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Abstract

In this paper, we obtain fuzzy approximations to fuzzy differentiable
functions by means of fuzzy linear operators whose positivity condition
and classical limits fail. In order to get more powerful results than
the classical approach we investigate the effects of matrix summability
methods on the fuzzy approximation. So, we mainly use the notion of
A-statistical convergence from summability theory instead of the usual
convergence.
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1. Introduction

The classical Korovkin theory is mainly based on two conditions: positivity of lin-

ear operators and existence of their classical limits (see [1, 28]). So far, the former
has been weakened by considering monotonicity and convexity of the functions be-
ing approximated (see, for instance, [2, 8, 9, 26]). Furthermore, by using the no-
tion of statistical convergence, some Korovkin–type approximation theorems have been
obtained when the classical limit of a sequence of positive linear operators fails (see
[6, 10, 11, 12, 14, 15, 16, 17, 25]). Their fuzzy analogs have also been introduced in
[5, 13, 21]. In this study, we obtain various fuzzy approximation results without these
two conditions as mentioned above. We use the notions of statistical convergence of
sequences of fuzzy numbers and fuzzy differentiability of fuzzy real valued functions to
get our theorems. When proving our results, we use not only classical techniques from
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approximation theory but also new methods from summability theory and fuzzy logic
theory.

We first recall some basic concepts used in the present paper.

The (asymptotic) density of a subset K of N, the set of all natural numbers, is defined
by

δ(K) := lim
j

# {n ≤ j : n ∈ K}

j
,

provided the limit exists, where the symbol # {B} denotes the cardinality of the set B.
Then, we say that a sequence (xn)n∈N is statistically convergent to a number L (see [18])
if, for every ε > 0, the set {n ∈ N : |xn − L| ≥ ε} has density zero, i.e.,

δ ({n ∈ N : |xn − L| ≥ ε}) = lim
j

# {n ≤ j : |xn − L| ≥ ε}

j
= 0.

Now let A = (ajn) be an infinite non-negative regular summability matrix. Recall that A

is said to be regular if limj(Ax)j = L whenever limj xj = L, where Ax := ((Ax)j) denotes
the A-transform of x given by (Ax)j =

∑∞
n=1 ajnxn, provided the series converges for

each j (see, for instance, [7]). Then, the A-density of a subset K is defined by

δA(K) := lim
j

∑

n∈K

ajn

provided the limit exists. Observe that if we take A = C1 = (cjn), the Cesáro matrix of
order one, defined by

cjn :=







1

j
, if 1 ≤ n ≤ j,

0, otherwise,

then C1-density coincides with (asymptotic) density. With the help of A-density, Freed-
man and Sember [19] introduced the notion of A-statistical convergence, which is a more
general method of statistical convergence. Recall that the sequence (xn)n∈N is said to
be A-statistically convergent to L if, for every ε > 0, δA{n ∈ N : |xn − L| ≥ ε} = 0; or
equivalently

lim
j

∑

n: |xn−L|≥ε

ajn = 0.

This limit is denoted by stA-limn xn = L. It is not hard to see that if we take A = C1, then
C1-statistical convergence coincides with the statistical convergence mentioned above. If
A is replaced by the identity matrix, then we get the ordinary convergence of number
sequences. We also note that if A = (ajn) is any non-negative regular summability
matrix for which limj maxn{ajn} = 0, then A-statistical convergence is stronger than
convergence (see [27]). Actually, every convergent sequence is A-statistically convergent
to the same value for any non-negative regular matrix A, but its converse is not always
true. Some other results regarding statistical and A-statistical convergence may be found
in the papers [20, 30].

As usual, a fuzzy number is a function µ : R → [0, 1], which is normal, convex, upper
semi-continuous and the closure of the set supp(µ) is compact, where supp(µ) := {x ∈
R : µ(x) > 0}. We denote the set of all fuzzy numbers by RF . Let

[µ]0 := {x ∈ R : µ(x) > 0} and [µ]r := {x ∈ R : µ(x) ≥ r}, (0 < r ≤ 1).

Then, it is well-known [22] that, for each r ∈ [0, 1], the set [µ]r is a closed and bounded
interval of R. For any u, v ∈ RF and λ ∈ R, it is possible to define uniquely the sum
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u ⊕ v and the product λ ⊙ v as follows:

[u ⊕ v]r = [u]r + [v]r and [λ ⊙ u]r = λ[u]r , (0 ≤ r ≤ 1).

Now denote the interval [u]r by [u(r), u
(r)
+ ], where u(r) ≤ u

(r)
+ and u(r), u

(r)
+ ∈ R for

r ∈ [0, 1]. Then, for u, v ∈ RF , define

u � v ⇐⇒ u
(r) ≤ v

(r) and u
(r)
+ ≤ v

(r)
+ for all 0 ≤ r ≤ 1.

Define also the following metric D : RF × RF → R+ by

D(u, v) = sup
r∈[0,1]

max
{
∣

∣

∣
u

(r) − v
(r)
∣

∣

∣
,
∣

∣

∣
u

(r)
+ − v

(r)
+

∣

∣

∣

}

.

In this case, it is known [32] that (RF , D) is a complete metric space on RF with the
properties

D(u ⊕ w, v ⊕ w) = D(u, v) for all u, v, w ∈ RF ,

D(λ ⊙ u, λ ⊙ v) = |λ|D(u, v) for all u, v ∈ RF and λ ∈ R,

D(u ⊕ v, w ⊕ z) ≤ D(u, w) + D(v, z) for all u, v, w, z ∈ RF .

Let f, g : [a, b] ⊂ R → RF be fuzzy valued functions. Then, the distance between f and
g on [a, b] is given by

D
∗(f, g) = sup

x∈[a,b]

sup
r∈[0,1]

max
{

∣

∣f
(r)(x) − g

(r)(x)
∣

∣,
∣

∣f
(r)
+ (x) − g

(r)
+ (x)

∣

∣

}

.

Now let (µn)n∈N be a fuzzy number valued sequence. Then, Nuray and Savaş [31] intro-
duced the fuzzy analog of statistical convergence by using the fuzzy metric D instead of
the classical absolute value in the above definition. So, by a similar idea, one can obtain
the following definition of A-statistical convergence of fuzzy valued sequences. We say
that a sequence (µn)n∈N of fuzzy numbers is A-statistically convergent to µ ∈ RF , which
is denoted by stA-limn D(µn, µ) = 0, if for every ε > 0, δA ({n ∈ N : D(µn, µ) ≥ ε}) = 0,
i.e.,

lim
j

∑

n:D(µn,µ)≥ε

ajn = 0

holds. Of course, the case of A = C1 immediately reduces to the statistical convergence
of fuzzy valued sequences. Also, replacing A with the identity matrix, we get the classical
fuzzy convergence introduced by Matloka [29].

2. Statistical Fuzzy Approximation

A fuzzy valued function f : [a, b] → RF is said to be fuzzy continuous at x0 ∈ [a, b]
provided that, whenever xn → x0, then D (f(xn), f(x0)) → 0 as n → ∞. Also, we say
that f is fuzzy continuous on [a, b] if it is fuzzy continuous at every point x ∈ [a, b]. The
set of all fuzzy continuous functions on [a, b] is denoted by CF [a, b] (see, for instance,
[3, 4]). Notice that CF [a, b] is only a cone, not a vector space.

Following [24, 33], a fuzzy valued function f : [a, b] → RF is said to satisfy the condition

(H) on [a, b] if, for any x, y ∈ [a, b] satisfying x ≤ y, there exists u ∈ RF such that

f(y) = f(x) + u.

In this case, we call u the H-difference (or, Henstock-difference) of f(y) and f(x), and
denote it by f(y) − f(x). For brevity, throughout this paper, when we use the “−”
operation of fuzzy numbers, we always assume that the condition (H) is satisfied.
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Assume that f : [a, b] → RF is a fuzzy valued function. Then f is called fuzzy

differentiable at x ∈ (a, b) if there exists a f ′(x) ∈ RF such that the following limits

lim
h→0+

f(x + h) − f(x)

h
, lim

h→0+

f(x) − f(x − h)

h

exist and are equal to f ′(x). Also, if x = a or x = b, then we use the following

f
′(a) := lim

h→0+

f(a + h) − f(a)

h
and f

′(b) := lim
h→0+

f(b) − f(b − h)

h

provided that the above limits exist. Observe that the limits are taken in the metric
space (RF , D). If f is (fuzzy) differentiable at every point x ∈ [a, b], then we say that
f is (fuzzy) differentiable on [a, b] with derivative f ′ (see [32]). It follows from [23] that
a function f : [a, b] → RF is fuzzy differentiable at x ∈ [a, b], and f ′(x) is the fuzzy
derivative, if and only if for every ε > 0 there exists a δ > 0 such that, for any interval
[x1, x2] ⊂ (x − δ, x + δ) we have

D

(

f(x2) − f(x1)

x2 − x1
, f

′(x)

)

< ε.

Similarly, we can define higher order fuzzy derivatives. Also, by Cm
F [a, b], (m ∈ N), we

mean the set of all fuzzy valued functions from [a, b] into RF that are m-times continuously
differentiable in the fuzzy sense. However, in this paper, we only discuss the cases
m = 0, 1, 2.

Using these definitions, Kaleva [24] proved the following result.

2.1. Lemma. [24] Let f : [a, b] ⊂ R → RF be fuzzy differentiable, and x ∈ [a, b],
0 ≤ r ≤ 1. Then, clearly

[f(x)]r = [(f(x))(r)
, (f(x))(r)

+ ] ⊂ R.

Then (f(x))(r)
± is differentiable and

[f ′(x)]r =
[

((f(x))(r))′, ((f(x))
(r)
+ )′

]

,

i.e.,

(f ′)
(r)
± =

(

f
(r)
±

)′

for any r ∈ [0, 1]. �

Also, for higher order fuzzy derivatives, Anastassiou [4] gave the similar result:

2.2. Lemma. [4] Let k ∈ N and f ∈ Ck
F [a, b]. Then, we have f

(r)
± ∈ Ck[a, b] (for any

r ∈ [0, 1]) and

[f (i)(x)]r =
[

(

(f(x))(r))(i)
,
(

(f(x))
(r)
+

)(i)
]

for i = 0, 1, . . . , k, and, in particular, we get

(

f
(i)
)(r)

±
=
(

f
(r)
±

)(i)
for any r ∈ [0, 1] and i = 0, 1, . . . , k. �

In this paper, for simplicity, we use the unit interval [0, 1] instead of [a, b]. Now let
L : CF [0, 1] → CF [0, 1] be an operator. Then L is said to be fuzzy linear if, for every
λ1, λ2 ≥ 0, f1, f2 ∈ CF [0, 1], and x ∈ [0, 1],

L (λ1 ⊙ f1 ⊕ λ2 ⊙ f2; x) = λ1 ⊙ L(f1; x) ⊕ λ2 ⊙ L(f2; x)

holds. Let k be a non-negative integer. As usual, by Ck[0, 1] we denote the space of
all k-times continuously differentiable functions (in the usual sense) on [0, 1], endowed
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with the sup-norm ‖ · ‖. Then, throughout the paper, we consider the following function
spaces:

A :=
{

f ∈ C
2[0, 1] : f ≥ 0

}

,

B :=
{

f ∈ C
2[0, 1] : f

′′ ≥ 0
}

,

C :=
{

f ∈ C
2[0, 1] : f

′′ ≤ 0
}

,

D :=
{

f ∈ C
1[0, 1] : f ≥ 0

}

,

E :=
{

f ∈ C
1[0, 1] : f

′ ≥ 0
}

,

F := {f ∈ C[0, 1] : f ≥ 0} .

We also consider the test functions

ei(y) = y
i (i = 0, 1, 2, . . .) for every y ∈ [0, 1].

Then we have following results.

2.3. Theorem. Let A = (ajn) be a non-negative regular summability matrix, and

{Ln}n∈N a sequence of fuzzy linear operators from C2
F [0, 1] onto itself. Assume that there

exists a corresponding sequence {L̃n}n∈N of linear operators from C2[0, 1] onto itself for

which the following conditions hold:

(2.1) Ln(f ; x)
(r)
± = L̃n

(

f
(r)
± ; x

)

(for x ∈ [0, 1], r ∈ [0, 1], n ∈ N)

and

(2.2) δA

{

n ∈ N : L̃n (A ∩ B) ⊂ A

}

= 1.

If

(2.3) stA- lim
n

∥

∥

∥
L̃n(ei) − ei

∥

∥

∥
= 0 for i = 0, 1, 2,

then we have

(2.4) stA- lim
n

D
∗ (Ln(f), f) = 0 for all f ∈ C

2
F [0, 1].

Proof. Let x ∈ [0, 1] be fixed, and f ∈ C2
F [0, 1] and r ∈ [0, 1]. Then we may write that,

for every ε > 0 there exists a δ > 0 such that, for every y ∈ [0, 1],

D (f(y), f(x)) < ε

holds. So, for every y, r ∈ [0, 1] and for any β ≥ 1, we have

(2.5) −ε −
2M

(r)
± β

δ2
ϕx(y) ≤ f

(r)
± (y) − f

(r)
± (x) ≤ ε +

2M
(r)
± β

δ2
ϕx(y),

where M
(r)
± =

∥

∥

∥
f

(r)
±

∥

∥

∥
and ϕx(y) = (y − x)2. Then, by (2.5), we obtain that

(

g
(r)
β

)

±
(y) :=

2M
(r)
± β

δ2
ϕx(y) + ε − f

(r)
± (y) + f

(r)
± (x) ≥ 0

and
(

h
(r)
β

)

±
(y) :=

2M
(r)
± β

δ2
ϕx(y) + ε + f

(r)
± (y) − f

(r)
± (x) ≥ 0

hold for all y ∈ [0, 1]. So, the functions
(

g
(r)
β

)

±
and

(

h
(r)
β

)

±
belong to A. On the other

hand, it is clear that, for all y ∈ [0, 1],

(

g
(r)
β

)

±
(y) =

4M
(r)
± β

δ2
−
[

f
(r)
±

]′′

(y)
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and

(

h
(r)
β

)′′

±
(y) =

4M
(r)
± β

δ2
+
[

f
(r)
±

]′′

(y).

If we choose the number β such that

(2.6) β ≥ max











1,

∥

∥

∥

[

f
(r)
±

]′′∥
∥

∥
δ2

4M
(r)
±











,

we observe that (2.5) holds for such β’s and also the functions
(

g
(r)
β

)

±
and

(

h
(r)
β

)

±

belong to B because of
(

g
(r)
β

)′′

±
(y) ≥ 0 and

(

h
(r)
β

)′′

±
(y) ≥ 0 for all y ∈ [0, 1]. So, we

have
(

g
(r)
β

)

±
,
(

h
(r)
β

)

±
∈ A ∩ B under the condition (2.6). Let

K := {n ∈ N : L̃n (A ∩ B) ⊂ A}.

By (2.2), it is clear that δA{K} = 1, and so

(2.7) δA{N \ K} = 0.

Then, we may write that

L̃n

( (

g
(r)
β

)

±
; x
)

≥ 0 and L̃n

( (

h
(r)
β

)

±
; x
)

≥ 0 for any n ∈ K.

Now using the fact that ϕx ∈ A ∩ B, and considering the linearity of L̃n, we obtain, for
every n ∈ K, that

2M
(r)
± β

δ2
L̃n (ϕx; x) + εL̃n(e0; x) − L̃n

(

f
(r)
± ; x

)

+ f
(r)
± (x)L̃n(e0; x) ≥ 0

and

2M
(r)
± β

δ2
L̃n (ϕx; x) + εL̃n(e0; x) + L̃n

(

f
(r)
± ; x

)

− f
(r)
± (x)L̃n(e0; x) ≥ 0,

or equivalently

−
2M

(r)
± β

δ2
L̃n

(

ϕx; x
)

− εL̃n(e0; x) + f
(r)
± (x)

(

L̃n(e0; x) − e0

)

≤ L̃n

(

f
(r)
± ; x

)

− f
(r)
± (x)

≤
2M

(r)
± β

δ2
L̃n (ϕx; x) + εL̃n(e0; x) + f

(r)
± (x)

(

L̃n(e0; x) − e0

)

.

Then, we have

∣

∣L̃n(f
(r)
± ; x) − f

(r)
± (x)

∣

∣ ≤ ε +
2M

(r)
± β

δ2
L̃n

(

ϕx; x
)

+
(

ε +
∣

∣f
(r)
± (x)

∣

∣

)
∣

∣L̃n(e0; x) − e0

∣

∣

for every n ∈ K. The last inequality gives that, for every ε > 0 and n ∈ K,
∥

∥L̃n(f
(r)
± ) − f

(r)
±

∥

∥ ≤ ε + (ε + M
(r)
± )

∥

∥L̃n(e0) − e0

∥

∥

+
2M

(r)
± β

δ2

∥

∥L̃n(e2) − e2

∥

∥+
4M

(r)
± β

δ2

∥

∥L̃n(e1) − e1

∥

∥

+
2M

(r)
± β

δ2

∥

∥L̃n(e0) − e0

∥

∥.
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Hence, we get, for any n ∈ K, that

(2.8)
∥

∥L̃n(f
(r)
± ) − f

(r)
±

∥

∥ ≤ ε + C
(r)
± (ε)

2
∑

k=0

∥

∥L̃n(ek) − ek

∥

∥,

where C
(r)
± (ε) := max

{

ε + M
(r)
± +

2M
(r)
± β

δ2
,
4M

(r)
± β

δ2

}

. Now it follows from (2.1) that

D
∗(

Ln(f), f
)

= sup
x∈[0,1]

D
(

Ln(f ; x), f(x)
)

= sup
x∈[0,1]

sup
r∈[0,1]

max
{

∣

∣L̃n

(

f
(r); x

)

− f
(r)(x)

∣

∣,

∣

∣L̃n

(

f
(r)
+ ; x

)

− f
(r)
+ (x)

}

= sup
r∈[0,1]

max
{

∥

∥L̃n

(

f
(r))− f

(r)
∥

∥,
∥

∥L̃n

(

f
(r)
+

)

− f
(r)
+

∥

∥

}

.

Combining the above equality with (2.8), we have, for any n ∈ K,

(2.9) D
∗ (Ln(f), f) ≤ ε + C(ε)

2
∑

k=0

∥

∥L̃n(ek) − ek

∥

∥,

where C(ε) = sup
r∈[0,1]

max
{

C
(r)
− (ε), C

(r)
+ (ε)

}

, Now, for a given ε′ > 0, choose an ε > 0

such that ε < ε′, and define the following sets:

F :=
{

n ∈ N : D
∗ (Ln(f), f) ≥ ε

′
}

,

Fk :=
{

n ∈ N :
∥

∥L̃n(ek) − ek

∥

∥ ≥
ε′ − ε

3C(ε)

}

, k = 0, 1, 2.

Then, it follows from (2.9) that

F ∩ K ⊂

2
⋃

k=0

(Fk ∩ K),

which yields, for every j ∈ N, that

(2.10)
∑

n∈F∩K

ajn ≤

2
∑

k=0

(

∑

n∈Fk∩K

ajn

)

≤

2
∑

k=0

(

∑

n∈Fk

ajn

)

.

Now, taking the limit as j → ∞ on both-sides of (2.10), and using (2.3), we immediately
see that

(2.11) lim
j

∑

n∈F∩K

ajn = 0.

Furthermore, since
∑

n∈F

ajn =
∑

n∈F∩K

ajn +
∑

n∈F∩(N\K)

ajn

≤
∑

n∈F∩K

ajn +
∑

n∈(N\K)

ajn

holds for every j ∈ N, taking again the limit as j → ∞ in the last inequality, and using
(2.7), (2.11), we obtain

lim
j

∑

n∈F

ajn = 0,
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which means that

stA- lim
n

D
∗ (Ln(f), f) = 0.

The theorem is proved. �

2.4. Theorem. Let A = (ajn) be a non-negative regular summability matrix, and

{Ln}n∈N a sequence of fuzzy linear operators from C2
F [0, 1] onto itself. Assume that there

exists a corresponding sequence {L̃n}n∈N of linear operators from C2[0, 1] onto itself for

which the following conditions hold:

(2.12)
[

{Ln(f)}(r)
±

]′′

(x) =
[

L̃n

(

f
(r)
±

)

]′′

(x)
(

for x ∈ [0, 1], r ∈ [0, 1], n ∈ N
)

and

(2.13) δA

{

n ∈ N : L̃n (A ∩ C) ⊂ C
}

= 1.

If

(2.14) stA- lim
n

∥

∥[L̃n(ei)]
′′ − e

′′
i

∥

∥ = 0 for i = 0, 1, 2, 3, 4,

then, we have

(2.15) stA- lim
n

D
∗
(

[Ln(f)]′′, f ′′
)

= 0 for all f ∈ C
2
F [0, 1].

Proof. We should remark that the derivatives in (2.12) and (2.14) are in the usual sense
while the derivatives in (2.15) are in the fuzzy sense. Now let f ∈ C2

F [0, 1], x ∈ [0, 1] and
r ∈ [0, 1] be fixed. By Lemmas 2.1 and 2.2, and as in the proof of Theorem 2.3, we can
write that, for every ε > 0, there exists a δ > 0 such that

(2.16) −ε +
2U

(r)
± β

δ2
σ
′′
x(y) ≤

[

f
(r)
±

]′′
(y) −

[

f
(r)
±

]′′
(x) ≤ ε −

2U
(r)
± β

δ2
σ
′′
x(y)

holds for all y ∈ [0, 1] and for any β ≥ 1, where σx(y) = −
(y − x)4

12
+ 1 and U

(r)
± =

∥

∥

[

f
(r)
±

]′′∥
∥. Then, define the following functions on [0, 1]:

(

u
(r)
β

)

±
(y) :=

2U
(r)
± β

δ2
σx(y) + f

(r)
± (y) −

ε

2
y
2 −

[

f
(r)
±

]′′
(x)

2
y
2
,

and

(

v
(r)
β

)

±
(y) :=

2U
(r)
± β

δ2
σx(y) − f

(r)
± (y) −

ε

2
y
2 +

[

f
(r)
±

]′′
(x)

2
y
2
.

It follows from (2.16) that
(

u
(r)
β

)′′

±
(y) ≤ 0 and

(

v
(r)
β

)′′

±
(y) ≤ 0 for all y ∈ [0, 1],

which implies that the functions
(

u
(r)
β

)

±
and

(

v
(r)
β

)

±
belong to C. Observe that σx(y) ≥

11

12
for all y ∈ [0, 1]. Then

(

±f
(r)
± (y) − ε

2
y2 ±

[

f
(r)
±

]′′
(x)

2
y2

)

δ2

2U
(r)
± σx(y)

≤

(

M
(r)
± + U

(r)
± + ε

)

δ2

U
(r)
±
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holds for all y ∈ [0, 1], where M
(r)
± =

∥

∥

∥
f

(r)
±

∥

∥

∥
and U±(r) =

∥

∥

∥

[

f
(r)
±

]′′∥
∥

∥
as stated before.

Now, if we choose β such that

(2.17) β ≥ max

{

1,
(M

(r)
± + U

(r)
± + ε)δ2

U
(r)
±

}

,

then inequality (2.16) holds for such β’s and
(

u
(r)
β

)

±
(y) ≥ 0 and

(

v
(r)
β

)

±
(y) ≥ 0 for all y ∈ [0, 1].

Hence, we also get
(

u
(r)
β

)

±
,
(

v
(r)
β

)

±
∈ A, which gives that the functions

(

u
(r)
β

)

±
and

(

v
(r)
β

)

±
belong to A ∩ C under the condition (2.17). Now let

K := {n ∈ N : L̃n (A ∩ C) ⊂ C}.

Then, by (2.13), we have

(2.18) δA(N \ K) = 0.

Also we get, for every n ∈ K,
[

L̃n

(

v
(r)
β

)

±

]′′

≤ 0 and
[

L̃n

(

v
(r)
β

)

±

]′′

≤ 0.

Then, we obtain, for every n ∈ K, that

2U
(r)
± β

δ2

[

L̃n(σx)
]′′

+
[

L̃n(f
(r)
± )

]′′

−
ε

2
[L̃n(e2)]

′′ −

[

f
(r)
±

]′′
(x)

2
[L̃n(e2)]

′′ ≤ 0

and

2U
(r)
± β

δ2
[L̃n(σx)]′′ −

[

L̃n(f
(r)
± )

]′′

−
ε

2
[L̃n(e2)]

′′ +

[

f
(r)
±

]′′
(x)

2
[L̃n(e2)]

′′ ≤ 0.

These inequalities yield that

2U
(r)
± β

δ2
[L̃n(σx)]′′(x) −

ε

2
[L̃n(e2)]

′′(x) +

[

f
(r)
±

]′′
(x)

2
[L̃n(e2)]

′′(x) −
[

f
(r)
±

]′′
(x)

≤
[

L̃n(f
(r)
± )

]′′

(x) −
[

f
(r)
±

]′′

(x)

≤ −
2U

(r)
± β

δ2
[L̃n(σx)]′′(x) +

ε

2
[L̃n(e2)]

′′(x)

+

[

f
(r)
±

]′′
(x)

2
[L̃n(e2)]

′′(x) −
[

f
(r)
±

]′′
(x).

Observe now that [L̃n(σx)]′′ ≤ 0 on [0, 1] for every n ∈ K because of σx ∈ A ∩ C. Using
this, the last inequality gives, for every n ∈ K, that

∣

∣

∣

[

L̃n(f
(r)
± )

]′′
(x) −

[

f
(r)
±

]′′
(x)
∣

∣

∣
≤ −

2U
(r)
± β

δ2

[

L̃n(σx)
]′′

(x) +
ε

2

∣

∣

∣

[

L̃n(e2)
]′′

(x)
∣

∣

∣

+

∣

∣

[

f
(r)
±

]′′
(x)
∣

∣

2

∣

∣

∣

[

L̃n(e2)
]′′

(x) − 2
∣

∣

∣
,

and hence

(2.19)

∣

∣

∣

[

L̃n(f
(r)
± )

]′′
(x) − f

′′(x)
∣

∣

∣
≤ ε +

ε +
∣

∣

[

f
(r)
±

]′′
(x)
∣

∣

2

∣

∣

∣

[

L̃n(e2)
]′′

(x) − e
′′
2 (x)

∣

∣

∣

+
2U

(r)
± β

δ2

[

L̃n(−σx)
]′′

(x).
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Now we compute the quantity [Ln(−σx)]′′ in inequality (2.19). Observe that

[

L̃n(−σx)
]′′

(x) =
[

L̃n

( (y − x)4

12
− 1
)]′′

(x)

=
1

12

[

L̃n(e4)
]′′

(x) −
x

3

[

L̃n(e3)
]′′

(x) +
x2

2

[

L̃n(e2)
]′′

(x)

−
x3

3

[

L̃n(e1)
]′′

(x) +
(x4

12
− 1
)

[

L̃n(e0)
]′′

(x)

=
1

12

{

[

L̃n(e4)
]′′

(x) − e
′′
4 (x)

}

−
x

3

{

[

L̃n(e3)
]′′

(x) − e
′′
3 (x)

}

+
x2

2

{

[

L̃n(e2)
]′′

(x) − e
′′
2 (x)

}

−
x3

3

{

[

L̃n(e1)
]′′

(x) − e
′′
1 (x)

}

+
(

x4

12
− 1
) {

[

L̃n(e0)
]′′

(x) − e
′′
0 (x)

}

.

Combining this with (2.19), for every ε > 0 and n ∈ K, we have

∣

∣

∣

[

L̃n(f
(r)
± )

]′′
(x) −

[

f
(r)
±

]′′
(x)
∣

∣

∣
≤ ε +

(

ε +
∣

∣

[

f
(r)
±

]′′
(x)
∣

∣

2
+

U
(r)
± β±x2

δ2

)

×
∣

∣

∣

[

Ln(e2)
]′′

(x) − e
′′
2 (x)

∣

∣

∣

+
U

(r)
± β

6δ2

∣

∣

∣

[

L̃n(e4)
]′′

(x) − e
′′
4 (x)

∣

∣

∣

+
2U

(r)
± βx

3δ2

∣

∣

∣

[

L̃n(e3)
]′′

(x) − e
′′
3 (x)

∣

∣

∣

+
2U

(r)
± βx3

3δ2

∣

∣

∣

[

L̃n(e1)
]′′

(x) − e
′′
1 (x)

∣

∣

∣

+
2U

(r)
± β

3δ2

(

1 −
x4

12

)
∣

∣

∣

[

L̃n(e0)
]′′

(x) − e
′′
0 (x)

∣

∣

∣
.

Therefore, we obtain, for every ε > 0 and n ∈ K, that

(2.20)
∥

∥

∥

[

L̃n(f
(r)
± )

]′′
−
[

f
(r)
±

]′′
∥

∥

∥
≤ ε + E

(r)
± (ε)

4
∑

k=0

∥

∥

∥

[

L̃n(ek)
]′′

− e
′′
k

∥

∥

∥
,

where E
(r)
± (ε) :=

ε + U
(r)
±

2
+

U
(r)
± β

δ2
and U

(r)
± =

∥

∥

∥

[

f
(r)
±

]′′
∥

∥

∥
, as stated before. On the other

hand, by (2.12), since

D
∗
([

Ln(f)
]′′

, f
′′
)

= sup
x∈[0,1]

D
([

Ln(f)
]′′

(x), f ′′(x)
)

= sup
x∈[0,1]

sup
r∈[0,1]

max
{
∣

∣

∣

[

L̃n

(

f
(r))]′′(x) −

[

f
(r)]′′(x)

∣

∣

∣
,

∣

∣

∣

[

L̃n

(

f
(r)
+

)]′′
(x) −

[

f
(r)
+

]′′
(x)
∣

∣

∣

}

= sup
r∈[0,1]

max
{
∥

∥

∥

[

L̃n

(

f
(r)
)]′′

−
[

f
(r)
]′′
∥

∥

∥
,

∥

∥

∥

[

L̃n

(

f
(r)
+

)]′′
−
[

f
(r)
+

]′′
∥

∥

∥

}

,

we may write from (2.20) that

(2.21) D
∗([

Ln(f)
]′′

, f
′′) ≤ ε + E(ε)

4
∑

k=0

∥

∥

∥

[

L̃n(ek)
]′′

− e
′′
k

∥

∥

∥
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holds for all n ∈ K, where E(ε) = sup
r∈[0,1]

max
{

E
(r)
− (ε), E

(r)
+ (ε)

}

. Now, for a given ε′ > 0,

choose an ε such that 0 < ε < ε′, and consider the following sets:

G :=
{

n ∈ N : D
∗
([

Ln(f)
]′′

, f
′′
)

≥ ε
′
}

,

Gk :=

{

n ∈ N :
∥

∥

∥

[

L̃n(ek)
]′′

− e
′′
k

∥

∥

∥
≥

ε′ − ε

5E(ε)

}

, k = 0, 1, 2, 3, 4.

In this case, by (2.21),

G ∩ K ⊂
4
⋃

k=0

(Gk ∩ K),

which yields, for every j ∈ N, that

(2.22)
∑

n∈G∩K

ajn ≤
4
∑

k=0

(

∑

n∈Gk∩K

ajn

)

≤
4
∑

k=0

(

∑

n∈Gk

ajn

)

.

Letting j → ∞ on both sides of (2.22), and using (2.14), we immediately see that

(2.23) lim
j

∑

n∈G∩K

ajn = 0.

Furthermore, if we use the inequality
∑

n∈G

ajn =
∑

n∈G∩K

ajn +
∑

n∈G∩(N\K)

ajn

≤
∑

n∈G∩K

ajn +
∑

n∈(N\K)

ajn

and take the limit as j → ∞, then it follows from (2.18) and (2.23) that

lim
j

∑

n∈G

ajn = 0.

Thus, we get

stA- lim
n

D
∗
([

Ln(f)
]′′

, f
′′
)

= 0.

The theorem is proved. �

2.5. Theorem. Let A = (ajn) be a non-negative regular summability matrix and {Ln}n∈N

a sequence of fuzzy linear operators from C1
F [0, 1] onto itself. Assume that there exists

a corresponding sequence {L̃n}n∈N of linear operators from C1[0, 1] onto itself for which

the following conditions hold:

(2.24)
[{

Ln(f)
}(r)

±

]′
(x) =

[

L̃n

(

f
(r)
±

)]′
(x) (for x ∈ [0, 1], r ∈ [0, 1], n ∈ N)

and

(2.25) δA

{

n ∈ N : L̃n (D ∩ E) ⊂ E
}

= 1.

If

(2.26) stA- lim
n

∥

∥

∥

[

L̃n(ei)
]′
− e

′
i

∥

∥

∥
= 0 for i = 0, 1, 2, 3,

then we have

(2.27) stA- lim
n

D
∗([

Ln(f)
]′

, f
′) = 0 for all f ∈ C

1[0, 1].
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Proof. Let f ∈ C1
F [0, 1], x ∈ [0, 1] and r ∈ [0, 1] be fixed. Then, for every ε > 0, there

exists a positive number δ such that

(2.28) −ε −
2V

(r)
± β

δ2
w

′
x(y) ≤

[

f
(r)
±

]′
(y) −

[

f
(r)
±

]′
(x) ≤ ε +

2V
(r)
± β

δ2
w

′
x(y)

holds for all y ∈ [0, 1] and for any β ≥ 1, where wx(y) :=
(y − x)3

3
+ 1 and V

(r)
± :=

∥

∥

∥

[

f
(r)
±

]′
∥

∥

∥
, Now considering the functions defined by

(

θ
(r)
β

)

±
(y) :=

2V
(r)
± β

δ2
wx(y) − f

(r)
± (y) + εy + y

[

f
(r)
±

]′
(x)

and

(

λ
(r)
β

)

±
(y) :=

2V
(r)
± β

δ2
wx(y) + f

(r)
± (y) + εy − y

[

f
(r)
±

]′
(x),

we can easily check that
(

θ
(r)
β

)

±
and

(

λ
(r)
β

)

±
belong to E for any β ≥ 1. Also, observe

that wx(y) ≥
2

3
for all y ∈ [0, 1]. Then

(

± f
(r)
± (y) − εy ±

[

f
(r)
±

]′
(x)y

)

δ2

2V
(r)
± wx(y)

≤
(M

(r)
± + V

(r)
± + ε)δ2

V
(r)
±

holds for all y ∈ [0, 1], where M
(r)
± = ‖f

(r)
± ‖, as stated before. Now, if we choose a number

β such that

(2.29) β ≥ max

{

1,
(M

(r)
± + V

(r)
± + ε)δ2

V
(r)
±

}

,

then inequality (2.28) holds for such β’s and

(

θ
(r)
β

)

±
(y) ≥ 0 and

(

λ
(r)
β

)

±
(y) ≥ 0 for all y ∈ [0, 1],

which yields that
(

θ
(r)
β

)

±
,
(

λ
(r)
β

)

±
∈ D. Thus, we get

(

θ
(r)
β

)

±
,
(

λ
(r)
β

)

±
∈ D ∩ E for any

β satisfying (2.29). Let

K := {n ∈ N : L̃n (D ∩ E) ⊂ E}.

Then, by (2.25), we have

(2.30) δA{N \ K} = 0.

Also we get, for every n ∈ K,

[

L̃n

(

θ
(r)
β

)

±

]′
≥ 0 and

[

L̃n

(

λ
(r)
β

)

±

]′
≥ 0.

Hence we obtain, for every n ∈ K, that

2V
(r)
± β

δ2
[L̃n(wx)]′ −

[

L̃n

(

f
(r)
±

)]′
+ ε
[

L̃n(e1)
]′

+
[

f
(r)
±

]′
(x)
[

L̃n(e1)
]′

≥ 0

and

2V
(r)
± β

δ2
[L̃n(wx)]′ +

[

L̃n(f
(r)
± )

]′
+ ε
[

L̃n(e1)
]′
−
[

f
(r)
±

]′
(x)
[

L̃n(e1)
]′

≥ 0.
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Then, we may write that

−
2V

(r)
± β

δ2
[L̃n(wx)]′(x) − ε

[

L̃n(e1)
]′

(x) +
[

f
(r)
±

]′
(x)
[

L̃n(e1)
]′

(x) −
[

f
(r)
±

]′
(x)

≤
[

L̃n

(

f
(r)
±

)]′
(x) −

[

f
(r)
±

]′
(x)

≤
2V

(r)
± β

δ2

[

L̃n(wx)
]′

(x) + ε
[

L̃n(e1)
]′

(x)

+
[

f
(r)
±

]′
(x)
[

L̃n(e1)
]′

(x) −
[

f
(r)
±

]′
(x),

and hence

(2.31)

∣

∣

∣

[

L̃n(f
(r)
± )

]′
(x) −

[

f
(r)
±

]′
(x)
∣

∣

∣
≤ ε +

(

ε +
∣

∣

∣

[

f
(r)
±

]′
(x)
∣

∣

∣

)
∣

∣

∣

[

L̃n(e1)
]′

(x) − e
′
1(x)

∣

∣

∣

+
2V

(r)
± β

δ2

[

L̃n(wx)
]′

(x)

holds for every n ∈ K because of the fact that the function wx belongs to D ∩ E. Since

[

L̃n(wx)
]′

(x) =
[

L̃n

( (y − x)3

3
+ 1
)]′

(x)

=
1

3

[

L̃n(e3)
]′

(x) − x
[

L̃n(e2)
]′

(x) + x
2[

L̃n(e1)
]′

(x)

+
(

1 −
x3

3

)

[

L̃n(e0)
]′

(x)

=
1

3

{[

L̃n(e3)
]′

(x) − e
′
3(x)

}

− x
{[

L̃n(e2)
]′

(x) − e
′
2(x)

}

+ x
2{[

L̃n(e1)
]′

(x) − e
′
1(x)

}

+
(

1 −
x3

3

)

{[

L̃n(e0)
]′

(x) − e
′
0(x)

}

,

it follows from (2.31) that

∣

∣

∣

[

L̃n(f
(r)
± )

]′
(x) −

[

f
(r)
±

]′
(x)
∣

∣

∣
≤ ε +

(

ε +
∣

∣

∣

[

f
(r)
±

]′
(x)
∣

∣

∣
+

2V
(r)
± β±x2

δ2

)

×
∣

∣

∣

[

L̃n(e1)
]′

(x) − e
′
1(x)

∣

∣

∣

+
2V

(r)
± β

3δ2

∣

∣

∣

[

L̃n(e3)
]′

(x) − e
′
3(x)

∣

∣

∣

+
2V

(r)
± βx

δ2

∣

∣

∣

[

L̃n(e2)
]′

(x) − e
′
2(x)

∣

∣

∣

+
2V

(r)
± β

δ2

(

1 −
x3

3

)
∣

∣

∣

[

L̃n(e0)
]′

(x) − e
′
0(x)

∣

∣

∣
.

Thus, we deduce from the last inequality that

(2.32)
∥

∥

∥

[

L̃n(f
(r)
± )

]′
−
[

f
(r)
±

]′
∥

∥

∥
≤ ε + F

(r)
± (ε)

3
∑

k=0

∥

∥

∥

[

L̃n(ek)
]′
− e

′
k

∥

∥

∥

holds for any n ∈ K, where F
(r)
± (ε) := ε+V

(r)
± +

2V
(r)
± β±

δ2
. On the other hand, by (2.24),

since
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D
∗
([

Ln(f)
]′

, f
′
)

= sup
x∈[0,1]

D
([

Ln(f)
]′

(x), f ′(x)
)

= sup
x∈[0,1]

sup
r∈[0,1]

max
{
∣

∣

∣

[

L̃n

(

f
(r)
)]′

(x) −
[

f
(r)
]′

(x)
∣

∣

∣
,

∣

∣

∣

[

L̃n

(

f
(r)
+

)]′
(x) −

[

f
(r)
+

]′
(x)
∣

∣

∣

}

= sup
r∈[0,1]

max
{
∥

∥

∥

[

L̃n

(

f
(r)
)]′

−
[

f
(r)
]′
∥

∥

∥
,

∥

∥

∥

[

L̃n

(

f
(r)
+

)]′
−
[

f
(r)
+

]′
∥

∥

∥

}

,

we may write from (2.32) that

(2.33) D
∗([

Ln(f)
]′

, f
′) ≤ ε + F (ε)

3
∑

k=0

∥

∥

∥

[

L̃n(ek)
]′
− e

′
k

∥

∥

∥

holds for all n ∈ K, where F (ε) = sup
r∈[0,1]

max
{

F
(r)
− (ε), F

(r)
+ (ε)

}

. Now, for a given ε′ > 0,

choose an ε such that 0 < ε < ε′, and consider the following sets:

J :=
{

n ∈ N : D
∗([

Ln(f)
]′

, f
′) ≥ ε

′}
,

Jk :=

{

n ∈ N :
∥

∥

∥

[

L̃n(ek)
]′
− e

′
k

∥

∥

∥
≥

ε′ − ε

4G(ε)

}

, k = 0, 1, 2, 3.

In this case, by (2.33),

J ∩ K ⊂
3
⋃

k=0

(Jk ∩ K),

which yields, for every j ∈ N, that

(2.34)
∑

n∈J∩K

ajn ≤

3
∑

k=0

(

∑

n∈Jk∩K

ajn

)

≤

3
∑

k=0

(

∑

n∈Jk

ajn

)

Letting j → ∞ on both sides of (2.34), and also using (2.26), we immediately see that

(2.35) lim
j

∑

n∈J∩K

ajn = 0.

Now, using the fact that
∑

n∈J

ajn =
∑

n∈J∩K

ajn +
∑

n∈J∩(N\K)

ajn

≤
∑

n∈J∩K

ajn +
∑

n∈(N\K)

ajn,

and taking the limit as j → ∞, then it follows from (2.30) and (2.35) that

lim
j

∑

n∈J

ajn = 0.

Thus, we get

stA- lim
n

D
∗
([

Ln(f)
]′

, f
′
)

= 0,

whence the result. �
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2.6. Theorem. Let A = (ajn) be a non-negative regular summability matrix and {Ln}n∈N

a sequence of fuzzy linear operators from CF [0, 1] onto itself. Assume that there exists a

corresponding sequence {L̃n}n∈N of linear operators from C[0, 1] onto itself for which the

following conditions hold:

(2.36) Ln(f ; x)
(r)
± = L̃n

(

f
(r)
± ; x

) (

for x ∈ [0, 1], r ∈ [0, 1], n ∈ N
)

and

(2.37) δA

{

n ∈ N : L̃n

(

F
)

⊂ F
}

= 1.

If

(2.38) stA- lim
n

‖L̃n(ei) − ei‖ = 0 for i = 0, 1, 2,

then we have

(2.39) stA- lim
n

D
∗([

Ln(f)
]′

, f
′)

for all f ∈ C[0, 1].

Proof. If L̃n (F) ⊂ F holds for every n ∈ N instead of (2.37), i.e., the corresponding

sequence {L̃n}n∈N consists of positive linear operators on C[0, 1], then the proof follows
immediately from [5, Theorem 2.1]. However, our previous proofs show that even when
the weaker condition (2.37) holds, the property (2.38) implies (2.39). �

3. Concluding Remarks

If we replace the non-negative regular matrix A by the identity matrix, then our
Theorems 2.3-2.6 reduce to the following results which are also new in the literature,
except for the last one.

3.1. Corollary. Let {Ln}n∈N be a sequence of fuzzy linear operators from C2
F [0, 1] onto

itself. Assume that there exists a corresponding sequence {L̃n}n∈N of linear operators

from C2[0, 1] onto itself for which the following conditions hold:

Ln(f ; x)
(r)
± = L̃n

(

f
(r)
± ; x

) (

for x ∈ [0, 1], r ∈ [0, 1], n ∈ N
)

and

L̃n (A ∩ B) ⊂ A
(

for n ∈ N).

If the sequence {L̃n(ei)}, (i = 0, 1, 2), is uniformly convergent to ei on [0, 1] then, for all

f ∈ C2
F [0, 1],

lim
n

D
∗
(

Ln(f), f
)

= 0. �

3.2. Corollary. Let {Ln}n∈N be a sequence of fuzzy linear operators from C2
F [0, 1] onto

itself. Assume that there exists a corresponding sequence {L̃n}n∈N of linear operators

from C2[0, 1] onto itself for which the following conditions hold:
[

{Ln(f)}
(r)
±

]′′
(x) =

[

L̃n

(

f
(r)
±

)]′′
(x)

(

for x ∈ [0, 1], r ∈ [0, 1], n ∈ N
)

and

L̃n (A ∩ C) ⊂ C
(

for n ∈ N
)

.

If the sequence
{[

L̃n(ei)
]′′}

, (i = 0, 1, 2, 3, 4), is uniformly convergent to e′′i on [0, 1] then,

for all f ∈ C2
F [0, 1],

lim
n

D
∗([

Ln(f)
]′′

, f
′′) = 0. �
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3.3. Corollary. Let {Ln}n∈N be a sequence of fuzzy linear operators from C1
F [0, 1] onto

itself. Assume that there exists a corresponding sequence {L̃n}n∈N of linear operators

from C1[0, 1] onto itself for which the following conditions hold:
[{

Ln(f)
}(r)

±

]′
(x) =

[

L̃n

(

f
(r)
±

)]′
(x)

(

for x ∈ [0, 1], r ∈ [0, 1], n ∈ N
)

and

L̃n (D ∩ E) ⊂ E
(

for n ∈ N
)

.

If the sequence
{[

L̃n(ei)
]′}

, (i = 0, 1, 2, 3), is uniformly convergent to e′i on [0, 1] then,

for all f ∈ C1
F [0, 1],

lim
n

D
∗([

Ln(f)
]′

, f
′) = 0. �

3.4. Corollary. [3] Let {Ln}n∈N be a sequence of fuzzy linear operators from CF [0, 1]

onto itself. Assume that there exists a corresponding sequence {L̃n}n∈N of positive linear

operators from C[0, 1] onto itself for which the following condition holds:

Ln(f ; x)
(r)
± = L̃n

(

f
(r)
± ; x

) (

for x ∈ [0, 1], r ∈ [0, 1], n ∈ N).

If the sequence {L̃n(ei)} (i = 0, 1, 2) is uniformly convergent to ei on [0, 1] then, for all

f ∈ CF [0, 1],

lim
n

D
∗(

Ln(f), f
)

= 0. �

Finally, we give an application satisfying all the conditions of our Theorem 2.3.

3.5. Application. We first take A = C1, the Cesáro matrix. Then, we know that C1-
statistical convergence reduces to the concept of statistical convergence; in this case, we
use the notation st- lim instead of stC1 - lim. Also, we have δC1 ≡ δ. Assume now that

{Ln} is a sequence of linear operators on C2
F [0, 1] whose corresponding sequence {L̃n} of

linear operators on C2[0, 1] is given by

(3.1) L̃n(f
(r)
± ; x) =

{

−x2, if n = m2
(

m ∈ N
)

,

Bn(f
(r)
± ; x), if n 6= m2,

where x ∈ [0, 1], r ∈ [0, 1], n ∈ N, and {Bn} denotes the sequence of classical Bernstein
polynomials on C[0, 1]. Then, observe that

δ
({

n ∈ N : L̃n

(

A ∩ B
)

⊂ A
})

= δ
({

n 6= m
2 : m ∈ N

})

= 1.

Also we have, for each i = 0, 1, 2,

st- lim
n

∥

∥L̃n(ei) − ei

∥

∥ = 0.

Then, it follows from Theorem 2.3 that, for all f ∈ C2
F [0, 1],

st- lim
n

D
∗
(

Ln(f), f
)

= 0.

However, for the function e0 = 1, since

L̃n(e0; x) :=

{

−x2 if n = m2
(

m ∈ N
)

1 otherwise,

we get, for all x ∈ [0, 1], that the sequence {L̃n(e0; x)} is non-convergent in the ordinary

sense. Furthermore, we see that infinitely many terms of L̃n do not satisfy the inclusion
L̃n

(

A∩B
)

⊂ A. Hence, this example clearly shows that our statistical fuzzy approxima-
tion theorems obtained in this paper have a wider range of applications than the classical
fuzzy approximation results.
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3.6. Remark. In this paper, we focus on fuzzy approximation only for the one dimen-
sional case. However, by simple manipulations, all our results are also valid for multi
dimensional cases. However, we omit their details.
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the manuscript.
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