∞, the desired result is
obtained. �

5.3. Lemma. Suppose that
{

γ(nk), η(nk)
}

is an arbitrary convergent subsequence of
{

γ(n), η(n)
}

, and (γ(nk), η(nk)) → (γ′, η′) when k → ∞, then

l(γ′, η′) = max
γ∈R

l(γ, η′) = max
η∈Rn

l(γ′, η).

Proof. For any η ∈ RN , the algorithm shows that

l
(

γ(nk), η(nk)
)

≥ l
(

γ(nk), η
)

.

Therefore,

lim
k→∞

l
(

γ(nk), η(nk)) ≥ lim
k→∞

l
(

γ(nk), η
)

,

i.e.

(γ′, η′) ≥ l(γ′, η)

holds for any η ∈ RN . Similarly, for any γ ∈ R we have

l(γ′, η′) ≥ l(γ, η′).

This completes the proof of Lemma 5.3. �

By assumption, for any γ ∈ R, l(γ, · ) is strictly concave on RN . Thus, we establish a
continuous mapping relation η( · ) from R to RN which satisfies

l(γ, η(γ)) = max
η∈RN

l(γ, η).

5.4. Lemma. The mapping η( · ) is continuous from R to RN .

Proof. Suppose that the sequence {γ(n)} converges to γ0 ∈ R, and let {η(γ(nk))} be a

convergent subsequence of {η(γ(n))} with η0 = lim
k→∞

{η(γ(nk))}. From the definition of

η( · ), for any η ∈ RN we have

l
(

γ(nk), η(γ(nk))
)

≥ l
(

γ(nk), η
)

.

By the continuity of l(γ, η), as k → ∞ we know that

l
(

γ0, η0

)

≥ l
(

γ0, η
)

.

Namely l
(

γ0, η0

)

= max
η∈RN

l(γ0, η) or η0 = η(γ0). By Lemma 5.1, we have

lim
n→∞

{η(γ(n)} = η(γ0).

This completes the proof of Lemma 5.4. �

From the alternating iterative process in Section 2, the sequence
{

γ(n), η(n)
}

ob-

tained by the two-step iterative algorithm is the same as the sequence
{

γ(n), η(γ(n))
}

.
According to Lemma 5.4, we have the following Corollary 5.5.

5.5. Corollary. The alternating iterative sequence {γ(n), η(n)} obtained by the two-step

iterative algorithm converges if and only if
{

γ(n)
}

converges. �

The following Lemma 5.6 is given in Shi and Jiang [14]:
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5.6. Lemma. Let {yn} be a uniformly bounded sequence in Rk. If ‖yn+1 − yn‖ → 0 as

n → ∞, and the sequence is not convergent, then there are infinitely many accumulation

point of the sequence {yn}. In particular, for k = 1, y′ is an accumulation point of {yn}
for any y′ ∈ [y, ȳ], where y = limn→∞

yn and y = limn→∞yn. �

Similarly to η( · ), we can also establish a continuous mapping γ( · ) from RN to R
such that l(γ(η), η) = max

γ∈R
l(γ, η). According to the two continuous mapping, γ( · ) and

η( · ), a continuous composite mapping γ ◦ η( · ) from R to R can be obtained. Hence the
alternating iterative formula can be written as

γ(n+1) = γ ◦ η
(

γ(n)
)

= γ
(

η
(

γ(n)
))

, (n ≥ 1).

Since R is a convex and compact set, and γ ◦η( · ) is continuous from R to R, there exists
γ0 ∈ R such that γ ◦ η(γ0) = γ0 (see Smart [16]). We have the following Lemma 5.7.

5.7. Lemma. Any accumulation point of the iterative sequence
{

γ(n)
}

is a fixed point

of the composed mapping γ ◦ η( · ) in R.

Proof. Let γ′ be an accumulation point of
{

γ(n)
}

, that is, there exists a subsequence
{

γ(nk)
}

⊂
{

γ(n)
}

satisfying lim
k→∞

γ(nk) = γ′. By Corollary 5.5,
{

η
(

γ(nk)
)}

converges, i.e.
{

η(nk)
}

converges, and lim
k→∞

η(nk) = lim
k→∞

η(γ(nk)) = η(γ′). By Lemma 5.3, l(γ′, η(γ′)) =

max
γ∈R

l(γ, η(γ′)) or γ′ = γ ◦ η(γ′). This completes the proof of Lemma 5.7. �

Proof of Theorem 2.1. By Corollary 5.5, it is sufficient to prove that
{

γ(n)
}

is convergent.

We have
∣

∣γ(n+1) − γ(n)
∣

∣ → 0, as n → ∞ by Lemma 5.2. Let γ = limn→∞
γ(n) and

γ = limn→∞γ(n). If {γ(n)} is not convergent, then the conditions of Lemma 5.6 hold.

Therefore, γ < γ, and γ′ is an accumulation point of
{

γ(n)
}

for any γ′ ∈ [γ, γ] in view

of Lemma 5.6. By Lemma 5.7, γ′ is a fixed point of the composite mapping γ ◦ η( · )
satisfying γ ◦ η(γ′) = γ′.

On the other hand, it can be shown that γ(n) is not element of [γ, γ] for any n ≥ 1.

If it is not true, then we assume that there exists n0 such that γ(n0) ∈ [γ, γ]. By

Lemma 5.7, γ(n0) = γ ◦ η
(

γ(n0)
)

= γ(n0+1). Then l
(

γ(n0), η(n0)
)

= l
(

γ(n0+1), η(n0)
)

,

which contradicts the inequality l
(

γ(n0), η(n0)
)

> l
(

γ(n0+1), η(n0)
)

for all n ≥ 1.

So, for any γ′ ∈
(

γ, γ
)

there exist ǫγ′ > 0 and a neighborhood of γ′, B(γ′, ǫγ′) =

(γ′−ǫγ′ , γ′−ǫγ′), such that B(γ′, ǫγ′ )
⋂{γ(n)} is the empty set, which contradicts the fact

that γ′ is an accumulation point of {γ(n)}. This contradiction implies that Theorem 2.1
is true. �

5.8. Remark. Theorem 2.1 only considers the case where the inequalities

l
(

γ(n), η(n)
)

< l
(

γ(n+1), η(n)
)

< l
(

γ(n+1), η(n+1)
)

hold for all n ∈ N .

5.9. Remark. If there exists a positive n0 such that l
(

γ(n0), η(n0)
)

= l
(

γ(n0+1), η(n0)
)

, or

l
(

γ(n0), η(n0−1)
)

= l
(

γ(n0), η(n0)
)

, then the sequence
{

γ(n), η(n)
}

converges. l
(

γ, η(n0)
)

is strictly concave on R, hence its maximum point is unique. So

l
(

γ(n0), η(n0)) = l
(

γ(n0+1), η(n0)) = max
γ∈R

l
(

γ, η(n0)).

It is obvious that γ(n0+1) = γ(n0) ⇒ η(n0+1) = η(n0) ⇒ γ(n0+2) = γ(n0+1) ⇒ · · · .
Namely, for any n ≥ n0, the above sequence implies that

(

γ(n), η(n)) = (γ(n0), η(n0)).

Therefore, the sequence
{

γ(n), η(n)
}

converges.



114 G. Yu, W. Gao, N. -Z. Shi

Acknowledgments. The authors would like to thank the anonymous referees and the
editor for helpful suggestions and insightful comments that greatly improved the paper.

This research is supported by the National Natural Science Foundation of China under
Grants No. 10431010, 10501005; and Innovation Group Program of Liaoning Educational
Committee No.2007T050.

References

[1] Ahn, S. C. and Schmidt, P. Efficient estimation of models for dynamic panel data, Journal
of Econometrics 68, 5–27, 1995.

[2] Arellano, M. and Bond, S. R. Some tests of specification for panel data: Monte Carlo evi-

dence and an application to employment equations, Review of Economic Studies 58, 277–
297, 1991.

[3] Arellano, M. and Bover, O. Another look at the instrumental variable estimator of error-

components models, Journal of Econometrics 68, 29–51, 1995.
[4] Blundell, R. and Bond, S. Initial conditions and moment restrictions in dynamic panel data

models, Journal of Econometrics 87, 115–143, 1998.
[5] Bun, M. J.G. and Carree, M.A. Bias-corrected estimation in dynamic panel data models,

Journal of Business and Economic Statistics 23, 200–210, 2005.
[6] Bun, M. J. G. and Carree, M.A. Bias-corrected estimation in dynamic panel data models

with heteroscedasticity, Economics Letters 92, 220–227, 2006.
[7] Hahn, J. and Kuersteiner, G. Asymptotically unbiased inference for a dynamic panel model

with fixed effects when both n and T are large, Econometrica 70, 1639–1657, 2002.
[8] Hansen, G. A bias-corrected least squares estimator of dynamic panel models, Allgemeines

Statistisches Archiv 85, 127–140, 2001.
[9] Hsiao, C., Pesaran, M.H. and Tahmiscioglu, A. K. Maximum likelihood estimation of fixed

effects dynamic panel data models covering short time periods, Journal of Econometrics
109, 107–150, 2002.

[10] Kiviet, J. F. On bias, inconsistency, and efficiency of various estimators in dynamic panel

data models, Journal of Econometrics 68, 53–78, 1995.
[11] Kuk, A.Y.C. Asymptotically unbiased estimation in generalized linear models with random

effects, J. R. Statist. Soc. B 57, 395–407, 1995.
[12] Neyman, J. and Scott, E. L. Consistent estimates based on partially consistent observations,

Econometrica 16, 1–32, 1948.
[13] Nickell, S. Biases in dynamic models with fixed effects, Econometrica 49, 1417–1426, 1981.
[14] Shi, N. Z. and Jiang, H. Maximum likelihood estimation of isotonic normal means with

unknown variance, J. Multivariate Anal 64, 183–195, 1998.
[15] Shi, N. Z., Hu, G.R. and Cui, Q. An alternating iterative method and its application in

statistical inference, Acta Mathematica Sinica 24, 843–856, 2008.
[16] Smart, D.R. Fixed Point Theorems (Cambridge University Press, London, 1974).


