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Abstract

In this paper we study multi-state systems consisting of two compo-
nents when the number of system states and the number of states of
each component are the same, i.e. the systems under consideration are
homogeneous multi-state systems. In particular we evaluate multi-state
series and cold standby systems assuming that the degradation in their
components follow a Markov process. The behaviour of systems with
respect to degradation rates is also investigated in terms of stochastic
ordering.
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1. Introduction

Reliability evaluation has a vital importance at all stages of processing and control-
ling modern engineering systems. It is a very common situation in which the system and
its components have a range of performance levels from perfect functioning to complete
failure. This situation can be handled and analyzed by multi-state reliability theory. For
example, networks and their components perform their tasks at different performance
levels. Therefore the performance degradation of the network occurs due to the degra-
dation in components over time. One of the most common and tractable assumptions
is that degradation in the system occurs according to a Markov process. The reader
is referred to Lisnianski and Levitin [7] for the use of Markov processes in multi-state
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system modeling. Much attention has been paid recently to the evaluation of multi-state
systems. Some recent contributions on the subject, among others, are the works of Zuo
and Tian [15], Li and Zuo [5], Eryılmaz and Iscioglu [3], and the references therein.

Some dynamic reliability measures used in binary state analysis have been extended
to the multi-state case in several works (see, e.g. Brunelle and Kapur [1]). Because there
are more than two states in multi-state system modeling, there is a necessity to define
the lifetime of a multi-state system in a specific state j or above. In fact, this lifetime
random variable is the time spent by the system in state j or above. Lisnianski and
Frenkel [9] studied a non-homogeneous Markov reward model for an aging multi-state
system under minimal repair.

Standby redundancy is widely used in engineering design to improve system reliability.
In this case, only one component is active in the system and the other components are
placed in the system in the standby condition. Several types of standby redundancy
have been defined and studied in the literature. The most recent results on binary
standby systems are in the works of Cha et al. [2], Li et al. [6]. Some redundancy
problems for multi-state systems including typical series and parallel connections, k-out-
of-n and consecutive k-out-of-n structures were studied in the literature [4, 7]. Recently
Lisnianski and Ding [8] discussed a new general type of redundancy which considers
two interconnected multi-state systems, where one multi-state system can satisfy its own
stochastic demand and can also provide abundant resource to another system.

In this paper we study multi-state series and cold standby systems under the assump-
tion that the degradation in their components follow a Markov process. In Section 2,
we present the definitions and obtain the reliability functions. In Section 3, we study
how the degradation rates influences the performance of systems in terms of stochastic
ordering.

2. Definitions and reliability functions

This section is devoted to the construction of the probabilistic frame for modeling the
multi-state series and cold standby systems. Below we provide the notation that will be
used throughout the paper.

{0, 1, . . . , M} : The state set of the system and its components, where “0” and “M”
represent respectively the worst (completely failed) and best (perfect
functioning) states.

Xi(t) : The state of component i at time t, Xi(t) ∈ {0, 1, . . . , M} , i = 1, 2.

T≥j
i : The lifetime of component i in the state subset {j, j + 1, . . . , M} (or the time

spent by the component i in state j or above), i = 1, 2.

T≥j
S : The lifetime of the multi-state series system in the state subset {j, j + 1, . . . , M}.

T≥j
C : The lifetime of the multi-state cold standby system in the state subset {j, j +1,

j + 2, . . . , M}.

2.1. Definition. The two component multi-state series system is in state j (j = 1, ..., M)
or above if and only if both of its components are in state j or above.

According to the above definition, the lifetime of a two component multi-state series
system in the state subset {j, j + 1, . . . , M} is given by

(2.1) T≥j
S = min(T≥j

1 , T≥j
2 ).

Under the assumption that the components are independent, the reliability function

corresponding to T≥j
S is

(2.2) P
{

T≥j
S > t

}

= P
{

T≥j
1 > t

}

P
{

T≥j
2 > t

}

,
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for j = 1, . . . , M .

In a multi-state cold standby system consisting of two components, the system is
put into operation with component 1 in active operation and component 2 in standby.
When the performance rate of component 1 falls below j, instantaneously component 2
is switched into operation.

2.2. Definition. A two component multi-state cold standby system is in state j (j =
1, . . . , M) or above as soon as its active component is in state j or above.

The lifetime of a two component multi-state cold standby system in the state subset
{j, j + 1, . . . , M} is then defined by

(2.3) T≥j
C = T≥j

1 + T≥j
2 .

The basic assumptions for such a system can be listed as below:

(1) A standby component is switched into operation as soon as the performance rate
of the active component falls below j.

(2) The components degrade while they are in active state with time t without repair
from the perfect state to lower states.

(3) A standby component does not degrade while the active component is working,

i.e. P
{

X2(T
≥j
1 ) = M

}

= 1.

Under the above assumptions the system reliability function can be computed as

(2.4)

P
{

T≥j
C > t

}

= P
{

T≥j
1 + T≥j

2 > t
}

=

∞
∫

t

dP
{

T≥j
1 ≤ x

}

+

t
∫

0

P
{

T≥j
2 > t − x

}

dP
{

T≥j
1 ≤ x

}

= P
{

T≥j
1 > t

}

+

t
∫

0

P
{

T≥j
2 > t − x

}

dP
{

T≥j
1 ≤ x

}

,

for t ≥ 0.

Assume that the degradation in the components follows a Markov process and that the
components have 3 states: 0 (failed), 1 (partially working) and 2 (perfectly functioning).
If the corresponding instantaneous degradation rates among the states for the components

are denoted by λ
(i)
1,0 and λ

(i)
2,1, i = 1, 2, then from (3.19) of Lisnianski and Levitin [7] we

have the following system of differential equations for the state probabilities pj(t) =
P {X1(t) = j} , j = 0, 1, 2.

(2.5)

d

dt
p0(t) = λ

(1)
1,0p1(t)

d

dt
p1(t) = λ

(1)
2,1p2(t) − λ

(1)
1,0p1(t)

d

dt
p2(t) = −λ

(1)
2,1p2(t)

with initial conditions p2(0) = 1, p1(0) = 0 = p0(0).
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After solving this system one obtains

P {X1(t) = 0} = 1 −
1

λ
(1)
2,1 − λ

(1)
1,0

(

λ
(1)
2,1e

−λ
(1)
1,0t − λ

(1)
1,0e

−λ
(1)
2,1t

)

,(2.6)

P {X1(t) = 1} =
λ

(1)
2,1

λ
(1)
2,1 − λ

(1)
1,0

(

e−λ
(1)
1,0t − e−λ

(1)
2,1t

)

,(2.7)

P {X1(t) = 2} = e−λ
(1)
2,1t(2.8)

and hence

P
{

T≥1
1 > t

}

= P {X1(t) ≥ 1} =

(

λ
(1)
2,1e

−λ
(1)
1,0t − λ

(1)
1,0e

−λ
(1)
2,1t

)

λ
(1)
2,1 − λ

(1)
1,0

,(2.9)

P
{

T≥2
1 > t

}

= P {X1(t) ≥ 2} = e−λ
(1)
2,1t,(2.10)

for t ≥ 0. Under the Markov process assumption defined above the reliability functions
of the series system are

(2.11)

P
{

T≥1
S > t

}

= P
{

T≥1
1 > t

}

P
{

T≥1
2 > t

}

=

(

λ
(1)
2,1e

−λ
(1)
1,0t − λ

(1)
1,0e

−λ
(1)
2,1t

)

λ
(1)
2,1 − λ

(1)
1,0

(

λ
(2)
2,1e

−λ
(2)
1,0t − λ

(2)
1,0e

−λ
(2)
2,1t

)

λ
(2)
2,1 − λ

(2)
1,0

,

and

(2.12) P
{

T≥2
S > t

}

= e−(λ
(1)
2,1+λ

(2)
2,1)t.

In the setup of a two component multi-state cold standby system,
(

λ
(1)
1,0, λ

(1)
2,1

)

denotes

the degradation rates for the active component, and
(

λ
(2)
1,0, λ

(2)
2,1

)

denotes the degradation

rates for the standby component while it is in the active state. The reliability of a
multi-state cold standby system is found to be

P
{

T≥1
C > t

}

=

(

λ
(1)
2,1e

−λ
(1)
1,0t − λ

(1)
1,0e

−λ
(1)
2,1t

)

λ
(1)
2,1 − λ

(1)
1,0

+
1

(λ
(1)
2,1 − λ

(1)
1,0)(λ

(2)
2,1 − λ

(2)
1,0)

×

t
∫

0

[(

λ
(2)
2,1e

−λ
(2)
1,0(t−x) − λ

(2)
1,0e

−λ
(2)
2,1(t−x)

)

×
(

λ
(1)
2,1λ

(1)
1,0e

−λ
(1)
1,0x − λ

(1)
1,0λ

(1)
2,1e

−λ
(1)
2,1x

)]

dx

(2.13)

=
(λ

(1)
2,1e

−λ
(1)
1,0t − λ

(1)
1,0e

−λ
(1)
2,1t)

λ
(1)
2,1 − λ

(1)
1,0

+
1

(λ
(1)
2,1 − λ

(1)
1,0)(λ

(2)
2,1 − λ

(2)
1,0)

×

[

λ
(1)
1,0λ

(1)
2,1λ

(2)
2,1e

−λ
(2)
1,0t

{

(1 − e−(λ
(1)
1,0−λ

(2)
1,0)t)

λ
(1)
1,0 − λ

(2)
1,0

−
(1 − e−(λ

(1)
2,1−λ

(2)
1,0)t)

λ
(1)
2,1 − λ

(2)
1,0

}

+ λ
(1)
1,0λ

(1)
2,1λ

(2)
1,0e

−λ
(2)
2,1t

{

(1 − e−(λ
(1)
2,1−λ

(2)
2,1)t)

λ
(1)
2,1 − λ

(2)
2,1

−
(1 − e−(λ

(1)
1,0−λ

(2)
2,1)t)

λ
(1)
1,0 − λ

(2)
2,1

}]

,

(2.14)



Dynamic reliability and performance evaluation 129

and

(2.15) P
{

T≥2
C > t

}

= e−λ
(1)
2,1t +

λ
(1)
2,1

λ
(1)
2,1 − λ

(2)
2,1

(

e−λ
(2)
2,1t − e−λ

(1)
2,1t

)

,

for λ
(1)
1,0 6= λ

(2)
1,0, λ

(1)
2,1 6= λ

(2)
2,1, λ

(1)
1,0 6= λ

(2)
2,1, and λ

(2)
1,0 6= λ

(1)
2,1.

The mean lifetime of the cold standby system in the state subsets {1, 2} and {2} are
found to be respectively

(2.16) E(T≥1
C ) =

1

λ
(1)
1,0

+
1

λ
(1)
2,1

+
1

λ
(2)
1,0

+
1

λ
(2)
2,1

,

and

(2.17) E(T≥2
C ) =

1

λ
(1)
2,1

+
1

λ
(2)
2,1

.

3. Stochastic comparison of systems

We first adapt the definitions of some ageing and ordering properties from binary
systems to multi-state systems.

3.1. Definition. The lifetime of system A is stochastically smaller than the lifetime of
system B in the state subset {j, j + 1, . . . , M}, if

(3.1) P
{

T≥j
A > t

}

≤ P
{

T≥j
B > t

}

for all t ≥ 0, and we write T≥j
A ≤st T≥j

B .

3.2. Definition. A multi-state system is said to have an increasing failure rate (IFR)
in the state subset {j, j + 1, . . . , M} if the failure rate function defined by

(3.2)

r≥j(t) = lim
∆t→0

1

∆t
P

{

T≥j ≤ t + ∆t | T≥j > t
}

= −
d
dt

P
{

T≥j > t
}

P {T≥j > t}

is a nondecreasing function of t.

3.3. Definition. The lifetime of system A is smaller than the lifetime of system B in
the state subset {j, j + 1, . . . , M} in failure rate ordering, if

(3.3) r≥j
A (t) ≥ r≥j

B (t)

for all t ≥ 0, or equivalently P
{

T≥j
B > t

}

/P
{

T≥j
A > t

}

is a nondecreasing function of t,

and we write T≥j
A ≤fr T≥j

B .

3.4. Definition. A vector x = (x1, . . . , xn) is said to majorize a vector y = (y1, . . . , yn),

denoted by x �m y, if
∑j

i=1 x(i) ≤
∑j

i=1 y(i) for j = 1, . . . , n − 1, and
∑n

i=1 x(i) =
∑n

i=1 y(i), where x(1) ≤ · · · ≤ x(n) and y(1) ≤ · · · ≤ y(n).

3.5. Theorem. [14] Let X1, X2, Y1 and Y2 be independent random variables such that

X1 ≤fr Y1 and X2 ≤fr Y2. If Xi, Yi, i = 1, 2 are all IFR, then

(3.4) X1 + X2 ≤fr Y1 + Y2.

3.6. Lemma. If α = (α1,0, α2,1) �m λ = (λ1,0, λ2,1), then the function defined by

(3.5) g(t) =
(λ2,1 − λ1,0)

(α2,1 − α1,0)

(α2,1e
−α1,0t − α1,0e

−α2,1t)

(λ2,1e−λ1,0t − λ1,0e−λ2,1t)

is nondecreasing for all t ≥ 0.
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Proof. It is easy to compute that

(3.6)

h(t) =
d

dt
g(t)

=
1

A2(t)

(λ2,1 − λ1,0)

(α2,1 − α1,0)

[

α2,1λ2,1(λ1,0 − α1,0)e
−(α1,0+λ1,0)t

+ α2,1λ1,0(α1,0 − λ2,1)e
−(α1,0+λ2,1)t + α1,0λ2,1(α2,1 − λ1,0)

× e−(α2,1+λ1,0)t + α1,0λ1,0(λ2,1 − α2,1)e
−(α2,1+λ2,1)t

]

,

where A(t) = (λ2,1e
−λ1,0t −λ1,0e

−λ2,1t). The four possible cases we need to consider are:

(i) α1,0 ≤ α2,1 and λ1,0 ≤ λ2,1,
(ii) α1,0 ≤ α2,1 and λ2,1 ≤ λ1,0,
(iii) α2,1 ≤ α1,0 and λ1,0 ≤ λ2,1,
(iv) α2,1 ≤ α1,0 and λ2,1 ≤ λ1,0,

Consider the case (i). If α �m λ, then α1,0 ≤ λ1,0, α1,0 + α2,1 = λ1,0 + λ2,1, which yield
α2,1 − α1,0 ≥ 0, λ2,1 − λ1,0 ≥ 0, λ1,0 − α1,0 ≥ 0, α1,0 − λ2,1 ≤ 0, α2,1 − λ1,0 ≥ 0, and
λ2,1 − α2,1 ≤ 0. In this case

A = α2,1λ2,1(λ1,0 − α1,0)e
−(α1,0+λ1,0)t ≥ 0, B = α2,1λ1,0(α1,0 − λ2,1)e

−(α1,0+λ2,1)t ≤ 0

and

C = α1,0λ2,1(α2,1−λ1,0)e
−(α2,1+λ1,0)t ≥ 0, D = α1,0λ1,0(λ2,1−α2,1)e

−(α2,1+λ2,1)t ≤ 0,

but

−
A

D
≥ 1, 0 ≤ −

C

B
≤ 1.

Because e−(α1,0+λ1,0)t ≥ e−(α2,1+λ2,1)t, e−(α2,1+λ1,0)t ≥ e−(α2,1+λ2,1)t, e−(α1,0+λ2,1)t ≥
e−(α2,1+λ2,1)t we have

A + B + C

D
≥

α2,1 − λ2,1

λ2,1 − α2,1
= −1,

which yields h(t) ≥ 0. For the cases (ii), (iii) and (iv) we have −A/D ≥ 1, −C/B ≤ 1,
−A/D ≤ 1, −C/B ≥ 1 and −A/D ≤ 1, −C/B ≥ 1, respectively. The other three cases
can be evaluated similarly and the proof is completed. �

In the sequel, the components of each system are assumed to have equal degradation
rates.

3.7. Theorem. Let T≥j
S = min

(

T≥j
1 , T≥j

2

)

and Z≥j
S = min

(

Z≥j
1 , Z≥j

2

)

denote the life-

time of two independent multi-state series systems in the state subset {j, j + 1, . . . , M}.
Assume that M = 2 and the degradations in the first and second systems’ components

follow a Markov process with degradation rates λ = (λ1,0, λ2,1) and α = (α1,0, α2,1),
respectively.

(a) If α �m λ, then T≥1
S ≤fr Z≥1

S .

(b) If λ2,1 ≥ α2,1, then T≥2
S ≤fr Z≥2

S .

Proof. We only prove part (a). The other part is simple. Because g(t) ≥ 0,

(3.7)
P

{

Z≥1
S > t

}

P
{

T≥1
S > t

} =
(λ2,1 − λ1,0)

2

(α2,1 − α1,0)2

(

α2,1e
−α1,0t − α1,0e

−α2,1t

λ2,1e−λ1,0t − λ1,0e−λ2,1t

)2

= g2(t),

and from Lemma 3.6 g(t) is a nondecreasing function of t ≥ 0 for α �m λ. It follows

that T≥1
S ≤fr Z≥1

S . �
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3.8. Definition. A reliability function R is said to be a generalized finite mixture of the
reliability functions R1, R2, . . . , Rn if

(3.8) R(t) =

n
∑

i=1

ωiRi(t),

for all t, where ω1, , ωn are real numbers such that
∑n

i=1 ωi = 1.

For the properties and applications of generalized mixtures in reliability modelling
see, e.g. Navarro and Hernandez [10,12] and Navarro et al. [13].

3.9. Proposition. Let T≥1
S = min

(

T≥1
1 , T≥1

2

)

be the lifetime of a multi-state series

system in the state subset {1, 2}. Assume that degradation in the components follow a

Markov process with degradation rates λ = (λ1,0, λ2,1). Then the distribution of T≥1
S is a

generalized mixture of three exponential distributions, i.e.

(3.9) P
{

T≥1
S > t

}

= ω1e
−2λ1,0t + ω2e

−2λ2,1t + ω3e
−(λ1,0+λ2,1)t,

where

(3.10) ω1 =

(

λ2,1

λ2,1 − λ1,0

)2

, ω2 =

(

λ1,0

λ2,1 − λ1,0

)2

, ω3 =
−2λ1,0λ2,1

(λ2,1 − λ1,0)2
. �

3.10. Proposition. [10,11] If F is a generalized mixture such that

(3.11) F (t) =

n
∑

i=1

ωiFi(t),

for all t, where ω1, . . . , ωn are real numbers such that
∑n

i=1 ωi = 1. Let ri(t) be the failure

rate function corresponding to Fi(t), i = 1, . . . , n. If

(3.12) lim
t→∞

inf
ri(t)

r1(t)
= ξi ∈ (1,∞] , lim

t→∞
sup

ri(t)

r1(t)
< ∞,

for i = 2, 3, . . . , n, then limt→∞
r(t)
r1(t)

= 1, where r(t) is the failure rate function corre-

sponding to F (t).

The following result is a direct consequence of Propositions 3.9 and 3.10.

3.11. Proposition. Let T≥1
S = min

(

T≥1
1 , T≥1

2

)

be the lifetime of a multi-state series

system in the state subset {1, 2}. Assume that degradation in components follow a Markov

process with degradation rates λ = (λ1,0, λ2,1). Then:

(3.13) lim
t→∞

r≥1
S (t) = 2min(λ1,0, λ2,1). �

3.12. Theorem. [12] If the mixture representation in Proposition 3.10 holds, and the

mean residual life functions m1, m2, . . . , mn of F1, F2, . . . , Fn respectively, satisfy

(3.14) lim
t→∞

inf
m1(t)

mi(t)
> 1, lim

t→∞
sup

m1(t)

mi(t)
< ∞,

for i = 2, 3, . . . , n, then the mean residual life function m of F satisfies limt→∞
m(t)
m1(t)

=

1. �

The mean residual lifetime function of a multi-state system in the state subset {j, j + 1, . . . , M}
is defined as

(3.15) m≥j(t) = E(T≥j − t | T≥j > t).

The following result readily follows from Proposition 3.9 and Theorem 3.12.
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3.13. Proposition. Let T≥1
S = min

(

T≥1
1 , T≥1

2

)

be the lifetime of a multi-state series

system in the state subset {1, 2} and m≥1
S (t) = E(T≥1

S − t | T≥1
S > t). Assume that degra-

dation in components follow a Markov process with degradation rates λ = (λ1,0, λ2,1).
Then

(3.16) lim
t→∞

m≥1
S (t) =

1

2min(λ1,0, λ2,1)
. �

3.14. Theorem. Let T≥j
C = T≥j

1 + T≥j
2 and Z≥j

C = Z≥j
1 + Z≥j

2 denote the lifetime of

two independent multi-state cold standby systems in the state subset {j, j + 1, . . . , M}.
Assume that M = 2 and that the degradations in the first and second systems’ com-

ponents follow a Markov process while they are in active state, with degradation rates

λ = (λ1,0, λ2,1) and α = (α1,0, α2,1), respectively.

(a) If α �m λ, then T≥1
C ≤fr Z≥1

C .

(b) If λ2,1 ≥ α2,1, then T≥2
C ≤fr Z≥2

C .

Proof. By Lemma 3.6

(3.17) g(t) =
P

{

Z≥1
i > t

}

P
{

T≥1
i > t

}
=

(λ2,1 − λ1,0)

(α2,1 − α1,0)

(α2,1e
−α1,0t − α1,0e

−α2,1t)

(λ2,1e−λ1,0t − λ1,0e−λ2,1t)
,

is nondecreasing for all t ≥ 0, and this implies T≥1
i ≤fr Z≥1

i , i = 1, 2. Because

T≥1
1 , T≥1

2 , Z≥1
1 and Z≥1

2 are IFR the proof of (a) follows from Theorem 3.5. The
proof of part (b) is simple and hence is omitted. �

3.15. Example. Let λ = (0.23, 0.22) and α = (0.27, 0.18). Because α �m λ and

λ2,1 ≥ α2,1, we have T≥j
S ≤fr Z≥j

S and T≥j
C ≤fr Z≥j

C , j = 1, 2.

We can also compute

E(T≥1
S ) = 5.5578, E(T≥2

S ) = 2.2727, E(Z≥1
S ) = 5.7407, E(Z≥2

S ) = 2.7778,

E(T≥1
C ) = 17.7866, E(T≥2

C ) = 9.0909 and E(Z≥1
C ) = 18.5185, E(Z≥2

C ) = 11.1111.

For a series system having instantaneous degradation rate λ,

lim
t→∞

r≥1
S,λ(t) = 2min(λ1,0, λ2,1) = 0.44,

lim
t→∞

m≥1
S,λ(t) =

1

2min(λ1,0, λ2,1)
= 2.2727,

and for a series system with instantaneous degradation rate α,

lim
t→∞

r≥1
S,α(t) = 2min(α1,0, α2,1) = 0.36,

lim
t→∞

m≥1
S,α(t) =

1

2min(α1,0, α2,1)
= 2.7778.

4. Conclusions

In this paper, we have studied some properties of multi-state series and cold standby
systems consisting of two components. The systems and components are assumed to have
three states and the degradation in components occurs according to a Markov process.
In the present study only minor failures occur. A minor failure is a failure that causes
the component transition from state i to i−1. A more general model can be obtained by
considering a major failure, that is a failure that causes the component transition from
state i to state j < i [7].
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We have presented some ordering results associated with failure rates of series and
cold standby systems. These results are useful for comparing the performances of multi-
state systems having different instantaneous degradation rates. The limiting properties
of failure rate and the mean residual life function of multi-state series system were also
investigated via generalized mixtures.
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