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Abstract

We study modules whose maximal submodules are supplements (direct
summands). For a locally projective module, we prove that every max-
imal submodule is a direct summand if and only if it is semisimple and
projective. We give a complete characterization of the modules whose
maximal submodules are supplements over Dedekind domains.
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1. Introduction

Let R be a unitary ring and M a left R-module. A submodule N of M is called a
supplement if there exists another submodule L such that N is minimal with respect to
the property that N + L = M. This is equivalent to N+ L =M and NNL < N. A
module M is called supplemented if every submodule has a supplement. Several authors
have been recently attracted by different generalizations of supplemented modules. An
interesting example of this situation has been studied in [1], where modules M in which
the kernel of any epimorphism from M to a finitely generated module has a supplement
are studied. These modules are characterized as modules whose maximal submodules
have supplements, (see, [1, Theorem 2.8]). Motivated by these results, we study in this
paper, modules in which every maximal submodule is a supplement, and modules in
which every maximal submodule is a direct summand. For the sake of brevity, we call
them ms-modules and md-modules, respectively.
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We begin by studying some basic properties of md-modules. In particular, we show
that homomorphic images of md-modules are md-modules and that a module M con-
taining an md-module L is also md-module provided that L is not contained in any
maximal submodule of M (Proposition 2.2). In general, md-modules need not be closed
under extensions. But we show that M is an md-module provided that L and M/L are
md-modules where L is a closed submodule of M. These basic results allow us to char-
acterize semilocal rings as those rings in which any module with zero Jacobson radical is
an md-module.

In Section 3, we study locally projective md-modules. Locally projective modules
were introduced by Huisgen-Zimmermann in [20], and they coincide with the flat strict
Mittag-Lefler modules in the sense of Raynaud and Gruson (see [10]). These modules
are closely related to pure submodules of direct products of free modules (see [20]). And
it has been recently observed by several authors that there exists a strong connection
between the existence of nontrivial locally projective modules in the functor category
of a ring (in the sense that they are not projective) and the construction of separable
modules and the pure semisimplicity of certain subcategories of modules over the ring
(see e.g. [8, 9, 11, 12, 21)).

In particular, it is proved in [21] that any ring R which is not left perfect has locally
projective left modules which are not projective. Motivated by these relations, we show in
Section 3 that any locally projective md-module is semisimple projective. In particular,
we deduce that any projective md-module is semisimple.

In Section 4, we characterize the coatomic modules whose maximal submodules are
supplement (Theorem 4.3). As a consequence, for a module M over a left perfect ring, we
prove that every maximal submodule of M is a supplement if and only if Rad K = Rad M
for every maximal submodule K of M.

In Section 5, we prove that the class of ms-modules is strictly larger than class of
md-modules. We close this paper by studying md-modules over commutative domains.
Zoschinger proved that over a Dedekind domain, a submodule of a module is closed if
and only it is coclosed. Using this result we obtain that ms-modules and md-modules
coincide over Dedekind domains. This allows us to determine completely the structure
of md-modules over Dedekind domains.

Throughout this paper, R will be an associative ring with identity and all modules
are unital left R-modules. By N C M we shall mean that /N is a submodule of M. Let
L C M, L is said to be small in M, denoted by L <« M, if L + K # M for every proper
submodule K C M. Dually, a submodule L C M is called essential in M, denoted by
L<M,if LNK # 0 for every nonzero K C M. By Rad M and Soc(M), we denote the
Jacobson radical and the socle of M, respectively. A submodule L of M is called closed
in M if L < K for some K C M, implies L = K. Dually, a submodule N of M is called
coclosed in M if N/K <« M/K implies K = N for every submodule K of N.

It is easy to see that a maximal submodule of a module is either essential or a direct
summand. Therefore a module is an md-module if and only if every maximal submodule
is a closed submodule.

2. Modules whose maximal submodules are direct summands
In this section we shall prove some closure properties of md-modules.

2.1. Proposition. The class of md-modules is closed under arbitrary direct sums and
homomorphic images.
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Proof. Let M = Z M;, where M; is an md-module for each i € I. Let K be a maximal
iel

submodule of M. Then M; ;(_ K for some i € I, so that M = M; + K and M; N K is

a maximal submodule of M;. Since M, is an md-module, there is a submodule L C M;

such that M; = L & M; N K for some L C M. Then it is straightforward to see that the

sum M = K + L is direct. Hence M is an md-module.

Let M be an md-module and f : M — N any homomorphism of left R-modules.
Note that md-modules are closed under isomorphisms, since being an md-module is a
lattice-theoretical notion. Therefore we can assume that f(M) is of the form M /L for
some submodule L of M. Let K/L be a maximal submodule of M/L. As K is also a
maximal submodule of M and M is an md-module, there exists a submodule S of M
such that M = K @ S. Now it is clear that the sum K/L+ (S+ L)/L = M/L is a direct
sum. Hence M/L is an md-module. g

Let M and N be R-modules. Then, N is said to be an M-generated module if there
is an epimorphism f: M™) — N for some index set A.

From Proposition 2.1, we obtain the following.
2.2. Corollary. Any M -generated module of an md-module is an md-module. g

2.3. Proposition. Let M be an R-module and N C M. Suppose N is an md-module
and M/N has no mazimal submodules. Then M is an md-module.

Proof. Let K be a maximal submodule of M. If N C K, then K/N would be a maximal
submodule of M /N, which is impossible, so we must have M = N + K. Since M/K =
N/(N N K) is simple, N N K is a maximal submodule of N. Since N is an md-module,
NNK&L = N for some simple submodule L C N. Then M = K+ N =K+ KNN+L =
K + L. Since L is simple, K N L = 0. That is, K is a direct summand of M, and so M
is an md-module. O

Let M be a module with no maximal submodules, i.e. satisfying Rad M = M, then
M is an md-module (take N = 0 in the above Proposition).

In general, a submodule of an md-module need not be an md-module. For example,
the Z-module zQ is an md-module, because it has no maximal submodules. On the
other hand, zQ does not contain any nonzero proper md-submodules, because proper
submodules of 7(Q have a proper radical and moreover are indecomposable since 7Q is
uniform. However, we have the following result for particular submodules.

2.4. Proposition. Let M be an md-module. Then any coclosed submodule N of M with
Soc(M) C N is an md-module.

Proof. Let K be a maximal submodule of N. Since N is coclosed, we have N/K+T/K =
M/K for some proper submodule T/K C M/K. Then (N/K) N (T/K) = 0 because
N/K is a simple module. Now we get M/K = N/K ®T/K and so NNT = K. Then
N/K = M/T is also simple, hence T' is a maximal submodule of M. Since M is an
md-module, M = T @ S for some simple submodule S of M. Then S C Soc(M) C N.
By the modular law, we get N = NNT @S = K @ S. That is, K is a direct summand
of N. Hence N is an md-module. O

Let M be an R-module. If U and M/U are md-modules for some U C M, then
M need not be an md-module. To see this, let p be a prime integer, M = Z/pzZ and
U =pM. Then U and M /U are both simple modules, hence md-modules. Clearly, U is
a maximal submodule of M and U is not a direct summand of M. Hence M is not an
md-module.
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2.5. Proposition. Let M be an R-module and L be a closed submodule of M. If L and
M/L are md-modules, then M 1is an md-module.

Proof. Let K be a maximal submodule of M. If K +L = M, then M/K = L/(LNK) is
simple, so LN K is a maximal submodule of L. Since L is an md-module, L = LNK & S
for some simple submodule S C L. Then M = K+ L=K+LNK+ S5 =K+ S and
KNS =0, so that K is a direct summand of M. If L C K, then K/L is a maximal
submodule of M/L, so K/L is a direct summand of M/L. That is, M/L = K/L & N/L
for some submodule N/L of M/L. Since N/L is simple, L is a maximal submodule of
N. As L is closed in M, LN S = 0 for some nonzero S C N. So L® S = N with S a
simple submodule of M. Weget M = K+ N=K+L+S=K+Sand KNS =0. So
K is a direct summand of M. Hence M is an md-module. g

For a module M let s(M) be the sum of all simple submodules of M that are direct
summands of M.

2.6. Theorem. For an R-module M, the following are equivalent.

(1) M is an md-module,
(2) M/s(M) has no mazimal submodules,
(3) M/Soc(M) has no mazimal submodules.

Proof. (1) = (2) Let M be an md-module and suppose K is a maximal submodule of
M such that s(M) C K. Then M = K @ S for some simple submodule S C M. Hence
S C s(M) C K, a contradiction. Therefore M/s(M) has no maximal submodules.

(2) = (3) Clear, because any submodule of M containing Soc(M) also contains
s(M).

(3) = (1) Clearly Soc(M) is an md-module. Then (3) and Proposition 2.3 implies
that M is an md-module. d

Note that, if M is a finitely generated module, then every submodule is contained in
a maximal submodule. In this case, M is an md-module if and only if it is semisimple
by Theorem 2.6. In particular, R is a semisimple (artinian) ring if and only if rR is an
md-module. Therefore, R is a semilocal ring if and only if R/J(R) is an md-module.

2.7. Proposition. Let M be a module such that s(M) is finitely generated. Then M is
an md-module if and only if M = s(M) & N, where N C M with N = Rad N = Rad M.

Proof. First note that the (composition) length (s(M)) of s(M) is finite. The proof is
by induction on the length I(s(M)) of s(M). First suppose {(s(M)) = 0. Then clearly
s(M) = 0, so that M has no maximal submodules, because M is an md-module. Then
Rad M = M, and so we are done. Suppose [(s(M)) = n > 0 and each md-submodule of
M with length less than n has the desired decomposition. Let K be a maximal submodule
of M. Then M = K& S for some S C s(M). Now, K is an md-module by Proposition 2.1
and [(s(K)) = n — 1. By the induction hypothesis, K = s(K) @& N where Rad N = N.
Then M =S®K =S®s(K)® N =s(M)® N, and this completes the proof.

For the converse, note that a module with no maximal submodules is an md-module.
Now if M = s(M)@® N with N = Rad N, then both s(M) and N are md-modules. Hence
M is an md-module by Proposition 2.1. O
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3. Locally projective modules

Let R be a ring and let us denote Soc(grR) by S. As S is a two-sided ideal, R/S
has a canonical ring structure. Moreover, for any R-module M, we have that M/SM
is an R/S-module. Let us note that a module M is semisimple projective if and only if
M = SM, where SM is the R-submodule of M generated by the products of elements
of S by elements of M.

The proof of the following lemma is straightforward.

3.1. Lemma. Let M be a left R-module, X an R/S-module and f : M — X a homo-
morphism of R-modules. Then SM C Ker(f). a

Let F' be a module. We recall that F' is called locally projective if for any epimorphism
p: X — Y, any homomorphism g : F' — Y, and any finitely generated submodule Z of
F, there exists a homomorphism h : F' — X such that poh |z= g |z (see e.g. [20]).

Every projective module is locally projective. But the converse is far from being true.
It was proved in [20, Examples 2.3(1)] that any pure submodule of a projective module is
locally projective. This means, for instance, that if F' is a flat module and q : R . F
is an epimorphism, then Ker(q) is always locally projective. But it cannot be projective
if we choose a flat module having projective dimension bigger than one. In fact, a main
result of [21, Theorem 10] asserts that if R is a ring which is not left perfect, then there
always exists a locally projective left R-module which is not projective.

The notion of locally projective module coincides with that of flat strict Mittag-Leffler
module in the sense of Raynaud and Gruson [10], and their existence has been shown to
have a strong relation with the decomposition properties of modules into direct summands
(see e.g. [11, 12]). Bearing in mind this connection, we will prove in this section that
any locally projective md-module is trivial in the sense that it is a direct sum of simple
projective modules.

We first need to prove the following lemma.

3.2. Lemma. Let F be a locally projective module. Then any finitely generated direct
summand of F is projective.

Proof. Let N be a finitely generated direct summand of F and p : R™ — N an epimor-
phism. Let us denote by u : N — F the inclusion and let 7 : F' — N be an epimorphism
such that mou = 1n. As F' is locally projective and N is finitely generated, there exists
a homomorphism h : F — R™ such that poh |v= 7 |n. But this means that N is a
direct summand of R™ and therefore, projective. d

We can now state the main result of this section.

3.3. Theorem. FEvery locally projective md-module is semisimple projective.

Proof. Let F be a locally projective md-module. We need to show that SF = F. Assume
on the contrary that SF # F and let us choose 0 # =z € F\ SF. Let p : RO L F
be an epimorphism for some index set I. As F' is locally projective, there exists a
homomorphism h : F — RY) such that po h(z) = .

We claim that Gor(h) C (J 4 S)). Otherwise, if we call 7 : R — R /(J + 8)D
the canonical projection, we have that o h # 0. And, as Rad(R /(J + S))) = 0, this
means that there exists an epimorphism ¢ : R /(J + $)Y) — C onto a simple module
C such that gomoh # 0. Our hypothesis implies now that C is a direct summand of
F', which must be projective by Lemma 3.2. Hence C' C SF'. But this is a contradiction,
since otherwise gomoh = 0.
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Let us now choose a finite subset K C I such that h(z) C R¥). Say that h(z) =
Z rie; where r; € R. Again, for any i € K, we may choose a finite subset K; C I such
€K
that hop(e;) C RED, Tet usset K/ = KU ( U Ki). Then, for any ¢ € K, we can

€K
find elements r;; € R such that hop(ei) =3, ks rije;. Thus we get that

h(z) = hph(z) = hp( > riei) =Y rihple) =Y n( > rijej).

€K ieK €K NjEK;
So, if we denote by ¢ : RED — R the endomorphism whose matrix with respect to
the basis {e;}jexs is (r4j), we get that ¢ o h(z) = h(z). Let us enlarge the row vector
(rs)x to a vector in RE) by setting r; = 0 if j € K’ \ K. We deduce from the above
equality that (rj)ex’ = (75) ek (rij)i,jex’. So if we denote by I the identity matrix
of size K', then (r;)jex- (Ix — (rij)ijex’) = 0.
On the other hand, as we know that Gor(h) C (J+5)), and S is a two-sided ideal of
R, we deduce that all entries of the matrix (ri; +5); jex’ belong to the Jacobson radical
of R/S and therefore, it is a quasi-regular matrix by [2, Corollary 17.13]. This means
that the matrix Ix/ — (ri; + S) is invertible in the matrix ring My (R/S) and thus, the
row matrix (r;);exs = (0+5) is in Mg/ (R/S), i.e. 7; € S for any ¢ € K. But this means
that h(z) € s and, as any simple quotient of F' is a direct summand, we deduce that
x =poh(zx) € SF. A contradiction, since we were assuming that = ¢ SF. O

In particular, we get the following corollary.

3.4. Corollary. Any projective md-module is semisimple. O

4. Maximal submodules that are supplements

In this section we shall study modules whose maximal submodules are supplements,
and call them ms-modules for short. Clearly any direct summand is a supplement, and
hence md-modules are ms-modules. We shall prove that the converse need not be true
in general.

It can be verified easily that the properties in Proposition 2.1 and Proposition 2.3
hold also for ms-modules.

Recall that a module is called coatomic provided that every submodule is contained in
a maximal submodule. First, we shall characterize coatomic ms-modules. Then we will
obtain a characterization of ms-modules over left perfect rings. We begin with following:

4.1. Lemma. Let M be a coatomic module and N be a coclosed submodule of M. Then
N is coatomic.

Proof. Suppose Rad(N/K) = N/K for some K C N. Then N/K C Rad(M/K) <
M/K. Then N/K <« M/K, and hence N = K because N is coclosed. Therefore N is
coatomic. O

4.2. Lemma. Let M be a module with Rad M = 0. Then M is an ms-module if and
only if it is an md-module.

Proof. 1If Rad M = 0 then supplements and direct summands in M are the same. O

4.3. Theorem. Let R be any ring and M be a coatomic R-module. Then M is an
ms-module if and only if the following conditions hold:

(i) Every mazimal submodule N of M is coatomic and Rad N = Rad M,
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(i) M/Rad M is semisimple.

Proof. Suppose M is an ms-module and K is a maximal submodule of M. Then K is a
supplement in M, so K is coatomic by Lemma 4.1, and Rad K = KNRad M = Rad M by
[19, 41.1], which proves (i). Now (ii) follows from Lemma 4.2 and the fact that coatomic
md-modules are semisimple (see, Theorem 2.6).

Conversely, let K be a maximal submodule of M. Then K/ Rad M is a direct summand
of M/Rad M by (ii), so K + L = M and K N L = Rad M for some submodule L C M.
Since K is coatomic and Rad K = Rad M, we have K N L = Rad K < K, that is K is a
supplement of L in M. Hence M is an ms-module. (]

A ring R is called a left max ring if Rad M < M for every left R-module M. Equiva-
lently, R is a left max ring if and only every (nonzero) left R-module is coatomic. Also, R
is a left perfect ring if R is a left max ring and R/ Rad R is semisimple as a left R-module
(see [2]). For every module M over a left perfect ring, we have M/ Rad M is semisimple.

Now, from Theorem 4.3 we obtain the following corollary.

4.4. Corollary. Let R be a left perfect ring and M be an R-module. Then M is an
ms-module if and only if Rad K = Rad M for every maximal submodule K of M. O

An R-module M is called m-projective if for every two submodules U, V' of M with
U+ V = M, there exists f € End(M) with Gor(f) CU and Gor(l — f) C V.

A projective module P together with an epimorphism f : P — M such that Ker(f) <
P is called a projective cover of M. A ring R is semiperfect if and only if every sim-
ple left R-module has a projective cover, if and only if the left (right) R-module R is
supplemented (see [19, 42.6]).

4.5. Proposition. Let R be a semiperfect ring and M a m-projective R-module. Then
M is an ms-module if and only if M is an md-module. In particular, r R is an ms-module
if and only if it is semisimple.

Proof. Necessity is clear. Now suppose M is an ms-module and let N be a maximal
submodule of M. Then by hypothesis M = N 4+ L and NN L < N for some L C M.
Since R is semiperfect, the simple R-module M/N has a projective cover. So that N has
a supplement L’ in L by [16, Lemma 4.40]. Then N and L’ are mutual supplements.
Hence N is a direct summand of M by [3, 20.9]. a

5. An example

As we have mentioned, in general an ms-module need not be an md-module. In the
following two lemmas we shall prove the existence of such a module.

5.1. Lemma. Let R be a ring and M be an R-module. Suppose M has a simple submod-
ule U such that UM and M /U is semisimple but not simple. Then M is an ms-module
but not an md-module.

Proof. 1t is clear from the hypothesis that Soc(M) = U and U C L for every nonzero
proper submodule L of M. In particular, U is contained in every maximal submodule of
M, and hence U C Rad M. Since (Rad M)/U = Rad(M/U) = 0, we have Rad M = U.
By the same argument we have Rad N = U for every submodule N of M which contains
U properly. Let K be a maximal submodule of M. Then M/U = K/U & T /U for some
T/U C M/U because M /U is semisimple. We get K+7T = M and KNT =U = Rad K.
Clearly U is finitely generated, so K N'T' = U < K. Therefore K is a supplement of T’
in M. Hence M is an ms-module. Since every nonzero submodule of M contains U, K
is not a direct summand of M, i.e. M is not an md-module. O
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5.2. Lemma. Let R be a complete commutative noetherian local ring with maximal ideal
P. Suppose P is not principal. Then there exists an ms-module over R which is not an
md-module.

Proof. Let U be the simple R-module R/P and E = E(U) be the injective hull of U.
Let V = {e € E | P?¢ = 0}. Then V is a submodule of E and P(V/U) = 0, so that
V/U is a vector space over R/P. Also P/P? is a vector space over R/P. The dimension
of these vector spaces is the respective composition length. By [18, Corollary p. 154]
the composition length of V/U is the same as the composition length of P/P?. Since
P is not principal, the composition length of P/P2 is at least two (see [17, Proposition
9.3]), so that V/U is not simple. Therefore by Lemma 5.1, V is an ms-module but not
an md-module. O

5.3. Example. Let R = C[z,y], P = Rz + Ry and S = R/P? Then S is an artinian
local ring. Let M = Eg(R/P) be the injective hull of the simple S-module R/P. Then
P?M =0, so M is an ms-module but not an md-module by Lemma 5.2.

5.4. Corollary. Let M be an R-module such that Rad M is a simple essential submodule
of M and M/ Rad M = 51 ® Ss for simple modules S1 and Sa. Then M is an ms-module
but not an md-module. O

5.5. Note. A concrete example satisfying the hypothesis of Corollary 5.4 can be found
in [15, p. 339].

6. Modules over Commutative Rings

Throughout this section all rings are commutative. In general direct product of simple
modules need not be an md-module. For instance, let F' be a field and R = F! where T
is an infinite index set. Then R is a direct product of simple R-modules each of which is
isomorphic to F. By [13, p. 264] R is not semisimple. Hence R is not an md-module by
Theorem 3.3.

In case R is commutative and noetherian, we shall prove that an arbitrary direct
product of simple R-modules is an md-module. First we need the following lemma.

6.1. Lemma. Let R be a ring and A be a finitely generated ideal of R. Let X = [[ X;
iel

be the direct product of the R-modules X;. Suppose that X; = AX; for alli € I. Then

X =AX.

Proof. Let A = Rai1 + Raz + -+ + Ray, for some k > 1, a; € A, (1 < i < k). For every
1€ I, we have X; = AX; = a1 X; + -+ + arX;. Let © = (z;) € X, where z; € X; for all
¢ € I. By assumption, for every i € I there exists z;; € X;, (1 < j < k) such that z; =
a1z + - + apxie. Then (zi5) € X, (1< j<k)and 2 = ai(zi) + -+ + ap(zin) € AX.
Hence X = AX. O

6.2. Theorem. Let R be a noetherian ring and let {Ux}xea be a collection of simple

R-modules. Then M = H U, is an md-module.
XEA

Proof. Let {P;}icr be the collection of distinct maximal ideals P; of R such that for every
it € I there exists A € A with P;Ux = 0. For each i € I let A; = {\ € A | P,Uy = 0}. Let
K be a maximal submodule of M and P the maximal ideal of R such that PM C K.
Since PM # M, we have Uy # PU) for some A € A by Lemma 6.1. Since U, is simple
and PU) is a proper submodule of Uy, we have PUy = 0, so that P = P; for some j € I.

Again by Lemma 6.1, if L = [[ Ux, where A" = [J{A; | ¢ € T\ {j}}, then PL = L.
AN
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Hence, L C K. Now let L’ = [[ Ux. Then P;L’ = 0, so that L’ is semisimple, also

AEA;
M=L®L'. Then K=L®(KNL')and KNLis a direct summand of L’. Therefore
K is a direct summand of M. Hence, M is an md-module. O

We shall now characterize the md-modules over Dedekind domains. We begin with
the following lemma which is due to Zoschinger. Using this lemma we shall prove that
ms-modules and md-modules coincide over Dedekind domains.

6.3. Lemma. [22, Lemma 3.3] Let R be Dedekind domain, M an R-module and V' C M.
Then V is coclosed if and only if V is closed.

Let M be any module and N C M. A submodule K of M is called a complement
of N if K is maximal in the collection of submodules L of M such that LN N = 0. A
submodule T of M is called a complement if there is a submodule N of M such that T
is a complement of N. A submodule of M is a complement if and only if it is closed (see
[7, p.6]).

6.4. Proposition. Let R be a Dedekind domain and M an R-module. Then M 1is an
ms-module if and only if M is an md-module.

Proof. We only need to prove the necessity. Let N be a maximal submodule of M. Since
M is an ms-module, N is a supplement in M. So N is a complement in M by Lemma 6.3,
i,e. NN L =0 for some L C M and N is maximal with respect to this property. Now
L # 0 because M N0 = 0. Therefore N + L = M, i.e. N is a direct summand of M. O

6.5. Lemma. [1, Lemma 4.4] Let R be a Dedekind domain. For an R-module M the
following are equivalent.
(1) M is injective.
(2) M is divisible.
(3) M = PM for every mazimal ideal P of R.
(4) M does not contain any mazimal submodule. O

Let R be a Dedekind domain and M an R-module. For a maximal ideal P of R,
the submodule Tp(M) = {m € M | P"m = 0 for some positive integer n} is called the
P-primary component of M. If M = Tp(M) for some maximal ideal P of R, then M is
called a P-primary module. For a torsion module M we always have M = @ Tp(M),

PEQ
where © is the set of all maximal ideals of R (see [4, 10.6.9]).

The divisible part of a module M is denoted by D(M). By Lemma 6.5, we have
M = D(M)@® M’ for some M’ C M. If M is a divisible module, then M has no maximal
submodules, and so Rad M = M. Therefore, D(M) C Rad M for every R-module M.

6.6. Lemma. Let R be a Dedekind domain and M a reduced and P-primary module for
some mazimal ideal P C R. Then M is an md-module if and only if M is semisimple.

Proof. Suppose M is an md-module. Then M/ Soc(M) has no maximal submodules by
Proposition 2.6, so P(M/Soc(M)) = M/ Soc(M) by Lemma 6.5, that is PM +Soc(M) =
M, and this gives P(PM + Soc(M)) = P?M = PM. Therefore, PM is divisible by
Lemma 6.5, but M is reduced so that PM = 0. Hence M is an R/P-module, i.e. M is
semisimple.

The converse is clear. O

6.7. Theorem. Let R be a Dedekind domain and M a torsion R-module. The following
are equivalent.

(1) M is an md-module.
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(2) M = M ® My where M; is divisible and M3 is semisimple.
(3) Ewvery submodule U C M with Rad M C U is a direct summand of M.

Proof. (1) => (2) Let D be the divisible part of M. Then M = D@ N for some N C M.

Since N is torsion, we have N = @ Tp(N), and since M is an md-module Tp(N) is
PEQ
also an md-module for every P € Q by Proposition 2.1. Then Tp(N) is semisimple by

Lemma 6.6. Therefore N is semisimple.

(2) = (3) We have Rad M = Rad(M; & M>) = Rad M1 @ Rad M> = Rad M1 = M.
Let RadM C U C M. Then we get U = M; & U N M. Since M2 is semisimple,
My =K ® M>NU for some K C Ms. So, M =M1 ®Ma=M 1 @KDOMNU=KeU.

(3) = (1) Rad M C P for every maximal submodule P of M. So, by hypothesis,
every maximal submodule of M is a direct summand. Hence M is an md-module. (]

6.8. Lemma. [14, Example 6.34] Let R be a domain and M be an R-module. Then the
torsion submodule T (M) is a closed submodule of M. O

6.9. Corollary. Let R be domain and M be an R-module. If T'(M) and M/T(M) are
md-modules, then M is an md-module.

If R is a Dedekind domain, then the converse also holds.

Proof. By Lemma 6.8, T'(M) is a closed submodule of M. Then M is an md-module by
Proposition 2.5.

If R is a Dedekind domain, then 7'(M) is a coclosed submodule of M by Lemma 6.3
and Lemma 6.8. Since every simple submodule of M is torsion, Soc(M) C T(M), so
that T'(M) is an md-module by Proposition 2.4. Hence, M /T (M) is an md-module by
Proposition 2.1. O

6.10. Lemma. Let R be a Dedekind domain and M a torsion-free R-module. Then M
is an md-module if and only if M is divisible.

Proof. Suppose M is an md-module and let P be a maximal submodule of M. Then
P® S = M for some simple submodule S of M. Thus S C T(M) =0,s0 P = M, a
contradiction. Hence M has no maximal submodules, and M is divisible by Lemma 6.5.

Conversely, if M is divisible, then M has no maximal submodules by Lemma 6.5.
Hence M is an md-module. g

6.11. Theorem. Let R be a Dedekind domain and M be an R-module. Then M is an
md-module if and only if

(1) T(M) = My ® M, where My is semisimple and M2 is divisible,

(ii) M/T(M) is divisible.

Proof. Suppose M is an md-module. Then T'(M) is an md-module by Corollary 6.9, so
T(M) has the desired decomposition by Theorem 6.7. Hence M /T (M) is divisible by
Lemma 6.10.

To prove the converse, let N be a maximal submodule of M. Then by (ii) we have
N+T(M)= M. Since M> is divisible, M C RadM C N,so M = N+T(M) = N+ M;.
Then N + S = M for some simple submodule S C M;. We have N NS = 0 because
S is a simple submodule. Therefore N is a direct summand of M. Hence M is an
md-module. g
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