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Abstract

The notion of strongly prime right ideal is analogous to that of com-
pletely prime ideal in a commutative ring. We prove that the inter-
section of all strongly prime right ideals of a ring R coincides with
the Levitzki radical of this ring. We also give various conditions on a
noncommutative ring R so that R is 2-primal.
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1. Introduction

Throughout this article R denotes an associative ring and I ( 6= R) a right ideal of R.
In [6], a right ideal I in R is called a prime right ideal if AB ⊆ I implies that either
A ⊆ I or B ⊆ I for any right ideals A, B of R. In [3], the right ideal I was defined to
be strongly prime if for each x and y in R, xIy ⊆ I and xy ∈ I imply that either x ∈ I
or y ∈ I . Let m(R) (resp., p(R), sp(R)) be the set of maximal right ideals (resp., prime
right ideals, strongly prime right ideals) of R. Clearly, any strongly prime right ideal is
prime. But the converse need not be true. For example, the zero ideal in the ring of all
n × n matrices over a division ring is a prime right ideal but not strongly prime.

Recall that a two-sided ideal P of R is completely prime (completely semiprime) if
ab ∈ P implies a ∈ P or b ∈ P (if a2 ∈ P implies a ∈ P ) for a, b ∈ R. Note that any
ideal (two-sided) of a ring is strongly prime if and only if it is completely prime.

The goal of this paper is to prove that the intersection radr(R) of all strongly prime
right ideals coincides with the largest locally nilpotent ideal of the ring R. Also, we give
some characterizations of rings through strongly prime right ideals.
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2. The right radical

Recall that a ring R is right (resp., left) s-unital (see [10] and [11]) if a ∈ aR (resp.,
a ∈ Ra) for every a in R, and R is s-unital, if it is both right and left s-unital. It is well
known that if R is an s-unital ring and F a finite subset of R, then there exist u ∈ R
such that u = ux = xu for all x ∈ F (see [8]) We shall now show that m(R) ⊆ sp(R)
even when R is s-unital and does not have an identity.

2.1. Lemma. Let R be an s-unital ring. Then m(R) ⊆ sp(R).

Proof. Let I be a maximal right ideal of R and suppose that xIy ⊆ I and xy ∈ I for
some x, y ∈ R. If x is not in I and y is not in I , then R = I + xR = I + yR. Choose
u ∈ R such that xu = x and uy = y. Then u = a + ys for some a ∈ I, s ∈ R. So,
x = xu = xa+xys ∈ xI +I , which implies that xR ⊆ xI +I . Thus, R = I +xR ⊆ I +xI ,
that is R = I + xI . Now, u = b + xc for some b, c ∈ I , and hence, y = uy = by + xcy ∈ I ,
a contradiction. �

2.2. Example. The ring of all 2 × 2 matrices over an integral domain with a maximal
right ideal, shows that a strongly prime right ideal need not be a maximal right ideal.
Indeed, the right ideal of all 2×2 matrices with zero entries in the second rows is strongly
prime, but not maximal.

2.3. Corollary. If R is an s-unital ring, then m(R) ⊆ sp(R) ⊆ p(R). �

As is well known, the intersection of all prime right ideals of a ring is the prime radical
of the ring (see [6]), and the intersection of all maximal right ideals of a ring with unity
is the Jacobson radical. So one can ask the following.

2.4. Question. Is the intersection of all strongly prime right ideals of a ring an ideal in
the ring?

Rosenberg in [9] defined a strongly prime right ideal as follows. Let I be a right ideal
of a ring R with identity. If I has the property that for every x ∈ R \ I, there exists a
finite subset V of R such that (I : xV ) = {r ∈ R;xV r ⊆ I} ⊆ I , then I is called strongly
prime.

Let sr(R) be the set of all strongly prime right ideals in the sense of Rosenberg. It is
clear that a strongly prime right ideal in the sense of Rosenberg is a strongly prime right
ideal. But the above example shows that the converse is not true.

Now we introduce a k-system, and employ it to give another condition for a right ideal
to be strongly prime.

2.5. Definition. Let S be a nonempty subset of a ring R. We say that S is a k-system
if a, b ∈ S implies that either ab ∈ S, or there exist s is in R \ I such that asb ∈ S.

Evidently, if I is an ideal of a ring, then C(I) is a multiplicative system if and only
if it is k-system. It is known that an ideal P in a ring R is a prime ideal if and only if
C(P ) is an m-system. One can easily show that a right ideal I ( 6= R) is a prime right
ideal if and only if C(I) is an m-system.

For a subset S of a right s-unital ring, we have the following.

C(S) is a multiplicative system implies C(S) is a k-system implies C(S) is a m-system.

2.6. Lemma. Let R be a ring and I ( 6= R) a right ideal of R. Then I is strongly prime
if and only if C(I) is a k-system.
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Proof. =⇒ Let I ∈ sp(R). If x, y ∈ C(I), then x, y is not in I , hence either xIy is not
in I or xy is not in I . In the former case, there exists a ∈ I with xay is not in I , that is,
xay ∈ C(I). In the latter case, xy ∈ C(I). So C(I) is a k-system.

⇐= Let aIb ⊆ I and ab ∈ I with a, b not in I . Then a, b ∈ C(I), so either ab ∈ C(I) or
aub ∈ C(I) for some u ∈ I . In the former case ab ∈ I ∩C(I) = ∅. This is a contradiction.
In the latter case, aub ∈ C(I) ∩ I = ∅. This is also contradiction. Thus, I ∈ sp(R). �

Recall that a ring is locally nilpotent if every finite subset X generates a nilpotent
subring. This means that there exists a positive natural number m depending on X such
that the product of any m elements of X is zero.

The largest locally nilpotent ideal L(R) is called the Levitzki radical of R.

2.7. Lemma. The following are equivalent for any right ideal J in the ring R.

(a) Any k-system S such that S ∩ J 6= ∅ contains {0}.
(b) Any multiplicative subset S of R such that the intersection of S and J is nonempty

contains {0}.
(c) The ideal J is locally nilpotent.

Proof. (a) =⇒ (b) Since any multiplicative subset S of R is an k-system, we have S ∩ J
contains {0}.

(b) =⇒ (c) Since {0} belongs to the multiplicative system generated by t, there exists
a fixed positive integer n such that tn = 0 for every t ∈ J . Thus, J is locally nilpotent
(see [2, Theorem 53]).

(c) =⇒ (a) Let S be a k-system and t ∈ S ∩ J . By definition, there exists a ∈ R \ S
such that either tat ∈ S or t2 ∈ S. If tat ∈ S, then either tat2 ∈ S or tata1t ∈ S for some
a1 ∈ R \ S. If we continue like this, {0} belongs to S since J is a locally nilpotent right
ideal. If t2 ∈ S, it can be shown easily that tl = 0 for some l. So, S ∩J contains {0}. �

2.8. Theorem. The intersection radr(R) of all strongly prime right ideals coincides with
the largest locally nilpotent ideal (Levitzki radical) of this ring.

Proof. Since every strongly prime right ideal in the sense of Rosenberg is strongly prime,
we have

radr(R) =
⋂

Iα∈sp(R)

Iα ⊆
⋂

Iα∈sr(R)

Iα = L(R)

by [9, Theorem 7.1]. It remains to verify the inverse inclusion. Let J be a right ideal
in R such that J does not belong to radr(R). Take a strongly prime right ideal I such
that the right ideal J is not in I . This means that C(I) is a k-system and J ∩C(I) 6= ∅.
If J were locally nilpotent, then this would imply that the set R \ I contains {0} by
Lemma 2.7 and Lemma 2.6. But this is impossible, and so J is not in L(R). Therefore
L(R) is a subset of radr(R). �

3. Characterizations of rings through strongly prime right ideals

Let f be a homomorphism from a ring R onto a ring S. We set

spf (R) = {I ∈ sp(R) : I ⊇ Kerf}.

The following theorem shows that there is a one to one correspondence between spf (R)
and sp(S).

3.1. Theorem. Let f be a homomorphism from a ring R onto a ring S. Then

1) f(I) ∈ sp(S) for any I ∈ spf (R).
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2) f−1(I) ∈ spf (R) for any I ∈ sp(S).
3) The mapping I → f(I) defines a one-to-one correspondence between spf (R) and

sp(S).

Proof. Straightforward. �

Let E(R) be the endomorphism ring of the additive group of R. If a ∈ R, define
ar : R → R by ar(x) = xa and al(x) = ax. For any a ∈ R, the maps ar, al are in E(R).
Let B(R) be the subring of E(R) generated by all the ar and al for a ∈ R. The centroid
of R is the set of elements in E(R) which commute element-wise with B(R).

In Theorem 3.1, if we take a group endomorphism in the centroid of the ring instead
of a ring homomorphism, we have the following theorem.

3.2. Theorem. Let R be a ring with identity and f : (R,+) → (R, +) an onto group
endomorphism of R. If f is in the centroid of R, then 1), 2), and 3) in Theorem 3.1 are
satisfied.

Proof. 1) Let I ∈ sp(R) and u ∈ I . Since

f(u)f(r) = (f(r)rf)(u) = (f(f(r))r)(u) = f(uf(r)) ∈ f(I),

f(I) is a right ideal. Suppose that f(I) = R. Then If(1) = R, which implies R =
If(1) ⊆ I . This is a contradiction. So f(I) is proper. Now we will show that f(I) is
strongly prime.

Let f(a)f(I)f(b) ⊆ f(I) and f(a)f(b) ∈ f(I). We have f(a)f(I)Rf(b) ⊆ I . Since a
strongly prime right ideal is a prime right ideal, we have either f(a)f(I) ⊆ I or f(b) ∈ I .
If f(a)f(I) ⊆ I , then f(a)If(b) ⊆ I and f(a)f(b) ∈ I . But I ∈ sp(R), so either f(a) ∈ I
or f(b) ∈ I . If f(a) ∈ I , then aRf(1) ⊆ I . This implies that either a ∈ I or f(1) ∈ I . If
a ∈ I , then f(a) ∈ f(I). If f(1) ∈ I , then f(R) ⊆ I . This contradicts the fact that f is
onto. Similarly, f(b) ∈ f(I).

2) It is clear that the right ideal f−1(K) is proper. Let af−1(K)b ⊆ f−1(K), ab ∈
f−1(K) for some a, b ∈ R. Then aKb ⊆ K and f(a)b ∈ K. But f(K) ⊆ K. This
implies that f(a)Kf(b) ⊆ K and f(a)f(b) ∈ K. Since K is a strongly prime right ideal,
f(a) ∈ K or f(b) ∈ K. Thus a ∈ f−1(K) or b ∈ f−1(K). Therefore f−1(K) is a strongly
prime right ideal.

3) Now, define Φ : spf (R) → sp(S) by Φ(T ) = f(T ) and Ψ : sp(S) → spf (R) by

Ψ(K) = f−1(K). Then it is easy to show that ΦΨ = 1 and ΨΦ = 1. �

If I is a right ideal of a ring R, then we observe that the subring N(I) is the set
N(I) = {x ∈ R : xI ⊆ I}, and is called the normalizer of I in R. We set (I : x) = {r ∈
R : xr ∈ I} for any x ∈ R.

We now characterize the rings in which every right ideal is strongly prime.

3.3. Theorem. Let R be a right s-unital ring. The following are equivalent:

(a) Every proper right ideal of R is in sp(R).
(b) R is simple, and I = (I : a) for any proper right ideal I of R and a ∈ N(I) \ I.

Proof. (a) =⇒ (b) Since sp(R) ⊆ p(R), the ring R is simple by [6, Theorem 4.2] as this
result remains true for any right s-unital ring. Let I be any proper right ideal of R. For
each a ∈ N(I) \ I, we have I ⊆ (I : a). If x ∈ (I : a), then ax ∈ I and aIx ⊆ I . Since I
is strongly prime and a is not in I , we obtain x ∈ I and I = (I : a).

(b) =⇒ (a) Let I be a proper right ideal of R. Again by [6, Theorem 4.2], I is prime.
We are going to show that I ∈ sp(R). If there were elements x, y in R\I such that xIy ⊆ I
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and xy ∈ I , we would get I ⊆ (I : x). Further, xy ∈ I would yield that y ∈ (I : x). Thus,
I would be a proper subset of (I : x), a contradiction. So I ∈ sp(R). �

A ring R is said to be almost commutative (an AC-ring) if for any prime right ideal
P ( 6= R) of R and a is not in P , there exists an element a′ such that aa′ is central and
aa′ is not in P (see [12]).

3.4. Proposition. Let R be an s-unital AC-ring and I ( 6= R) a right ideal of R. Then
I is a prime right ideal if and only if it is strongly prime right ideal.

Proof. It suffices to show that every prime right ideal is strongly prime, as every strongly
prime right ideal is a prime right ideal in a s-unital ring. Let I be a prime right ideal
of R and suppose that ab ∈ I , aIb ⊆ I and b is not in I for some a, b ∈ R. Then there
exists r ∈ R such that br is central and br is not in I . Hence abrR = aRbr ⊆ I implies
that a ∈ I . Thus I is a strongly prime right ideal of R. �

We use radR and N(R) to represent the prime radical and the set of all nilpotent
elements of R, respectively. A ring R is called 2-primal if its prime radical radR coincides
with the set N(R). Note that commutative rings and reduced rings (i.e., rings without
nonzero nilpotent elements) are 2-primal. Thus, 2-primal rings provide a sort of bridge
between commutative and noncommutative ring theory.

3.5. Proposition. Let R be a ring and suppose that every prime right ideal of R is
strongly prime. Then R is 2-primal.

Proof. It suffices to show that P (R) contains all the nilpotent elements of R, because
any element of P (R) is nilpotent. Suppose xn = 0 for some positive integer n. If x is not
in P (R), then there exists a prime right ideal I such that x /∈ I . Since

I∗ = {r ∈ R : Rr ⊆ I}

is the largest two sided ideal of R which is contained in I , the element x /∈ I∗. Since I∗

is prime right, I∗ is strongly prime right by hypothesis. So the ring R/I∗ has no nonzero
divisor of zero since any ideal of a ring is a strongly prime right ideal if and only if it is
completely prime. Hence x̄n = 0 implies that x̄ = 0, a contradiction. �

3.6. Corollary. Let R be an s-unital AC-ring. Then R is 2-primal. �

3.7. Theorem. Let R be a reduced ring with identity. Then R is regular if and only if
every strongly prime right ideal is a maximal right ideal.

Proof. Let I be a strongly prime right ideal of R. Since every one-sided ideal in a reduced
and regular ring is a two-sided ideal, I is a two-sided ideal of R. Hence, I is a completely
prime ideal and R/I is a domain, and hence it is a division ring. Thus, I is a maximal
right ideal.

Conversely, since every completely prime ideal of R is strongly prime and hence max-
imal right by hypothesis, R is strongly regular by [1]. �

3.8. Theorem. Let R be a ring with unity. Then the following are equivalent.

(a) R is 2-primal and sp(R) ⊆ m(R).
(b) R/radR is strongly regular.

Proof. (a) =⇒ (b) Let R = R/radR. Then R has no nonzero nilpotent elements. Since

sp(R) ⊆ m(R), we have sp(R) ⊆ m(R). Thus, R is strongly regular.

(b) =⇒ (a) It is clear that sp(R) ⊆ m(R). By [6, Corollary 2.2], and since any strongly
prime right ideal is prime right, we have that radR is contained in every element of sp(R).
Therefore, radR = N(R). �
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In [4], we proved the following:

3.9. Theorem. [4, Corollary 2] Let R be a regular ring. Then R is reduced if and only
if p(R) ⊆ sp(R). �

3.10. Proposition. Let R be a regular ring. If R is 2-primal, then p(R) ⊆ sp(R).

Proof. By [5, Proposition 3], a regular 2-primal ring is reduced. By Theorem 3.9, every
prime right ideal is strongly prime. �

We ask now the following question: If R is a 2-primal ring is it true that p(R) ⊆ sp(R)?

3.11. Proposition. Let R be a regular ring. If I is a strongly prime right ideal, then I
is modular if and only if N(I) \ I 6= ∅.

Proof. Let a ∈ N(I) \ I . Then aI ⊆ I , so I ⊆ (I : a). Take any b in (I : a), then by the
definition of (I : a), we have ab ∈ I . Therefore, aIb ⊆ I and ab ∈ I . Since I is a strongly
prime right ideal and a is not in I , we get (I : a) = I . Since R is regular, there is x ∈ R
such that axa = a. Then axar = ar for every r ∈ R, which implies a(xar − r) = 0.
Hence xar − r ∈ (I : a) = I . So, I is modular.

Conversely, let I be modular. So there exist e ∈ R such that er − r ∈ I for all r ∈ R,
hence eb − b ∈ I for all b ∈ I , so eI ⊆ I . This means that e ∈ I , but e is not in I . Thus
N(I) \ I 6= ∅. �

3.12. Corollary. [7] If I is a maximal right ideal of a regular ring R, then I is modular
if and only if N(I) \ I 6= ∅. �

3.13. Proposition. Let R be a right s-unital ring and I an essential strongly prime right
ideal. If L = {x ∈ R : xI = 0}, then L2 = 0.

Proof. If x 6= 0, y 6= 0 are elements in L, then I ∩ yR 6= 0 and x(yr) = 0 for some r ∈ R
such that 0 6= yr ∈ I . Suppose that xy 6= 0. As yr ∈ I and yIr = 0, we obtain either
y ∈ I or r ∈ I . Hence y is not in I . So r ∈ I . This contradicts the fact that yr 6= 0.
Therefore L2 = 0. �
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