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Abstract

In this article, a new estimator for the population mean at the cur-
rent occasion in successive sampling having two occasions is proposed
under the missing data case. The minimum mean square error and
optimum fraction of a fresh sample of the proposed estimator are ob-
tained. This estimator is compared with the estimator suggested by
Singh and Priyanka (Singh, G.N., Priyanka, K. Effect of non-response
on current occasion in search of good rotation patterns on successive
occasions, Statistics in Transition 8 (2), 273–292, 2007), and the effi-
cient condition for the proposed estimator is found. In a numerical
example, the mean square errors of these estimators are also computed
according to various values for the fraction of missing data, coefficient
of correlation, fraction of sub sampling and fraction of fresh sample.
The results of the numerical example show that the proposed estima-
tor is more efficient than Singh-Priyanka estimator for all values of the
parameters.
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1. Introduction and notations

It is often seen that a population having a large number of elements remains unchanged
on several occasions but the value of the unit’s changes. Successive (rotation) sampling
provides a strong tool for generating reliable estimates at different occasions. Successive
sampling has been extensively used to provide more efficient estimates of population
characteristics such as the mean. In successive sampling, it is common practice to use
the information collected on a previous occasion to improve the precision of the estimates
for the current occasion.

The problem of sampling on two successive occasions with a partial replacement of
sampling units was first considered by Jessen [4] in the analysis of a survey which collected
farm data. The theory of successive sampling was extended by Patterson [5], Sen [7, 8,
9], Chaturvedi and Tripathi [1]. Later, Singh et al. [12] and Singh and Singh [11] used
the auxiliary information on the current occasion in successive sampling. Utilizing the
auxiliary information on both the occasions, Singh [10] and Singh and Priyanka [14]
proposed chain type ratio and regression type estimators in the successive sampling,
respectively.

It is well known that missing data is a common problem in sample surveys. Hansen and
Hurwitz [3] suggested a technique for handling non-response. More recently, Singh and
Priyanka [13] used the Hansen and Hurwitz technique for estimation of the population
mean on the current occasion in the context of sampling on two occasions. However, in
this article, using Hansen and Hurwitz [3] technique, we propose a ratio-type estimator
to estimate the population mean at the current occasion in the presence of non-response
on two occasions of the successive sampling, and compare the proposed estimator with
the Singh-Priyanka estimator.

Let U = (U1, U2, . . . , UN ) be a finite population of N units sampled over two occasions.
Let a simple random sample of size n be selected on the first occasion. The character
under study is denoted by x (y) on the first (second) occasion, respectively. It is assumed
that information on an auxiliary variable z, is available for both of the occasions. A
random sub-sample of m = nλ units is retained (matched) for use on the current (second)
occasion. It is assumed that there is non-response on the current occasion, so that the
population can be divided into two classes with a response size of N1 at the first attempt
and a non-response size of N2. On the current occasion, a simple random sample of
u = n − m = nµ units are drawn afresh from the entire population. In this way, the
size of the second sample is also n. The terms λ and µ, (λ + µ = 1), are the fractions
of matched and fresh samples on the second occasion, respectively. It is assumed that
u1 units respond and u2 units do not respond in the unmatched portion of the second
sample.

Let a random sub-sample of u2h units be drawn from the non-response size of u2 on
the current occasion. The following notations are used in the rest of the article:

X̄, Ȳ , Z̄: The population means of the variables x, y, and z, respectively.

x̄n, z̄n, ȳm, x̄m, z̄m, ȳu1, ȳu2h, z̄u: The sample means of the related variables according
to the sample sizes shown in the subscripts.

ρyx, ρxz, ρyz: The population correlation coefficients between the variables shown in the
subscripts.

S2
x, S2

y , S2
z : The population variances of x, y, and z, respectively.

W = N2

N
: The proportion of non-response units in the population.
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2. Suggested estimator

Singh and Priyanka [13] suggested an estimator depending on two estimators for the
population mean of the study variable, Ȳ , on the second occasion. The first of these,
which is based on the Hansen and Hurwitz [3] estimator using a sample of size u drawn
afresh on the second occasion, is given by

(1) TSP1 = ȳ
∗

u =
u1ȳu1 + u2ȳu2h

u
.

The second estimator, which is a regression type estimator using a sample of size m

common occasions, is defined as

(2) TSP2 = ȳm + byx (x̄n − x̄m) ,

where byx is the sample regression coefficient.

Considering a convex linear combination of the estimators, TSP1 and TSP2, Singh and
Priyanka [13] obtained the estimator of Ȳ as follows:

(3) TSP = ϕTSP1 + (1 − ϕ)TSP2,

where ϕ is an unknown constant to be determined under a certain criterion.

By modifying the estimator in (1), we propose a ratio estimator which is based on a
sample of size u drawn afresh on the second occasion and given by,

(4) TSK1 =
ȳ∗u
z̄∗u

Z̄,

where z̄∗u = u1z̄u1+u2z̄u2h

u
.

Combining the estimators TSK1 and TSP2 similar to Singh and Priyanka [13], we obtain
the estimator of Ȳ as follows:

(5) TSK = γTSK1 + (1 − γ)TSP2,

where γ is an unknown constant to be determined under a certain criterion.

2.1. Theorem. The Mean Square Error (MSE) of TSK is given by

(6) MSE(TSK) = γ
2MSE(TSK1) + (1 − γ)2MSE(TSP2),

where

MSE(TSK1) =

[(

1

u
−

1

N

)

+
W (k − 1)

u

]

(

S
2
y − 2RzρyzSySz + R

2
zS

2
z

)

,

MSE(TSP2) =

[(

1

m
−

1

n

)

(

1 − ρ
2
yx

)

+

(

1

n
−

1

N

)]

S
2
y ,

and Rx = Ȳ

X̄
, Rz = Ȳ

Z̄
, k = u2

u2h
.

Proof. Since the samples are independent, we ignore the covariance term and the MSE
of TSK can be given by

(7) MSE(TSK) = γ
2MSE(TSK1) + (1 − γ)2MSE(TSP2),

where MSE(TSK1) can be found using the Taylor Series Method to the first degree of
approximation, namely

(8) h (ȳ∗u, z̄
∗

u) − h
(

Ȳ , Z̄
)

∼=
∂h (a, b)

∂a

∣

∣

∣

∣

Ȳ ,Z̄

(

ȳ
∗

u − Ȳ
)

+
∂h (a, b)

∂b

∣

∣

∣

∣

Ȳ ,Z̄

(

z̄
∗

u − Z̄
)

,
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where

h (ȳ∗u, z̄
∗

u) = TSK1,

∂h (a, b)

∂a

∣

∣

∣

∣

Ȳ ,Z̄

=
∂TSK1

∂ȳ∗u

∣

∣

∣

∣

Ȳ ,Z̄

= 1,

∂h (a, b)

∂b

∣

∣

∣

∣

Ȳ ,Z̄

=
∂TSK1

∂z̄∗u

∣

∣

∣

∣

Ȳ ,Z̄

= −
Ȳ

Z̄
= −Rz.

Using (8), we can write

TSK1 − Ȳ ∼=
(

ȳ
∗

u − Ȳ
)

−
Ȳ

Z̄

(

z̄
∗

u − Z̄
)

,

(

TSK1 − Ȳ
)2 ∼=

(

ȳ
∗

u − Ȳ
)2

+
Ȳ 2

Z̄2

(

z̄
∗

u − Z̄
)2

− 2
Ȳ

Z̄

(

ȳ
∗

u − Ȳ
) (

z̄
∗

u − Z̄
)

,

E
(

TSK1 − Ȳ
)2 ∼= E

(

ȳ
∗

u − Ȳ
)2

+
Ȳ 2

Z̄2
E

(

z̄
∗

u − Z̄
)2

− 2
Ȳ

Z̄
E

(

ȳ
∗

u − Ȳ
) (

z̄
∗

u − Z̄
)

,

MSE(TSK1) ∼= V (ȳ∗u) +
Ȳ 2

Z̄2
V (z̄∗u) − 2

Ȳ

Z̄
Cov (ȳ∗u, z̄

∗

u) ,(9)

where

ȳ
∗

u =
u1

u
ȳu1 +

u2

u
ȳu2h −

u2

u
ȳu2 +

u2

u
ȳu2

=
u1

u
ȳu1 +

u2

u
ȳu2 +

u2

u
(ȳu2h − ȳu2)

= ȳu +
u2

u
(ȳu2h − ȳu2) .

Therefore,

V (ȳ∗u) = V (ȳu) +
u2

2

u2
V (ȳu2h − ȳu2) + 2

u2

u
cov [ȳu, (ȳu2h − ȳu2)]

= V (ȳu) +
u2

2

u2
V (ȳu2h − ȳu2) ,

since cov [ȳu, (ȳu2h − ȳu2)] = 0 [2]. Hence,

V (ȳu2h − ȳu2) = V (ȳu2h) + V (ȳu2) − 2cov (ȳu2h, ȳu2)

= V (ȳu2h) − V (ȳu2)

=

(

1

u2h

−
1

N2

)

S
2
y2 −

(

1

u2
−

1

N2

)

S
2
y2

=

(

1

u2h

−
1

u2

)

S
2
y2,

since cov (ȳu2h, ȳu2) = V (ȳu2) [2]. Then, we get:

V (ȳ∗u) =
( 1

u
−

1

N

)

S
2
y +

u2
2

u2

(

1

u2h

−
1

u2

)

S
2
y2

=
( 1

u
−

1

N

)

S
2
y +

u2

u2

(

u2 − u2h

u2h

)

S
2
y2

=
( 1

u
−

1

N

)

S
2
y +

w

u
(k − 1) S

2
y2,

where w = u2

u
and k = u2

u2h
. Averaging over the distribution of the fraction w of non-

response in the sample, V (ȳ∗u) can also be expressed as

V (ȳ∗u) =
( 1

u
−

1

N

)

S
2
y +

W

u
(k − 1) S

2
y2.
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Similarly, V (z̄∗u) can be obtained as

V (z̄∗u) =
( 1

u
−

1

N

)

S
2
z +

W (k − 1)

u
S

2
z2.

The last term of (9) can be given by

cov (ȳ∗u, z̄
∗

u) = cov
[(

ȳu +
u2

u
(ȳu2h − ȳu2)

)

,
(

z̄u +
u2

u
(z̄u2h − z̄u2)

)]

= cov (ȳu, z̄u) +
u2

u
cov [ȳu, (z̄u2h − z̄u2)] +

u2

u
cov [z̄u, (ȳu2h − ȳu2)]

+
u2

2

u2
cov [(ȳu2h − ȳu2) , (z̄u2h − z̄u2)]

= cov (ȳu, z̄u) +
u2

2

u2
cov [(ȳu2h − ȳu2) , (z̄u2h − z̄u2)]

=
( 1

u
−

1

N

)

S
2
yz +

u2
2

u2

(

1

u2h

−
1

u2

)

S
2
yz(2)

=
( 1

u
−

1

N

)

Syz +
w(k − 1)

u
Syz(2)

=
( 1

u
−

1

N

)

Syz +
W (k − 1)

u
Syz(2),

since cov [ȳu, (z̄u2h − z̄u2)] = cov [z̄u, (ȳu2h − ȳu2)] = 0 [2], and we note that E (w) = W .

As in Singh and Priyanka [13], we also assume that S2
y2 = S2

y , S2
z2 = S2

z and Syz(2) =
Syz. Finally, (9) can be written as

MSE (TSK1) =

[

( 1

u
−

1

N

)

+
W (k − 1)

u

] [

S
2
y +

Ȳ 2

Z̄2
S

2
z − 2

Ȳ

Z̄
Syz

]

=

[

( 1

u
−

1

N

)

+
W (k − 1)

u

]

(

S
2
y − 2RzρyzSySz + R

2
zS

2
z

)

,(10)

where ρyz =
Syz

SySz
.

Similarly, it is known that

MSE (TSP2) = E
(

TSP2 − Ȳ
)2

= E
[

ȳm + byx (x̄n − x̄m) − Ȳ
]2

=

[

( 1

m
−

1

n

)

(

1 − ρ
2
yx

)

+
( 1

n
−

1

N

)

]

S
2
y .(11)

Using (10) and (11) in (7), it is clear that we can obtain MSE (TSK) as in (6). �

To obtain the optimum value of γ in MSE (TSK), the MSE equation is minimized
with respect to γ, and subsequently the optimum value of γ is obtained as

(12) γopt =
MSE(TSP2)

MSE(TSK1) + MSE(TSP2)
.

Substituting the value of γopt in (6), we get

(13) MSEmin (TSK) =
MSE (TSK1) MSE (TSP2)

MSE (TSK1) + MSE (TSP2)
.

2.2. Theorem. MSEmin (TSK) is derived as

(14) MSEmin (TSK) =
K1µ

2 + K2µ + K3

K4µ2 + K5µ + K6
S

2
y ,
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where µ = u
n

is the fraction of fresh sample taken on the second occasion,

K1 = n
2
A1A3 − nA1(1 − ρ

2
yx), K2 = NA1A2(1 − ρ

2
yx) − nA1A3(NA2 + n),

K3 = NnA1A2A3, K4 = n
2
A1 + Nn(1 − ρ

2
yx)S2

y − Nn
2
A3S

2
y ,

K5 = Nn
2
A3S

2
y − NnA1A2 − n

2
A1, and K6 = NnA1A2.

Here A1 = S2
y − 2RzρyzSySz + R2

zS2
z , A2 = 1 + W (k − 1), and A3 = 1

n
− 1

N
.

Proof. Using (10) and (11) in (13), the minimum MSE of the proposed estimator given
in (14) is easily obtained. �

2.3. Theorem. The optimum value of µ and the minimum value of MSE(TSK) with
respect to both γ and µ are given by

(15) µ̂ =
−∆2 ±

√

∆2
2 − 4∆1∆3

2∆1
= µ0

and

(16) MSEmin∗ (TSK) =
K1µ

2
0 + K2µ0 + K3

K4µ2
0 + K5µ0 + K6

S
2
y ,

respectively, where ∆1 = K1K5−K2K4, ∆2 = 2K1K6−2K3K4, and ∆3 = K2K6−K3K5.

Proof. To determine the optimum value of µ, so that Ȳ may be estimated with maximum
precision, we minimize MSEmin (TSK) with respect to µ, which results in a quadratic
equation as ∆1µ

2 + ∆2µ + ∆3 = 0. We obtain µ̂, say µ0, by solving this equation for µ.
We are certain that a real value of µ̂ exists if ∆2

2−4∆1∆3 ≥ 0. For certain situations, two
real values of µ̂ are possible and in these cases it should be remembered that 0 ≤ µ̂ ≤ 1,
therefore all other values of µ̂ are inadmissible. Substituting the admissible value of
µ̂, say µ0, computed using (15) into (14), we get the value of MSEmin∗ (TSK) given in
(16). �

3. Efficiency comparison

In this section, we compare the proposed estimator given in (5) with the Singh-
Priyanka estimator given in (3), as follows:

MSEmin (TSK) < MSEmin (TSP ) ,

MSE(TSK1)MSE(TSP2)

MSE(TSK1) + MSE(TSP2)
<

MSE(TSP1)MSE(TSP2)

MSE(TSP1) + MSE(TSP2)
,

MSE(TSK1)[MSE(TSP1) + MSE(TSP2)] < MSE(TSP1)[MSE(TSK1)

+ MSE(TSP2)],

MSE(TSK1)MSE(TSP2) < MSE(TSP1)MSE(TSP2),

MSE(TSK1) < MSE(TSP1),
[(

1

u
−

1

N

)

+
W (k − 1)

u

]

(

S
2
y − 2RzρyzSySz + R

2
zS

2
z

)

<

[(

1

u
−

1

N

)

+
(k − 1) W

u

]

S
2
y ,

S
2
y − 2RzρyzSySz + R

2
zS

2
z < S

2
y ,

R
2
zS

2
z < 2RzρyzSySz,

RzSz < 2ρyzSy ,
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1

2
Rz

Sz

Sy

< ρyz,

1

2

Cz

Cy

< ρyz,(17)

where we assume that population means of y and z are positive. When the condition in
(17) is satisfied, the proposed ratio estimator is more efficient than the Singh-Priyanka
estimator.

4. Numerical illustration

We have used data in Satıcı [6] based on 923 districts of Turkey. Considering the
numbers of teachers (x) and private teaching institutions (z) as the auxiliary variables,
the population mean of the number of successful students in the student selection exami-
nation for secondary schools (y) is estimated using the proposed and the Singh-Priyanka
estimators. The mean square errors of these estimators are also calculated according to
various values for the fraction of missing data (W ), coefficient of correlation, fraction of
sub-sampling (k) and fraction of fresh samples (µ), and in this way we have examined
the relative efficiencies computed by

(18) RE =
MSEmin (TSP )

MSEmin (TSK)
.

In Table 1, we observe the population statistics about the study and the auxiliary vari-
ables for the years 2006 and 2007. Note that we take only 261 homogenous districts for
the population as we use simple random sampling in this article, and that we take the
size of the sample as n = 90.

Table 1. Data statistics

N = 261 X2007 = 312.33 Z2007 = 2.05

Y 2006 = 222.58 X2006 = 306.45 Z2006 = 2.07

S2
y = 172386.4 S2

x = 290706.7 S2
z = 17.503

Cy = 1.86537 Cx = 1.75941 Cz = 2.02126

ρyx = 0.970 ρyz = 0.935 ρxz = 0.928

The values of MSE of the proposed and Singh-Priyanka estimators are computed as
described in Section 2 according to various values for the parameters, such as ρyx, W , k,
µ, and ρyz. In these values, µ = 0.78 is the optimal value of the Singh-Priyanka estimator
and µ = 0.97 is the optimal value of the proposed estimator. In Tables 2 and 3, relative
efficiencies computed using (18) are given for ρyx = 0.97 and ρyx = 0.80, respectively.
Especially, we also try ρyx = 0.80 since the performance of the Singh-Priyanka estimator
depends on the value of ρyx.

For this numerical illustration, from Tables 2 and 3, it is clearly observed that the
proposed ratio estimator is more efficient than the Singh-Priyanka estimator for all values
of the parameters. Actually, this is an expected result since condition (17) is satisfied as
follows:

1

2

Cz

Cy

= 0.5418 < ρyz = 0.935.
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Table 2. The relative efficiencies for ρyx = 0.97 and different values of W , k, µ

and ρyz taken as in Singh and Priyanka [13]

k 1.5 2

µ 0.1 0.3 0.5 0.78 0.97 0.1 0.3 0.5

W ρyz RE RE RE RE RE RE RE RE

0.935 1.338 1.981 2.605 3.586 5.414 1.310 1.906 2.489

0.2 0.850 1.118 1.342 1.560 1.900 2.540 1.108 1.316 1.519

0.985 2.429 5.156 7.795 11.951 19.695 2.313 4.837 7.305

0.935 1.310 1.906 2.489 3.424 5.283 1.267 1.785 2.301

0.4 0.850 1.108 1.316 1.519 1.846 2.494 1.093 1.274 1.454

0.985 2.313 4.837 7.305 11.269 19.138 2.130 4.325 6.509

0.935 1.287 1.841 2.389 3.283 9.159 1.234 1.693 2.155

0.6 0.850 1.100 1.293 1.484 1.796 2.450 1.082 1.242 1.403

0.985 2.215 4.563 6.880 10.667 18.163 1.991 3.934 5.892

0.935 1.267 1.785 2.301 3.156 5.042 1.209 1.620 2.039

0.8 0.850 1.093 1.274 1.454 1.752 2.410 1.073 1.216 1.362

0.985 2.130 4.325 6.509 10.132 18.117 1.883 3.626 5.399

Table 2. (Continued)

k 2 2.5

µ 0.78 0.97 0.1 0.3 0.5 0.78 0.97

W ρyz RE RE RE RE RE RE RE

0.935 3.425 5.283 1.287 1.841 2.389 3.282 5.159

0.2 0.850 1.846 2.494 1.100 1.293 1.484 1.796 2.450

0.985 11.269 19.138 2.215 4.563 6.880 10.667 18.613

0.935 3.156 5.042 1.234 1.693 2.155 2.941 4.827

0.4 0.850 1.752 2.410 1.082 1.242 1.403 1.677 2.335

0.985 10.132 18.117 1.991 3.934 5.892 9.221 17.205

0.935 2.941 4.827 1.198 1.589 1.989 2.689 4.543

0.6 0.850 1.677 2.335 1.069 1.205 1.345 1.589 2.235

0.985 9.221 17.205 1.837 3.494 5.188 8.151 16.006

0.935 2.765 4.633 1.171 1.512 1.864 2.494 4.300

0.8 0.850 1.616 2.267 1.060 1.179 1.302 1.521 2.151

0.985 8.475 16.386 1.725 3.169 4.661 7.328 14.972
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Table 3. The relative efficiencies for ρyx = 0.80 and different values of W , k, µ

and ρyz taken as in Singh and Priyanka [13]

k 1.5 2

µ 0.1 0.3 0.5 0.78 0.97 0.1 0.3 0.5

W ρyz RE RE RE RE RE RE RE RE

0.935 1.354 2.131 3.042 4.720 6.424 1.325 2.047 2.909

0.2 0.850 1.123 1.394 1.712 2.298 2.892 1.113 1.365 1.666

0.985 2.497 5.790 9.646 16.754 23.970 2.376 5.432 9.082

0.935 1.325 2.047 2.909 4.568 6.382 1.280 1.911 2.689

0.4 0.850 1.113 1.365 1.666 2.244 2.877 1.098 1.318 1.589

0.985 2.376 5.432 9.082 16.108 23.790 2.184 4.856 8.151

0.935 1.301 1.974 2.792 4.427 6.340 1.245 1.806 2.514

0.6 0.850 1.105 1.340 1.625 2.195 2.860 1.086 1.281 1.528

0.985 2.273 5.124 8.588 15.513 23.610 2.039 4.413 7.412

0.935 1.280 1.911 2.689 4.297 6.299 1.219 1.723 2.372

0.8 0.850 1.098 1.318 1.589 2.150 2.848 1.076 1.252 1.479

0.985 2.184 4.856 8.151 14.963 23.440 1.926 4.061 6.811

Table 3. (Continued)

k 2 2.5

µ 0.78 0.97 0.1 0.3 0.5 0.78 0.97

W ρyz RE RE RE RE RE RE RE

0.935 4.568 6.382 1.301 1.974 2.792 4.427 6.340

0.2 0.850 2.244 2.877 1.105 1.340 1.625 2.195 2.862

0.985 16.108 23.790 2.273 5.124 8.588 15.513 23.614

0.935 4.297 6.299 1.245 1.806 2.514 4.065 6.219

0.4 0.850 2.150 2.848 1.086 1.281 1.528 2.070 2.820

0.985 14.963 23.440 2.039 4.413 7.412 13.978 23.100

0.935 4.060 6.219 1.207 1.687 2.311 3.770 6.103

0.6 0.850 2.069 2.820 1.072 1.240 1.457 1.967 2.780

0.985 13.978 23.100 1.878 3.911 6.551 12.738 22.610

0.935 3.863 6.141 1.180 1.599 2.156 3.530 5.992

0.8 0.850 1.990 2.793 1.063 1.209 1.403 1.882 2.741

0.985 13.124 22.770 1.760 3.537 5.894 11.713 22.138
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From Tables 2 and 3, it is also observed that the proposed estimator has the highest rela-
tive efficiency for the values W = 0.2, k = 1.5, µ = 0.97. From this numerical illustration,
we find that there are 4 cases increasing the efficiency of the proposed estimator:

1. When the fraction of missing data decreases,
2. When the fraction of fresh samples increases,
3. When the fraction of sub-sampling decreases,
4. When the correlation between y and z increases.

As the Singh-Priyanka estimator depends on the value of ρyx, we have examined the MSE
values for different values of ρyx. We see that the efficiency of the proposed estimator is
also increasing while ρyx is decreasing. Hence, it is shown that in the presence of non-
response, the proposed estimator performs better than the Singh-Priyanka estimator.

5. Conclusion

We have derived a new ratio-type estimator in the presence of non-response in suc-
cessive sampling. We have obtained its MSE equation and investigated the optimal
replacement policy. The MSE of the proposed estimator has been compared with the
Singh-Priyanka estimator in theory and the efficiency condition for the proposed esti-
mator has been found. This theoretical condition has also been satisfied by a numerical
example for various values of parameters. As a result, we can infer that the proposed
estimator is more efficient than the the Singh-Priyanka estimator under the condition in
(17).
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