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Abstract

In this paper some relations are established between the Laplace-
Beltrami operator and the curvatures of helicoidal surfaces in 3-
Euclidean space. In addition, Bour’s theorem on the Gauss map, and
some special examples are given.

Keywords: Rotational surface, Helicoidal surface, Gauss map, Laplace-Beltrami oper-
ator, Minimal harmonic surface.

2000 AMS Classification: Primary: 53 A35. Secondary: 53C45.

1. Introduction

Surface theory in three dimensional Euclidean space have been studied for a long time,
and many examples of such surfaces have been discovered. Many very useful books have
been written on the subject, such as [7, 8].

In classical surface geometry in 3-Euclidean space, it is well known that the right
helicoid (resp. catenoid) is the only ruled (resp. rotational) surface which is minimal.
Moreover, a pair of these two surfaces has interesting properties. That is, they are both
members of a one parameter family of isometric minimal surfaces, and have the same
Gauss map. This pair is a typical example for minimal surfaces. On the other hand, the
pair consisting of the right helicoid and the catenoid has the following generalization.

1.1. Theorem. Bour’s Theorem. A generalized helicoid is isometric to a surface of
revolution so that helices on the helicoid correspond to parallel circles on the surface of
revolution [2].
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In this generalization, the original properties of minimality and preservation of the
Gauss map are not generally maintained.

In [6], T. Ikawa showed that a helicoidal surface and a surface of revolution are iso-
metric by Bour’s theorem in 3-Euclidean space. He determined pairs of surfaces with an
additional condition that they have the same Gauss map in Bour’s theorem. In [4], E.
Güler showed that a helicoidal surface and a surface of revolution are isometric by Bour’s
theorem in Minkowski 3-space. Then, he determined the surfaces with light-like profile
curve by Bour’s theorem in [5].

Concerning helicoidal surfaces in 3-Euclidean space, M.P. do Carmo and M. Dajczer
[3] proved that, by using a result of E. Bour [2], there exists a two-parameter family
of helicoidal surfaces isometric to a given helicoidal surface. By making use of this
parametrization, they found a representation formula for helicoidal surfaces with constant
mean curvature. Furthermore they proved that the associated family of Delaunay surfaces
is made up by helicoidal surfaces of constant mean curvature.

In this paper, we give Bour’s theorem on the Gauss map of helicoidal surfaces in
3-Euclidean space. We recall some basic notions of Euclidean geometry and the reader
can find a definition of the generalized helicoid in Section 2. In Section 3, the Laplace-
Beltrami operator of a minimal helicoidal surface and a minimal surface of revolution are
obtained. The mean curvature, the Gaussian curvature and their relations are calculated.
Bour’s theorem on the Gauss map of the helicoidal surfaces are studied in Section 4. In
Section 5, some examples of these surfaces are given.

2. Preliminaries

In this section, we will obtain surfaces of revolutions in 3-Eucidean space. For the
remainder of this paper we shall identify a vector (p, q, r) with its transpose (p, q, r)t.

The inner product on the Euclidean space E
3 is

〈

~x, ~y
〉

= x1y1 + x2y2 + x3y3,

where ~x = (x1, x2, x3), ~y = (y1, y2, y3) ∈ R
3. The norm of the vector ~x ∈ R

3 is defined

by ‖~x‖ =
√

|〈~x, ~x〉|. The Euclidean vector product ~x× ~y of ~x and ~y is defined as follows:

~x× ~y = (x2y3 − y2x3, x3y1 − y3x1, x1y2 − y1x2).

Now we define non degenerate surfaces of rotation and generalized helicoids in E
3. For

an open interval I ⊂ R, let γ : I −→ Π be a curve in a plane Π in R
3, and let ℓ be

a straight line in Π. A surface of rotation in E
3 is defined as a non degenerate surface

obtained by rotating a curve γ around a line ℓ (these are called the profile curve and
the axis, respectively). Suppose that when a profile curve γ rotates around the axis ℓ, it
simultaneously moves parallel to ℓ so that the speed of displacement is proportional to
the speed of rotation. Then the resulting surface is called the generalized helicoid with
axis ℓ and pitch a.

We may suppose that ℓ is the line spanned by the vector (0, 0, 1). The orthogonal
matrix which fixes the above vector is

A(v) =





cos v − sin v 0
sin v cos v 0

0 0 1



 , v ∈ R.

The matrix A can be found by solving the following equations simultaneously; Aℓ = ℓ,
AtA = AAt = I3, where I3 = diag(1, 1, 1) and detA = 1.
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When the axis of rotation is ℓ, there is an Euclidean transformation by which the axis
ℓ is transformed to the z-axis of R

3. Parametrization of the profile curve γ is given by

(2.1) γ(u) = (ψ(u), 0, ϕ(u)),

where ψ(u), ϕ(u) : I ⊂ R −→ R are differentiable functions for all u ∈ I . A helicoidal
surface in 3-Euclidean space which is spanned by the vector (0, 0, 1) and with pitch
a ∈ R \ {0} as follows

H(u, v) = A(v) · γ(u) + av(0, 0, 1).

When a = 0, then the surface is just a surface of revolution as follows

(2.2) R(u, v) = (ψ(u) cos v, ψ(u) sin v, ϕ(u)).

For a surface X(u, v), the coefficients of the first and second fundamental forms and the
Gauss map are defined in [6].

Next, we will use the parametrization of the profile curve γ as follows

γ(u) = (u, 0, ϕ (u)) .

Therefore, a helicoidal surface with axis of rotation z and profile curve γ is given by

(2.3) H(u, v) =





u cos v
u sin v

ϕ(u) + av





in 3-Euclidean space, where u ∈ I , 0 ≤ v < 2π, a ∈ R \ {0}.
2.1. Proposition. The Gauss map of the helicoidal surface in (2.3) which is spanned by
the vector (0, 0, 1), and with profile curve γ(u) = (u, 0, ϕ(u)), is

(2.4) eH =
1

(det I)1/2
·





−uϕ′ cos v + a sin v
−a cos v − uϕ′ sin v

u





in 3-Euclidean space, where det I = EG−F 2 = u2 + a2 + u2ϕ′2 > 0, ϕ = ϕ(u), ϕ′ = dϕ
du

,
a ∈ R \ {0}, u ∈ I ⊂ R and 0 ≤ v < 2π. �

The Laplace-Beltrami operator of a smooth function φ = φ(u, v)|D (D ⊂ R
2), of class

C2 with respect to the first fundamental form of the surface X is the operator ∆, defined
in [1, 8] as follows:

(2.5) ∆Iφ = − 1√
det I

[(

Gφu − Fφv√
det I

)

u

−
(

Fφu − Eφv√
det I

)

v

]

.

If V = (v1, v2, v3) is a function of class C2 then we set

∆IV = (∆Iv1,∆
Iv2,∆

Iv3).

3. Minimal surfaces and the Laplace-Beltrami operator

In this section, we study relations between the mean curvature and the Gaussian
curvature of the helicoidal and surface of revolution with axis (0, 0, 1) in E

3, Moreover,
we give the minimal harmonic helicoidal surface and surface of revolution via the Laplace-
Beltami operator.

3.1. Proposition. The mean curvature and Gaussian curvature of the helicoidal surface
in (2.3) are related as follows:

(3.1) p ·HH + q ·KH = 0,

in 3-Euclidean space, where p(u) = 2
(

− a2 + u3ϕ′ϕ′′
)

, q(u) = −
(

u2 + a2 + u2ϕ′2
)1/2 ·

[

2a2ϕ′ + u2ϕ′(1 + ϕ′2
)

+ u(u2 + a2)ϕ′′
]

, and u ∈ I ⊂ R.
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Proof. We consider a helicoidal surface in (2.3). Computing the mean curvature and the
Gaussian curvature we obtain

(3.2) HH = 2−1Φ(u) · (det I)−3/2

and

(3.3) KH = Ψ(u) · (det I)−2

respectively, where Φ(u) = 2a2ϕ′ +u2ϕ′
(

1 + ϕ′2
)

+u(u2 +a2)ϕ′′, Ψ(u) = −a2 +u3ϕ′ϕ′′,

det I = EG − F 2 = u2 + a2 + u2ϕ′2 > 0, ϕ = ϕ(u), ϕ′ = dϕ
du

, and u ∈ I, a ∈ R \ {0}.
Hence, we obtain the required results. �

So, we can say that a helicoidal surface is a Weingarten surface (or briefly, a W -
surface). For details of W -surfaces see [7].

3.2. Proposition. If HH = 0, then the function on the profile curve γ(u) = (u, 0, ϕ(u))
is as follows

ϕ =

∫

√

(u2 + a2)

u2(−1 + u2)
du+ c

in 3-Euclidean space, where c ∈ R, u ∈ I and a ∈ R \ {0}.

Proof. We consider the mean curvature of the helicoidal surface in (2.3). If HH = 0 then
we have

(3.4) Φ(u) = 0.

This equation reduces to an elliptic integral. We can easily find the function ϕ. �

3.3. Proposition. If KH = 0 then the function on the profile curve γ(u) = (u, 0, ϕ(u))
is as follows

ϕ = ∓
∫

√
cu2 − a2

u
du+ d

in 3-Euclidean space, where c, d ∈ R, u ∈ I ⊂ R and a ∈ R \ {0}.

Proof. We consider the Gaussian curvature of the helicoidal surface (2.3). If KH = 0
then we obtain

(3.5) ϕ′ϕ′′ = a2/u3.

Hence, if we solve ϕ′2 = c− a2/u2, then we have complex solutions as follows:

ϕ = ∓
[

√

cu2 − a2 +
a2

√
−a2

log

(

−2a2 + 2
√
−a2

√
cu2 − a2

u

)]

+ d,

where c, d ∈ R, u ∈ I , a ∈ R \ {0}. �

3.4. Theorem. The helicoidal surface (2.3) and the surface of revolution

(3.6) R(u, v) =











√
u2 + a2 cos

(

v +
∫

aϕ′

u2+a2 du
)

√
u2 + a2 sin

(

v +
∫

aϕ′

u2+a2 du
)

∫

√

a2+u2ϕ′2

u2+a2 du











are isometric surfaces by Bour’s theorem and have the same Gauss map, and the surfaces
are harmonic in 3-Euclidean space, where ϕ = ϕ(u), a ∈ R\{0}, u ∈ I ⊂ R, 0 ≤ v < 2π.
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Proof. The coefficients of the first and the second fundamental forms are

(3.7) EH = 1 + ϕ′2, FH = aϕ′, GH = u2 + a2

and

(3.8) LH =
uϕ′′

(det I)1/2
, MH =

−a
(det I)1/2

, NH =
u2ϕ′

(det I)1/2
,

where det I = u2 + a2 + u2ϕ′2, u ∈ I , a ∈ R \ {0}. The Gauss map of H(u, v) is given in
(2.4). The Gauss map of R(u, v) is

eR =
1

(det I)1/2
·







−
√

a2 + u2ϕ′2 cos(v +
∫

aϕ′

u2+a2 du)

−
√

a2 + u2ϕ′2 sin(v +
∫

aϕ′

u2+a2 du)

u







When eH = eR, then Φ(u) = 0 in [6]. Using (2.3), (2.4), (2.5) and (3.4), we get

(3.9) ∆I
H(u, v) ≡ −Φ(u)

(det I)3/2
· eH.

Using similar methods, we can easily see the relation between ∆I and R. So, for the
helicoidal surface in (2.3), we have the following:

eH = eR ⇐⇒ Φ(u) = 0

⇐⇒ HH = 0

⇐⇒ ∆I
H(u, v) ≡ −Φ(u)

(det I)3/2
· eH

⇐⇒ H(u, v) is harmonic. �

4. Bour’s theorem on the Gauss map

In this section we study Bour’s theorem on the Gauss map (2.4) of the helicoidal
surface (2.3).

4.1. Proposition. The Gauss map (2.4) of the helicoidal surface (2.3), which is a surface
of revolution, is as follows:

(4.1) eH =





cos v − sin v 0
sin v cos v 0

0 0 1











−uϕ′

(det I)1/2

−a

(det I)1/2

u

(det I)1/2






,

where det I = u2 + a2 + u2ϕ′2, a ∈ R \ {0}, u ∈ I ⊂ R and 0 ≤ v < 2π.

When we assume a = 0, for the sake of clearness, the profile curve is

γ (u) =

(

−ϕ′

(1 + ϕ′2)1/2
, 0,

1

(1 + ϕ′2)1/2

)

.

So this surface is just a surface of revolution. Therefore, if we add pitch h ∈ R \ {0} to
the surface of revolution, we obtain the helicoidal surface of the Gauss map as follows

(4.2) ℑ(u, v) =





cos v − sin v 0
sin v cos v 0

0 0 1













−ϕ′

(1+ϕ′2)1/2

0
1

(1+ϕ′2)1/2









+ hv





0
0
1



 .
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4.2. Theorem. A helicoidal surface of the Gauss map in (4.2) is isometric to a surface
of revolution

ℜ(u, v) =













−
√

h2+ϕ′2+h2ϕ′2

1+ϕ′2 cos

(

v −
∫

hϕ′ϕ′′

(h2+ϕ′2+h2ϕ′2)
√

1+ϕ′2
du

)

−
√

h2+ϕ′2+h2ϕ′2

1+ϕ′2 sin

(

v −
∫

hϕ′ϕ′′

(h2+ϕ′2+h2ϕ′2)
√

1+ϕ′2
du

)

ϕℜ













by Bour’s theorem, where

ϕℜ =

∫

[

tan

(

∫

√

(h2 + ϕ′2)ϕ′′2

(1 + ϕ′2)2 (h2 + ϕ′2 + h2ϕ′2)
du

)]

du+ c

and ϕ = ϕ(u), h ∈ R \ {0}, c ∈ R, u ∈ I ⊂ R, 0 ≤ v < 2π.

Proof. We assume that the profile curve is on the x1x3-plane. Since a generalized helicoid
is given by rotating the profile curve around the axis and simultaneously displacing it
parallel to the axis, so that the speed of displacement is proportional to the speed of
rotation, from (4.2), we have the following representation of a generalized helicoid

(4.3) ℑ(uℑ, vℑ) =

(

− ϕ′

ℑ
√

1 + ϕ′2
ℑ

cos(vℑ),− ϕ′

ℑ
√

1 + ϕ′2
ℑ

sin(vℑ),
1

√

1 + ϕ′2
ℑ

+ hvℑ

)

,

where h is a constant.

The coefficients of the first fundamental form and the line element of the generalized
helicoid (4.3) are given by

Eℑ =
ϕ′′2

ℑ

(1 + ϕ′2
ℑ

)2
, Fℑ =

−hϕ′

ℑϕ
′′

ℑ

(1 + ϕ′2
ℑ

)3/2
, Gℑ =

ϕ′2
ℑ

1 + ϕ′2
ℑ

+ h2,

ds2ℑ =
ϕ′′2

ℑ

(1 + ϕ′2
ℑ

)
2 du

2
ℑ + 2

−hϕ′

ℑϕ
′′

ℑ

(1 + ϕ′2
ℑ

)3/2
duℑ dvℑ +

(

ϕ′2
ℑ

1 + ϕ′2
ℑ

+ h2

)

dv2
ℑ.

Helices in ℑ(uℑ, vℑ) are curves defined by uℑ = constant, so curves in ℑ(uℑ, vℑ) that
are orthogonal to helices satisfy the the following condition of orthogonality

−hϕ′

ℑϕ
′′

ℑ

(1 + ϕ′2
ℑ

)
3/2

duℑ +

(

ϕ′2
ℑ

1 + ϕ′2
ℑ

+ h2

)

dvℑ = 0.

Thus we obtain

vℑ =

∫

hϕ′

ℑϕ
′′

ℑ

(h2 + ϕ′2
ℑ

+ h2ϕ′2
ℑ

) (1 + ϕ′2
ℑ

)1/2
duℑ + c,

where c is constant. Hence if we put

v̄ℑ = vℑ −
∫

hϕ′

ℑϕ
′′

ℑ

(h2 + ϕ′2
ℑ

+ h2ϕ′2
ℑ

) (1 + ϕ′2
ℑ

)
1/2

duℑ,

then the curves that are orthogonal to the helices are given by v̄ℑ = constant. Substi-
tuting the equation

dvℑ = dv̄ℑ +
hϕ′

ℑϕ
′′

ℑ

(h2 + ϕ′2
ℑ

+ h2ϕ′2
ℑ

) (1 + ϕ′2
ℑ

)
1/2

duℑ

into the line element, we have

(4.4) ds2ℑ =

(

h2 + ϕ′2
)

ϕ′′2
ℑ

(1 + ϕ′2
ℑ

)2 (h2 + ϕ′2
ℑ

+ h2ϕ′2
ℑ

)
du2

ℑ +
h2 + ϕ′2

ℑ + h2ϕ′2
ℑ

1 + ϕ′2
ℑ

dv̄2
ℑ.
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By putting

ūℑ =

∫

√

(h2 + ϕ′2)ϕ′′2
ℑ

(1 + ϕ′2
ℑ

)2 (h2 + ϕ′2
ℑ

+ h2ϕ′2
ℑ

)
duℑ, fℑ(ūℑ) = −

√

h2 + ϕ′2
ℑ

+ h2ϕ′2
ℑ

1 + ϕ′2
ℑ

then (4.4) reduces to

(4.5) ds2ℑ = dū2
ℑ + f2

ℑ(ūℑ)dv̄2
ℑ.

On the other hand, the surface of revolution

(4.6)

(

− ϕ′

ℜ
√

1 + ϕ′2
ℜ

cos(vℜ),− ϕ′

ℜ
√

1 + ϕ′2
ℜ

sin(vℜ),
1

√

1 + ϕ′2
ℜ

)

has the line element

(4.7) ds2ℜ =
ϕ′′2

ℜ

(1 + ϕ′2
ℜ

)2
du2

ℜ +
ϕ′2

ℜ

1 + ϕ′2
ℜ

dv̄2
ℜ.

Hence, if we put

ūℜ =

∫

ϕ′′

ℜ

1 + ϕ′2
ℜ

duℜ, fℜ(ūℜ) = −
√

ϕ′2
ℜ

1 + ϕ′2
ℜ

, v̄ℜ = vℜ,

then (4.7) reduces to

(4.8) ds2ℜ = dū2
ℜ + f2

ℜ(ūℜ) dv̄2
ℜ.

Comparing (4.5) with (4.8), if

ūℑ = ūℜ, v̄ℑ = v̄ℜ, and fℑ(ūℑ) = fℜ(ūℜ),

then we have an isometry between ℑ(uℑ, vℑ) and ℜ(uℜ, vℜ).

Therefore it follows that
∫

√

(h2 + ϕ′2)ϕ′′2
ℑ

(1 + ϕ′2
ℑ

)2 (h2 + ϕ′2
ℑ

+ h2ϕ′2
ℑ

)
duℑ =

∫

ϕ′′

ℜ

1 + ϕ′2
ℜ

duℜ

and we have

arctan
(

ϕ′

ℜ

)

=

∫

√

(h2 + ϕ′2)ϕ′′2

(1 + ϕ′2)2 (h2 + ϕ′2 + h2ϕ′2)
du+ c,

where c ∈ R. �

4.3. Proposition. The mean curvature and the Gaussian curvature of the helicoidal
surface of the Gauss map in (4.3) are related by

(4.9) H2
ℑ = Ω ·Kℑ,

where Ω = Ω(u) =
[(1+ϕ′2

ℑ)(−ϕ′3
ℑ+h2ϕ′4

ℑ−2h2ϕ′
ℑ)+ϕ′6

ℑ ]2

4(h2+ϕ′2
ℑ)(ϕ′4

ℑ
−h2)(1+ϕ′2

ℑ)2
, ϕℑ = ϕℑ(u) is on the profile curve,

ϕ′

ℑ := dϕℑ

du
, and h, u ∈ R \ {0}.

Proof. First we consider the helicoid (4.3). Using the coefficients of the first and second
fundamental forms we have

EℑGℑ − F 2
ℑ =

(

h2 + ϕ′2
ℑ

)

ϕ′′2
ℑ

(1 + ϕ′2
ℑ

)3

and

LℑNℑ −M2
ℑ =

(

ϕ′6
ℑ + ϕ′4

ℑ − h2ϕ′2
ℑ − h2

)

ϕ′′2
ℑ

(h2 + ϕ′2
ℑ

) (1 + ϕ′2
ℑ

)4
.
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Hence, the mean curvature and the Gaussian curvature of the helicoidal surface of the
Gauss map are given, respectively, by

(4.10) Hℑ =

(

1 + ϕ′2
ℑ

) (

−ϕ′3
ℑ + h2ϕ′4

ℑ − 2h2ϕ′

ℑ

)

+ ϕ′6
ℑ

2 (h2 + ϕ′2
ℑ

)
3/2

(1 + ϕ′2
ℑ

)

and

(4.11) Kℑ =
ϕ′4

ℑ − h2

(ϕ′2
ℑ

+ h2)2
,

where h, u ∈ R \ {0}. Therefore, we obtain the required results. �

If Ω(u) = 1, then H2
ℑ = Kℑ. This means the surface has an umbilical point. See [7]

for details.

5. Examples

In this section, we give some special examples of surfaces of revolution, helicoidal
surfaces and the Gauss maps of these surfaces. We draw these surfaces with profile curve
γ(u) = (u, 0, ϕ(u)) and axis z, where −1 < u < 1, 0 ≤ v < 2π, via the Maple programme.

Figure 1. Surface of revolution, ϕ(u) = u

Figure 2. Helicoidal surface, ϕ(u) = u

Figure 3. Gauss map of helicoidal surface, ϕ(u) = u
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Figure 4. Surface of revolution, ϕ(u) = u2

Figure 5. Helicoidal surface, ϕ(u) = u2

Figure 6. Gauss map of helicoidal surface, ϕ(u) = u2

Figure 7. Surface of revolution, ϕ(u) = log u

Figure 8. Helicoidal surface, ϕ(u) = log u.
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Figure 9. Gauss map of helicoidal surface, ϕ(u) = log u

Figure 10. Surface of revolution, ϕ(u) = eu

Figure 11. Helicoidal surface, ϕ(u) = eu

Figure 12. Gauss map of helicoidal surface, ϕ(u) = eu
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XXXIX Cahier, 1–148, 1862.

[3] Do Carmo, M.P. and Dajczer, M. Helicoidal surfaces with constant mean curvature, Tohoku
Math. J. 34, 425–435, 1982.



Bour’s Theorem on the Gauss Map 525
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