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Abstract

In this paper we introduce the classes T (A, A, B) and K% (A, u, A, B),
and derive coefficient bounds and distortion inequalities for func-
tions belonging to the class T% (A, A, B). Further, we make use of
the (n,d)-neighborhoods of functions in both classes TZ (A, A, B) and
KE(\ u, A, B).
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1. Introduction and definitions

Let TF denote the class of functions f(z) normalized by

(1.1)  f(z)=2"- i arz®, (ax >0, n,pe N ={1,2,3,...})

k=n+p
which are analytic and multivalent in the unit disk
U={z:2€Cand |z| < 1}.

Given two functions f and g, which are analytic in U, the function f is said to be
subordinate to g, written

(12)  f=<gand f(z) < g(2)
if there exists a Schwarz function w analytic in U, with

w(0) =0 and |w(z2)| <1 (z € U)
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and such that
(1.3)  f(2) = g(w(z)) (= € V).

Earlier investigations have been carried out by Goodman [7] and Rucheweyh [9] (see also
[1, 2, 3, 4, 5] and [8]). We define the (n, §)-neighborhoods of functions f € TF by

(14)  Nas(f;9) = {geT,f:g(z):z”— > bp2and Y klax — by 55}7

k=n+p k=n+p

so that, obviously,

(1.5)  Nps(hjg) = {g €TV :g(z)=2"— ) bez"and Y klbl < 5},

k=n+p k=n+p

where
(1.6)  h(z) =2 (peN, qge Ny =NU{0}).
We also let T (A, A, B) denote the subclass of T} consisting of functions f(z) which
satisfy the following relation

2f'(2) + X2 (2) 1+ Az
Nef () +(1-Nf(z) Y1+ Bz
where 0 < A< 1,peN, -1 < A< B<1. Theclasses T?(0, A, B) and TZ(1, A, B) are
studied in [6].

Finally, let KE(X\, p, A, B) denote the subclass of the general class TF consisting of

functions f € T which satisfy the following non-homegenous Cauchy-Euler differential
equation:

(1.7)

2

d“w dw
(1.8) 2 +2u+ 1)z +pu(p+Dw= @ +p) P+ p+1)g,

where w = f(z) € TE, g = g(z2) € TE(\, A, B) and p > —p.
In this paper, we obtain coefficient bounds, distortion inequalities and (n, §)-neighbor-
hoods of functions f € T% in both the classes T% (A, A, B) and KE (A, pu, A, B).

2. Coefficient bounds and distortion inequalities
We begin with the following lemmas.

2.1. Lemma. Let the function f € TF be defined by (1.1). Then f(z) is in the class
TE(N\ A, B) if and only if

(2.1) > (k—p—pA+kB)(M+1—Nax <p(B—A)Ap+1-))
k=n+p

(0<A<1, peN, —-1<A<B<I).
The result is sharp for the function f(z) given by

— P p(B=A)Mp+1-X) St
@2 &= - G B st AP ) TN

Proof. Let f € TE(\ A, B) and
(23)  F(2) = Aaf'(2) + (1- V()
we find from (1.7) that

2F'(2) 1+ Az
F(z) T B2

(2.4)
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and
2F'(2)
-Pp
(2.5) ;1;(2) <1, (zeU).
B () — Ap

Since |R(2)| < |z]| for all z, we have

[

S (k—p)(Mk+1—Nagz®
(2.6) % bt - <1
p(B—A)(Mp+1-=XNzP+ > (pA—kB)(Mk+1— Nagzk

k=n+p

By letting z — 17 along the real axis, we get

oo

(2.7) > (k—p—pA+kB)ax <p(B—A)(Me+1-N).

k=n+p
Conversely, let |z] =1 in (2.5). Then
2F'(2) 2F'(2)
| [P
= DY k=p)Ak+1—=Nay
k=n+p

—’p(B—A)()\p—i—l—)\)—&— f: (pPA—EB)(Ak+1— Nax

k=n+p

< > (k—p—pA+kB)(A\k+1—Nax —p(B—A)Ap+1—A)
k=n+p
<0.

Hence, by the principle of maximum modulus, we have f € TE(\, A, B), which completes
the proof of Lemma 2.1. d

2.2. Lemma. Let the function f(z) € TF defined by (1.1) be in the class TE (X, A, B).
Then

S p(B— A)Op+1- )
C8) 2 S mEnT B+ AT+ T T

and

p(B—A)Ap+1—A)(n+p)
(2.9) ; KOS AP+ B) —p(L+ AN+ p) + 1= A

Proof. By using Lemma 2.1, we find from (2.1) that

[(n+p)(A+B) = p(L+ A)A(n+p) +1 =N Y a

k=n+p
oo

< > (k—p—pA+kB)(Me+1—Nax

k=n+p
<p(B—A)Ap+1-2),
which immediately yields the first assertion (2.8) of Lemma 2.2.
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Next, by appealing to (2.1), we also have

oo oo

An+p)+1=XN| > (1+Bkar—p1+A4) > ax

k=n+p k=n+p
<p(B—A)p+1-N),

or

p(B—A)(Ap+1-2) >
(1+ B) k 1+ A .
! kz S N R ES AU N DI
n+p k=n+p

Thus, in the light of (2.8), the above inequality immediately yields the second assertion
(2.9) of Lemma 2.2. O

2.3. Theorem. If the function f € TE is in the class TE (X, A, B), then
p(B—A)(Ap+1—X) 2]
[(n+p)(1+ B) —p(l+ A)]A(n+p)+1- 2}

n+p

(2.10)  |f(2) < 12" +

and
p(B = A)Op+1- )

z z|P — n+p
Also,
(2.12) |f'(»)] < p|z|p71 + p(B-—A)(Ap+1-N(n+p) |Z|n+p717

[(n+p)(1+B)—p(l+ A)]An+p)+1-2
and

p(B—A)Mw+1-N(n+p) 12|
[(n+p)(1+B) —p(l+A)]An+p)+1-2

Proof. Suppose that f € TP is in the class T2 (A, A, B), Then, from (1.1) we have

n+p— 1

(213) |f'(2)] > 2P -

(2.14)  |f(2)] < |2]” + Z arz® < |2|P + |2 P Z a
k=n-+p k=n-+p
and
(215)  [f)] =27 = 21" D an
k=n+p

Using (2.8), the first assertion of Lemma 2.2, in (2.14) and (2.15), we get (2.10) and
(2.11).

Similarly, using (2.8) in the following inequality

[f'(z) =pllP T < (np) Y anfe"P
k=n+p
we have (2.12) and (2.13). O

By setting A =0, n = 1 in Lemma 2.1 we get following result.
2.4. Corollary. (See Goel at al. [6, Theorem 1]) If f(z) € TT(0, A, B) then

(2.16) > [(1+ B)n+p(B — A)lanip < p(B — A). 0

n=1

By setting A =0, n = 1 in Theorem 2.3, we have the following result.
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2.5. Corollary. ( See Goel at al. [6, Theorem 3]) If f(z) € TF(0, A, B) then

P _ p(B—4) P+l < |5|P p(B—A) p+1
QIT) o - e B S I <+ e s O
Similarly, letting A =0, n = 1 in Theorem—2.3, we get:
2.6. Corollary. ( See Goel at al. [6, Theorem 3]) If f(z) € TF(0, A, B) then
p-1_ PB=A)A+p) | iy
oy P TR ET N )
' _ B—A)p
< p—1 p( P
e ey ey Y -
2.7. Corollary. If f(z) € TE(1, A, B) then
2P — pz(B —4) |Z|n+p
[(n+p)(1+ B) —p(1+ A)l(n+p)
(2.19) <|f(2)]
(B - A)

< ZP_|_ p ( Z’”‘FP’

S e B st Al )
and

- *B-A ntp—
plz|? 1 p( ) 2| +p—1
[(n+p)(1+ B) —p(1+ A)]
(2.20) <17 (2)]
2 —_—
<plP PBA D

[(n+p)(1+ B) —p(1+ A)]

The distortion inequalities for functions in the class K% (A, u, A, B) are given in The-
orem 2.8 below.

2.8. Theorem. If the function f € TE is in the class KE (A, A, B), then

p(B - A +1-Np+upt+ptl) 2|t
[(n+p)(L+ B) —p(L + A)[A(n +p) +1 = A(n+p+p)

221) [fR) < Il” +

and

» p(B=A)(Mp+1-Np+u)(p+p+1) ntp
(222) V)21 - e 07 B = s A+ p) + 1= N rpa

Proof. Suppose that the function f(z) € T7 is given by (1.1). Also that the function
g(z) € T?(\, A, B) occurring in the non-homegenous differential equation (1.8) is given
as in the definitions (1.4) and (1.5), with of course

bk >0, (k=n+pn+p+ln+p+2...).
Then we readily find from (1.8) that

(p+tpwp+p+1)
9.23 - be, (k=n+pn+p+l,n+p+2,..),
(2.23) ax (k+u)(k+u+1)k( n+pn+p+lntp )
so that
o : —~ (p+mwp+p+l),

f(z) = 2P — apz® = 2P — brz", (z€ U

©= 2 D e A
and

oo

P |, e (P+mwp+p+l)
(224)  |f(2)] < |2 + [2"* k:Zw ORIk
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Since g(z) € TF (X, A, B), using the first assertion (2.8) of Lemma 2.2 we have the follow-
ing inequality:
p(B—A)Ap+1-—2X)
2.25) by < .
220 S T B~ p o+ AT P+ 1A
Together with (2.24) and (2.25), this yields that
p(B—A)(Ap+1—-2X)
[(n+p)(1+B) —p(l+ AJA(n+p)+1-2

—~ P+wW@+p+1D)
2 wrmkrasn

|F(2)] < 2" +
(2.26)

)
k=n+p

by using the following identity

oo

1 1 1 !

k=n+p

where p € R\ {-n—p,—n—p—1,...}.
The assertion (2.21) of Theorem 2.8 follows at once from (2.26) together with (2.27).
The assertion (2.22) of Theorem 2.8 can be proven similarly. g

2.9. Corollary. If f(z) € KE(A\, u,—1,1), then

PAP+H1=Np+pp+ptl) | nep

(228) |f(2) < 12"+ m+p)An+p) +1-N(n+p+1)

and
PAP+1=Np+pp+ptl) | nep
m+p)An+p)+1-XNn+p+1) :

By setting A = —1, B = 1 in Theorem 2.8, we have the result [3, Theorem 1] of
Altintag at al. on letting o = 0.

(2.29) [f(R) < 2" - 0

3. Neighborhoods for the classes T} (\, A, B) and KL (), u, A, B)

In this section, we find inclusion relations for the classes TF (X, A, B) and KE(\, u, A, B)
involving the (n, d)-neighborhoods defined by (1.4) and (1.5).

3.1. Theorem. If f € T? is in the class TE(\, A, B), then

(3.1)  TH(A\A,B) C Nus(h; f),

where h(z) is given by (1.6) and
p(B-A)(p+1-N)(n+p)

[(n+p)(1+B) —p(l+ AJA(n+p)+1-A]

Proof. The relation (3.1) asserted by Theorem 3.1 follows easily from the definition (1.5)
of Ny, 5(h; f) with g(z) replaced by f(z), and the second assertion (2.9) of Lemma 2.2. O

(3.2) 6=

3.2. Theorem. If f € TE is in the class KE(\, u, A, B) then
(33) K'g()‘7/1'7A7B) CNn,d(gaf)7
where g(z) is given by (1.8) and

__pB-AX+1-Nn+@+tpp+pt2)(n+p)
[(n+p)(1+B) —p(1l+ AD)An+p) +1=A(n+p+p)
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Proof. Suppose that f(z) € KE(A, pu, A, B). Then, upon substituting from (2.23) into
the following coefficient inequality:

(3.4) Z k’|bk —ak| < Z kb, + Z kag, (ak >0, by > O)
k=n+p k=n+p k=n+p

we easily obtain
- - o~ (p+mp+p+l)
(3.5) SO okl —arl < > kbt Y kby,.
k=n+p k=n+p k=n+p (k + M)(k + K + 1)
Since g(z) € T (A, A, B), the second assertion (2.9) of Lemma 2.2 yields
p(B-A)(Ap+1-N)(n+p)
3.6 kb < .
GO R S G (1 B - p(+ ARG p) 71—
By making use of (2.9) as well as (3.6) on the right hand side of (3.5), we find that
ST p(B— A)p+1-N)(n+p)
T l(n+p)(1+B) —p(l+ A\ +p)+1-2

k=n+p
— (P+wp+p+l)
X(“ﬂg;gk+wm+u+n)

oo

which, by virtue of the teloscopic sum (2.27), immediately yields

i klby — ax| < p(B-—A)Ap+1-Nn+@+p)p+p+2)](n+p)
“l(n+p)A+B) —p(1+ A)JA(n+p) +1=A((n+p+p)

k=n+p
=4.

So, in definition (1.4) with g(z) interchanged by f(z), we conclude that
[ € Nus(g; f)-
This completes the proof of Theorem 3.2. d
If we let A= —1, B =1 in Theorem 3.2 we have the following corollary.
3.3. Corollary. If f(z) € KE(A\, u,—1,1), then
Kn(A p, =1,1) € Nus (g5 f),
where g(z) is given by (1.8) and

_pQp+1-Nn+(p+p)p+p+2)]
An+p)+1=A(n+p+p)

This result was given in Altintag et al. [3, Theorem 3] for o = 0.

0
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