ON LUCAS NUMBERS BY
THE MATRIX METHOD

Fikri Köken*† and Durmus Bozkurt*

Received 06:03:2009 : Accepted 05:06:2010

Abstract
In this study we define the Lucas Q_L-matrix similar to the Fibonacci Q-matrix. The Lucas Q_L-matrix is different from the Fibonacci Q-matrix, but is related to it. Using this matrix representation, we have found some well-known equalities and a Binet-like formula for the Lucas numbers.

Keywords: Fibonacci numbers, Lucas numbers, Matrix method.
2000 AMS Classification: 11 B 39, 15 A 24, 40 C 05.

1. Introduction
Fibonacci and Lucas numbers and their generalization have many interesting properties and applications to almost every field of science and art. For the prettiness and rich applications of these numbers and their relatives to science and nature one can see [1-5].

As in [4], let Q be the 2×2 matrix
\[
Q = \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}.
\]
Then for an integer n with $n \geq 1$, Q^n has the form
\[
Q^n = \begin{bmatrix}
F_{n+1} & F_n \\
F_n & F_{n-1}
\end{bmatrix}.
\]
This property provides an alternate proof of Cassini’s Fibonacci formula:
\[
F_{n-1}F_{n+1} - F_n^2 = (-1)^n.
\]

* Selçuk University, Faculty of Art and Science, Department of Mathematics, 42075 Kampus, Konya, Turkey.
E-mail: (F. Köken) kokenfikri@gmail.com (D. Bozkurt) dbozkurt@selcuk.edu.tr
† Corresponding Author.