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Abstract

In this study, in order to determine the one-stage sample size, power
comparisons were made in the R̃ test suggested by Chen et al. for or-
dered alternatives, and the Jonckheere-Terpstra J test, which is one of
the classic test statistics, was compared with R̃ in terms of effective-
ness. The simulation concerning power comparisons showed that it is
impossible to randomly select the one-stage sample size represented by
n0 in R̃, based on one-stage sampling, and that the one-stage sample
size should be as large as possible. In addition, the recently-suggested
R̃ test statistic for ordered alternatives was compared with J in terms
of experimental type-I error and power. Whilst R̃ and J yielded almost
the same results in terms of experimental type-I error, R̃ was found to
give a worse performance than J with regard to power. The results ob-
tained were validated for different sample sizes and different numbers
of populations.
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1. Introduction

Let Xi1, Xi2, . . . , Xini
, i=1,2,. . . ,k, be independent samples from k populations with

a mean µi and a variance σ2
i , the size of which is ni. In the test of the null hypothesis

H0 : µ1 = . . . = µk = µ against H1:in which at least two of the µi are different, under
normality of population distributions and homogeneity of variances, an F statistic with
degrees of freedom k−1 and

∑k

i=1
ni−k is used. Without these assumptions, the Kruskal-

Wallis H or Median Test could be used instead of the F test. Without homogeneity of
variances, Bishop [3], Bishop and Dudewicz [4, 5], Chen [8], Chen and Chen [9], Gamage

∗Gazi University, Department of Statistics, Teknikokullar, 06500 Beşevler, Ankara, Turkey.
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et al. [12], Gerami and Zahedian [13], Lee and Ahn [17], Rice and Gaines [20], Weerahandi
[22], Xu and Wong [24, 25] have suggested using different test statistics to test H0 against
H1.

In some cases, the preliminary information the researcher has obtained could be suit-
able for forming H1 as either

H1 : µ1 ≤ µ2 ≤ . . . ≤ µk

or

H1 : µ1 ≥ µ2 ≥ . . . ≥ µk,

with at least one inequality being strict.

Such a hypothesis is known as the ordered alternative hypothesis. To test H0 against
the ordered alternative hypothesis, Jonckheere [16] and Terpstra [21] independently sug-
gested the same test. Subsequently, Archambault et al. [1], Odeh [18], Puri [19],
Hettmansperger and Norton [15], Chacko [7], Bartholomew [2] and Chen et al. [10]
studied the same subject.

The primary concern of this study is to determine the one-stage sample size in Chen-
Chen-Chang’s R̃ (referred to here and later as R̃). The reason why this study deals with

R̃ is threefold. Firstly, R̃ is one of the latest tests suggested for ordered alternatives.
Secondly, the article in which R̃ appears seems not to have reported sufficient power
comparisons. Thirdly, and most importantly, Chen [8] maintains that it is possible to

randomly select the one-stage sample size represented by n0 in R̃; however, it is argued
in this paper that this is not the case. Another concern is to compare the performances
of R̃ with Jonckheere-Terpstra’s J (referred to here and later as J), even when the one-

stage sample size is selected as the most appropriate. To this end, in Section 2 R̃ and
in Section 3 J , are introduced. Section 4 deals with the calculation of critical values
for each of these. Then, in Section 5, power comparisons are made in R̃ to determine
the one-stage sample size, and the tests are compared in terms of experimental type-I
error and power using simulation for different values of k, ni, µi and α. The last section
presents conclusions and suggestions.

2. Chen-Chen-Chang’s R̃ test

Suggested by Chen et al. [10], R̃ is based upon one-stage sampling. Further, there is
also a test statistic based on two-stage sampling. However, Chen et al. [10] state that
both one-stage and two-stage sampling have the same power. Therefore, this study uses
only one-stage sampling.

Let Xi1, Xi2, . . . , Xini
, i = 1, 2, . . . , k, be independent samples from k populations

with a mean µi and a variance σ2
i , the size of which is ni (ni ≥ 3) without variance

homogeneity, and define for each sample 2 ≤ n0 < ni, the known sample mean and the
sample variance concerning the data including n0 observation as

X̄i =
1

n0

n0
∑

j=1

Xij and S2
i =

1

n0 − 1

n0
∑

j=1

(Xij − X̄i)
2,

respectively. Assuming

z∗ = max

{

S2
1

n1

,
S2

2

n2

, . . . ,
S2

k

nk

}

,

then

ti =
X̃i − µi√

z∗
, i = 1, 2, . . . , k,
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where X̃i represents the weighted sample mean [10]. In such a case, the test statistics is
defined as

R̃ = max1≤r≤k

1

r

r
∑

i=1

(

ti +
µi√
z∗

)

− min1≤r≤k

1

k − r + 1

k
∑

i=r

(

ti +
µi√
z∗

)

Under H0, the null distribution of R̃ is

Q̃ = max1≤r≤k

1

r

r
∑

i=1

ti − min1≤r≤k

1

k − r + 1

k
∑

i=r

ti.

From the distribution of Q̃, in the case of P (Q̃ > qα,k,v) = α, if R̃c > qα,k,v, H0 is rejected.

Here R̃c represents the value calculated from the sample and qα,k,v is the critical value.
For the various combinations of v = 3, 5, 9, 14, 19, 24, 29, 59 and k = 3, 4, 6, 10, the critical
values qα,k,v were calculated by Chen et al. [10] using Monte Carlo simulation .

3. Jonckheere-Terpstra’s J test

Let Xi1, Xi2, . . . , Xini
be independent samples of size ni from populations with con-

tinuous cumulative distribution function Fi(x), i = 1, 2, . . . , k.

For the i and j th samples, the Mann-Whitney U statistic is defined as

Uij =

ni
∑

s=1

nj
∑

t=1

D(Xjt − Xis),

where

D(u) =

{

1 u > 0,

0 u ≤ 0,

see [14]. The statistic suggested by Jonckheere [16] and Terpstra [21] to test H0 against
the ordered alternative, is the sum of the Mann-Whitney statistics, that is

J =
k−1
∑

i=1

k
∑

j=i+1

Uij .

When k = 3, n1, n2, n3 = 2, 3, . . . , 8 there are already existing tables containing critical
values derived from the exact distributions of J [11]. However, these tables are very lim-
ited in nature with respect to the size of population and the sample size. For instance,
the existing tables do not contain exact critical values for k > 3; asymptotic distributions
are used, therefore. Bucchianico [6] and Wiel [23] have established that using asymptotic
distributions, especially when the sample size is not large enough, is misleading as it
brings about flawed results. Hence, they have extended the existing tables using algo-
rithms based upon computer algebra and by calculating exact critical values for various
non-parametric tests.

In the simulation study in Section 5, the approach suggested by Wiel [23] is used to
calculate the critical values for J .

If Jc > J ′
α, where Jc is the value calculated from the sample and J ′

α is the critical
value for J , then H0 against the ordered alternative is rejected.
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4. Calculation of critical values

The critical values qα,k,v were obtained through Monte Carlo simulation for different
sizes of population and sample sizes. In the simulation study, for the different values
of k and n, the Q value was calculated by using the values of ti = Z/

√

Y/v, i =
1, 2, . . . , k, where Z is the random variable of the standard normal distribution, and Y
is the chi-square with v = n0 − 1 degrees of freedom. The probability distribution of Q
was formed after 10000 simulation runs. This process was replicated 20 times. When
α = 0.01, 0.05, 0.10 and P (Q̃ > qα,k,v) = α, the average values of 20 critical points were

calculated. This average was used as the critical value of R̃ in the simulation study.

There are existing critical values for J for a limited number of cases of k and n, such
as k = 3 and n1, n2, n3 = 2, 3, . . . , 8 [11]. To calculate the critical values of J ′

α, Wiel [23]
has suggested a method based on the probability generating function of this statistic,
and this method could be used for a wide range of values of k and n. Wiel [23] has stated
that the critical values generated previously are very limited and that using a normal
distribution is not proper if the sample size is not very large. Thus, the critical values
generated using the method suggested by Wiel were used in the simulation of this study.

5. Simulation study

In this section we first describe a simulation study to determine the value of n0 which
was carried out before the comparisons. Chen et al. [10] have pointed out that n0 could
have any value (2 ≤ n0 < ni). This simulation was done to find out the best value n0

could take. To obtain power values, for k = 3 as ni = 3(1)10(5)20(10)30, for k = 4 as
ni = 3(1)10(5)20, for k = 5 as ni = 3(1)10(5)15, for k = 10 as ni = 3(1)7, the values of
Xij were randomly generated from a normal distribution with a mean of 95 + 5i and a
variance of (2+2i)2 (i = 1, 2, . . . , k). With this, the rejection ratio of the null hypothesis
in 10000 iterations, that is the power of test, was calculated. In this procedure, the value
of n0 was taken from the extremes (n0 = 2 and n0 = n − 1). The results are illustrated
in Table 1.

Table 1. Power values for R̃ calculated using the data generated from
Xij ∼ N((95 + 5i), (2 + 2i)2), (i = 1, 2, . . . , k; j = 1, 2, . . . , n),

when n0 = 2 and n0 = n − 1

α

0.01 0.05 0.10

k n n0 = 2 n0 = n − 1 n0 = 2 n0 = n − 1 n0 = 2 n0 = n − 1

3 3 0.0097 0.0102 0.0628 0.0569 0.1400 0.1463

4 0.0130 0.0230 0.0643 0.1661 0.1464 0.3512

5 0.0108 0.0690 0.0638 0.3289 0.1621 0.5047

6 0.0112 0.1458 0.0680 0.4516 0.1761 0.6320

7 0.0106 0.2362 0.0688 0.5630 0.1862 0.7188

8 0.0091 0.3189 0.0768 0.6529 0.1882 0.7817

9 0.0100 0.3931 0.0708 0.7219 0.2103 0.8297

10 0.0084 0.4773 0.0833 0.7619 0.2036 0.8702

15 0.0111 0.7510 0.0878 0.9276 0.2559 0.9600

20 0.0129 0.8958 0.0994 0.9712 0.2971 0.9903

30 0.0120 0.9843 0.1282 0.9968 0.3722 0.9987



Selection of One-Stage Sample Size in Chen-Chen-Chang’s R̃ Test 617

Table 1. Continued

α

0.01 0.05 0.10

k n n0 = 2 n0 = n − 1 n0 = 2 n0 = n − 1 n0 = 2 n0 = n − 1

4 3 0.0112 0.0087 0.0559 0.0613 0.1344 0.1294

4 0.0105 0.0196 0.0634 0.1806 0.1416 0.3962

5 0.0105 0.0816 0.0636 0.3864 0.1447 0.6031

6 0.0125 0.1945 0.0625 0.5657 0.1569 0.7308

7 0.0092 0.3268 0.0623 0.6796 0.1673 0.8117

8 0.0131 0.4587 0.0596 0.7669 0.1695 0.8742

9 0.0098 0.5610 0.0641 0.8398 0.1717 0.9160

10 0.0083 0.6440 0.0712 0.8817 0.1916 0.9415

15 0.0132 0.8842 0.0794 0.9795 0.2288 0.9898

20 0.0104 0.9735 0.0824 0.9948 0.2607 0.9985

5 3 0.0108 0.0090 0.0524 0.0529 0.1204 0.1188

4 0.0104 0.0189 0.0555 0.1933 0.1409 0.4171

5 0.0077 0.0802 0.0575 0.4467 0.1399 0.6602

6 0.0084 0.2386 0.0583 0.6415 0.1460 0.8000

7 0.0123 0.4268 0.0569 0.7661 0.1618 0.8736

8 0.0119 0.5364 0.0646 0.8351 0.1577 0.9221

9 0.0099 0.6598 0.0563 0.8978 0.1554 0.9560

10 0.0078 0.7461 0.0623 0.9291 0.1720 0.9699

15 0.0092 0.9535 0.0708 0.9908 0.1917 0.9965

10 3 0.0108 0.0121 0.0495 0.0532 0.1151 0.1132

4 0.0091 0.0184 0.0560 0.2000 0.1156 0.4475

5 0.0077 0.1184 0.0554 0.5487 0.1156 0.7753

6 0.0107 0.3352 0.0523 0.7958 0.1194 0.9167

7 0.0094 0.5743 0.0542 0.9042 0.1247 0.9648

It was found that whilst the test power values were extremely bad when n0 = 2, they
were better when n0 = n − 1. This result is valid for different values of k and n. For
ease of illustration, the results for α = 0.01, 0.05, 0.10 when k = 3 are demonstrated in
Figure 1.

Figure 1. The power graphics for R̃ formed with the data generated from
Xij ∼ N((95 + 5i), (2 + 2i)2), (i = 1, 2, . . . , k; j = 1, 2, . . . , n),

when k = 3
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As seen in the graphics, the value of n0 must be selected as near to n as the condition
n0 < ni permits, contrary to what Chen et al. [10] have suggested. Considering the
v = n0 − 1 degrees of freedom, such a result is not surprising.

Following the simulation study concerning the identification of n0, J and R̃ were
compared in terms of experimental type-I error and power when α = 0.01, 0.05, 0.10.
Initially, the critical values for J and R̃ were calculated by using the method explained
in Section 4, for k = 3 as ni = 3(1)10(5)20(10)30, for k = 4 as ni = 3(1)10(5)20, for
k = 5 as ni = 3(1)10(5)15, and for k = 10 as ni = 3(1)7. The values obtained concerning
experimental type-I error and power are presented in the tables. For ease of illustration,
we take ni = n for all groups.

The comparisons regarding experimental type-I error were made for two different
cases, and the results tabled separately. In the first case, the mean and variance for all
the populations were the same in the different combinations of values of k and n. Here,
the values of Xij were randomly generated from normal distributions with a mean of 100
and a variance of 16, and the rejection ratio of the null hypothesis in 10000 iterations, that
is the values of the experimental type-I error, were calculated for both tests (Table 2).

In the second case, the values of the experimental type-I error were calculated un-
der unequal variance. Here, the values of Xij were randomly generated from a normal
distributions with a mean of 100 and a variance of (2 + 2i)2, i = 1, 2, . . . , k (Table 3).

Table 2. Experimental type-I errors of J and R̃ when n0 = n − 1, calculated
using the data generated from Xij ∼ N(100, 16), (i = 1, 2, . . . , k; j = 1, 2, . . . , n)

α

0.01 0.05 0.10

k n J R̃ J R̃ J R̃

3 3 0.0046 0.0102 0.0347 0.0517 0.0990 0.0993

4 0.0104 0.0074 0.0457 0.0462 0.0830 0.0982

5 0.0081 0.0096 0.0471 0.0489 0.0848 0.1020

6 0.0092 0.0100 0.0501 0.0529 0.0901 0.1005

7 0.0111 0.0084 0.0469 0.0512 0.0936 0.0951

8 0.0091 0.0110 0.0519 0.0519 0.1010 0.0988

9 0.0090 0.0097 0.0441 0.0547 0.0963 0.1025

10 0.0088 0.0099 0.0492 0.0488 0.0916 0.0962

15 0.0083 0.0095 0.0464 0.0489 0.1046 0.0980

20 0.0083 0.0096 0.0544 0.0505 0.0981 0.0985

30 0.0095 0.0107 0.0481 0.0482 0.0998 0.0995

4 3 0.0080 0.0095 0.0382 0.0470 0.0908 0.0951

4 0.0097 0.0116 0.0432 0.0513 0.0910 0.0991

5 0.0097 0.0120 0.0509 0.0470 0.0963 0.0980

6 0.0103 0.0104 0.0491 0.0511 0.0994 0.1037

7 0.0102 0.0102 0.0507 0.0513 0.0964 0.1024

8 0.0085 0.0113 0.0452 0.0523 0.1026 0.1024

9 0.0098 0.0077 0.0500 0.0477 0.0984 0.0943

10 0.0088 0.0085 0.0508 0.0483 0.1004 0.0975

15 0.0081 0.0100 0.0479 0.0529 0.0981 0.1007

20 0.0084 0.0088 0.0499 0.0539 0.1018 0.0933



Selection of One-Stage Sample Size in Chen-Chen-Chang’s R̃ Test 619

Table 2. Continued

α
0.01 0.05 0.10

k n J R̃ J R̃ J R̃

5 3 0.0075 0.0126 0.0493 0.0504 0.0869 0.0913
4 0.0101 0.0106 0.0430 0.0485 0.0932 0.1050
5 0.0098 0.0117 0.0492 0.0504 0.0899 0.1047
6 0.0092 0.0119 0.0484 0.0498 0.1016 0.0989
7 0.0103 0.0101 0.0440 0.0519 0.0955 0.0940
8 0.0102 0.0098 0.0495 0.0539 0.0958 0.1008
9 0.0105 0.0087 0.0469 0.0497 0.0995 0.0962
10 0.0097 0.0099 0.0481 0.0507 0.0947 0.1001
15 0.0104 0.0094 0.0460 0.0487 0.0985 0.1030

10 3 0.0099 0.0092 0.0509 0.0481 0.1005 0.1062
4 0.0108 0.0097 0.0488 0.0476 0.0961 0.1071
5 0.0093 0.0080 0.0522 0.0500 0.1013 0.1018
6 0.0106 0.0099 0.0468 0.0465 0.0962 0.0995
7 0.0076 0.0107 0.0488 0.0507 0.1024 0.1033

It can be concluded from Table 2 that for the cases where the variance is the same, the
values of the experimental type-I error of both tests are very close to nominal type-I
error, and this is also valid in different values of k and n.

Table 3. Experimental type-I errors of J and R̃ when n0 = n − 1, calculated
using the data generated from Xij ∼ N(100, (2 + 2i)2),

(i = 1, 2, . . . , k; j = 1, 2, . . . , n)

α
0.01 0.05 0.10

k n J R̃ J R̃ J R̃

3 3 0.0048 0.0117 0.0388 0.0514 0.0961 0.1014
4 0.0123 0.0097 0.0474 0.0499 0.0845 0.0997
5 0.0087 0.0086 0.0448 0.0469 0.0903 0.0973
6 0.0119 0.0088 0.0526 0.0481 0.0942 0.1034
7 0.0093 0.0100 0.0495 0.0530 0.0894 0.0925
8 0.0120 0.0104 0.0494 0.0498 0.1021 0.1048
9 0.0103 0.0091 0.0485 0.0491 0.0935 0.1011
10 0.0097 0.0117 0.0529 0.0513 0.1002 0.0967
15 0.0095 0.0099 0.0482 0.0529 0.1012 0.1050
20 0.0119 0.0107 0.0522 0.0496 0.1021 0.1035
30 0.0106 0.0105 0.0531 0.0503 0.1019 0.0989

4 3 0.0079 0.0090 0.0403 0.0489 0.0933 0.1023
4 0.0106 0.0092 0.0460 0.0514 0.0958 0.0989
5 0.0097 0.0111 0.0523 0.0472 0.0980 0.1007
6 0.0109 0.0098 0.0495 0.0473 0.0976 0.1028
7 0.0099 0.0096 0.0518 0.0494 0.1035 0.0986
8 0.0099 0.0109 0.0479 0.0522 0.1047 0.0973
9 0.0106 0.0107 0.0524 0.0474 0.0992 0.0996
10 0.0122 0.0125 0.0535 0.0527 0.1028 0.1051
15 0.0108 0.0089 0.0540 0.0456 0.1019 0.1070
20 0.0103 0.0102 0.0485 0.0528 0.0992 0.1003
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Table 3. Continued

α

0.01 0.05 0.10

k n J R̃ J R̃ J R̃

5 3 0.0075 0.0088 0.0493 0.0484 0.0891 0.0966

4 0.0092 0.0117 0.0482 0.0497 0.1018 0.1020

5 0.0092 0.0108 0.0538 0.0494 0.1014 0.1074

6 0.0118 0.0092 0.0546 0.0462 0.1004 0.0984

7 0.0122 0.0098 0.0510 0.0484 0.1023 0.0983

8 0.0108 0.0093 0.0493 0.0506 0.0986 0.1039

9 0.0122 0.0117 0.0524 0.0517 0.0997 0.1117

10 0.0124 0.0119 0.0527 0.0518 0.1068 0.0967

15 0.0098 0.0103 0.0562 0.0539 0.1065 0.0956

10 3 0.0104 0.0096 0.0506 0.0494 0.1030 0.0950

4 0.0123 0.0104 0.0552 0.0527 0.0969 0.0967

5 0.0105 0.0086 0.0494 0.0496 0.1071 0.1058

6 0.0118 0.0122 0.0549 0.0494 0.1060 0.0995

7 0.0113 0.0083 0.0527 0.0506 0.1046 0.1046

Similarly, it can be concluded from Table 3 that for the cases where the variance is
different, the values of the experimental type-I error of both tests are very close to the
nominal type-I error again, and this is also valid for different values of k and n.

In the power of test comparisons, two cases were considered. The first was when
variances were equal, but means were not. Here, firstly the values of Xij were randomly
generated from normal distributions with a mean of (99 + i), i = 1, 2, . . . , k, and a
variance of 16, and the rejection ratio of the null hypothesis in 10000 iterations, that is
the power of the test was calculated. Then, the values of Xij were randomly generated
from normal distributions with a mean of (95 + 5i), i = 1, 2, . . . , k, and a variance of 16
and the rejection ratio of the null hypothesis in 10000 iterations, that is the power of the
test was calculated (Tables 4-5). The reason why the means were taken in this way was
to check the sensitivity of both tests to variations in the mean.

Table 4 shows the power values when the variance was the same while there were
minor variations in the means. It is obvious from the table that the power values of J
are bigger than those of R̃. This does not change even when the number of population
or the sample size becomes larger. Figure 2 (a) shows the related result when k = 3 and
α = 0.05.

Table 5 demonstrates the power values for the case where there was a bigger variation
in the means than those in Table 4, with the variance being the same. It is seen that the
power values of J tended to be bigger than those of R̃. When k = 3 and α = 0.05 (Figure

2 (b)), the difference between the values of J and those of R̃ is more visible, especially in
small sample sizes. When the sample size becomes larger, the power values of both tests
approximate to 1, but this approximation is faster in J .
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Table 4. Power of J and R̃ when n0 = n − 1, calculated using the data
generated from Xij ∼ N((99 + i), 16), (i = 1, 2, . . . , k; j = 1, 2, . . . , n)

α

0.01 0.05 0.10

k n J R̃ J R̃ J R̃

3 3 0.0154 0.0115 0.1069 0.0506 0.2256 0.1073

4 0.0422 0.0111 0.1472 0.0738 0.2340 0.1507

5 0.0419 0.0165 0.1736 0.0921 0.2640 0.1803

6 0.0558 0.0243 0.1970 0.1149 0.3062 0.2185

7 0.0659 0.0269 0.2147 0.1379 0.3188 0.2489

8 0.0807 0.0358 0.2300 0.1600 0.3588 0.2652

9 0.0877 0.0487 0.2497 0.1711 0.3728 0.2882

10 0.0898 0.0495 0.2756 0.1945 0.4062 0.3229

15 0.1471 0.0976 0.3574 0.2819 0.5039 0.4224

20 0.1966 0.1406 0.4501 0.3589 0.5872 0.5167

30 0.3218 0.2361 0.5864 0.4996 0.7202 0.6455

4 3 0.0557 0.0105 0.1753 0.0502 0.3267 0.1072

4 0.0897 0.0120 0.2459 0.0772 0.3711 0.1651

5 0.1104 0.0181 0.3158 0.1203 0.4395 0.2302

6 0.1280 0.0287 0.3492 0.1618 0.4968 0.2819

7 0.1643 0.0469 0.3933 0.2040 0.5570 0.3410

8 0.1855 0.0634 0.4322 0.2380 0.5897 0.3909

9 0.2189 0.0873 0.4764 0.2797 0.6100 0.4187

10 0.2411 0.0966 0.5122 0.3073 0.6581 0.4570

15 0.3914 0.2072 0.6612 0.4740 0.7979 0.6257

20 0.5317 0.3115 0.7756 0.6166 0.8730 0.7531

5 3 0.1003 0.0111 0.3345 0.0527 0.4731 0.1109

4 0.1601 0.0109 0.4103 0.0868 0.5823 0.1834

5 0.2250 0.0245 0.5064 0.1439 0.6398 0.2829

6 0.2867 0.0419 0.5602 0.2206 0.7114 0.3789

7 0.3591 0.0674 0.6243 0.2753 0.7567 0.4490

8 0.4018 0.1064 0.6811 0.3540 0.8009 0.5143

9 0.4487 0.1444 0.7373 0.4007 0.8408 0.5818

10 0.5154 0.1702 0.7654 0.4834 0.8687 0.6298

15 0.7266 0.3960 0.9014 0.6819 0.9509 0.8183

10 3 0.8902 0.0109 0.9799 0.0486 0.9914 0.1070

4 0.9701 0.0144 0.9951 0.1378 0.9986 0.3431

5 0.9934 0.0611 0.9993 0.4062 0.9999 0.6598

6 0.9982 0.2012 1.0000 0.6759 1.0000 0.8438

7 0.9999 0.4028 1.0000 0.8240 1.0000 0.9211
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Table 5. Power of J and R̃ when n0 = n − 1, calculated using the data
generated from Xij ∼ N((95 + 5i), 16), (i = 1, 2, . . . , k; j = 1, 2, . . . , n)

α

0.01 0.05 0.10

k n J R̃ J R̃ J R̃

3 3 0.3518 0.0097 0.7697 0.0684 0.9214 0.1792

4 0.7117 0.0297 0.9209 0.3362 0.9638 0.5688

5 0.8415 0.1782 0.9670 0.6320 0.9879 0.8119

6 0.9277 0.4189 0.9899 0.8051 0.9970 0.9066

7 0.9647 0.6481 0.9957 0.9081 0.9988 0.9498

8 0.9856 0.7738 0.9980 0.9500 0.9998 0.9773

9 0.9932 0.8730 0.9998 0.9711 0.9995 0.9891

10 0.9973 0.9329 0.9996 0.9859 1.0000 0.9929

15 0.9999 0.9967 1.0000 0.9994 1.0000 0.9998

20 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 3 0.9215 0.0104 0.9914 0.0707 0.9982 0.1795

4 0.9907 0.0530 0.9992 0.4937 0.9998 0.7681

5 0.9987 0.4119 0.9999 0.8696 1.0000 0.9467

6 1.0000 0.8097 1.0000 0.9645 1.0000 0.9832

7 1.0000 0.9296 1.0000 0.9894 1.0000 0.9969

8 1.0000 0.9792 1.0000 0.9977 1.0000 0.9990

9 1.0000 0.9919 1.0000 0.9991 1.0000 0.9995

10 1.0000 0.9977 1.0000 0.9996 1.0000 0.9998

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 3 0.9987 0.0116 1.0000 0.0711 1.0000 0.1747

4 1.0000 0.0747 1.0000 0.6931 1.0000 0.8944

5 1.0000 0.7146 1.0000 0.9664 1.0000 0.9882

6 1.0000 0.9559 1.0000 0.9948 1.0000 0.9985

7 1.0000 0.9930 1.0000 0.9996 1.0000 0.9994

8 1.0000 0.9986 1.0000 0.9998 1.0000 0.9999

9 1.0000 0.9998 1.0000 0.9999 1.0000 1.0000

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 3 1.0000 0.0098 1.0000 0.0677 1.0000 0.2181

4 1.0000 0.5409 1.0000 0.9936 1.0000 0.9980

5 1.0000 0.9991 1.0000 1.0000 1.0000 1.0000

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

In the second case, the power of the test was calculated under unequal variance. The
values of Xij were randomly generated from normal distributions with a mean of (99+ i),
i = 1, 2, . . . , k, and a variance of (2 + 2i)2, i = 1, 2, . . . , k, and the power of the test was
calculated. Then, the values of Xij were randomly generated from normal distributions
with a mean of (95 + 5i), i = 1, 2, . . . , k and a variance of (2 + 2i)2, i = 1, 2, . . . , k,



Selection of One-Stage Sample Size in Chen-Chen-Chang’s R̃ Test 623

and power values were calculated (Tables 6-7). The MATLAB code for both tests were
developed by the present authors.

Table 6. Power of J and R̃ when n0 = n − 1, calculated using the data
generated from Xij ∼ N((99 + i), (2 + 2i)2), (i = 1, 2, . . . , k; j = 1, 2, . . . , n)

α

0.01 0.05 0.10

k n J R̃ J R̃ J R̃

3 3 0.0122 0.0118 0.0768 0.0554 0.1736 0.1096

4 0.0256 0.0095 0.1000 0.0635 0.1733 0.1272

5 0.0269 0.0140 0.1199 0.0683 0.1963 0.1438

6 0.0346 0.0180 0.1362 0.0797 0.2164 0.1740

7 0.0369 0.0213 0.1391 0.0951 0.2214 0.1793

8 0.0453 0.0228 0.1514 0.1040 0.2566 0.1834

9 0.0480 0.0265 0.1496 0.1071 0.2578 0.1969

10 0.0452 0.0287 0.1701 0.1154 0.2710 0.2157

15 0.0720 0.0427 0.2176 0.174 0.4145 0.2524

20 0.0894 0.0546 0.2655 0.1820 0.5133 0.2881

30 0.1408 0.0828 0.3422 0.2313 0.6449 0.3540

4 3 0.0091 0.0100 0.0547 0.0465 0.1073 0.1071

4 0.0118 0.0122 0.0760 0.0582 0.1643 0.1296

5 0.0180 0.0167 0.1126 0.0789 0.2366 0.1604

6 0.0340 0.0182 0.1551 0.0880 0.2898 0.1823

7 0.0464 0.0217 0.1928 0.1050 0.3357 0.1933

8 0.0584 0.0256 0.2292 0.1173 0.3944 0.2190

9 0.0814 0.0293 0.2630 0.1268 0.4315 0.2316

10 0.0959 0.0328 0.3110 0.1432 0.4657 0.2381

15 0.2061 0.0541 0.4680 0.1840 0.6350 0.3060

20 0.3135 0.0739 0.6220 0.2277 0.7447 0.3505

5 3 0.0103 0.0095 0.0497 0.0529 0.1107 0.1048

4 0.0121 0.0121 0.0911 0.0611 0.1778 0.1297

5 0.0243 0.0143 0.1498 0.0788 0.2797 0.1587

6 0.0395 0.0216 0.2169 0.0988 0.3704 0.1824

7 0.0600 0.0219 0.2819 0.1038 0.4493 0.2109

8 0.0925 0.0270 0.3280 0.1286 0.5171 0.2271

9 0.1410 0.0324 0.4135 0.1391 0.5772 0.2391

10 0.1716 0.0378 0.4459 0.1530 0.6341 0.2622

15 0.3799 0.0678 0.6891 0.2076 0.8187 0.3427

10 3 0.0083 0.0100 0.0544 0.0520 0.1092 0.0950

4 0.0191 0.0132 0.1365 0.0605 0.3405 0.1326

5 0.0684 0.0133 0.4236 0.0818 0.6637 0.1691

6 0.2137 0.0223 0.6823 0.1069 0.8386 0.2123

7 0.4010 0.0244 0.8296 0.1374 0.9236 0.2364
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Table 7. Power of J and R̃ when n0 = n − 1, calculated using the data
generated from Xij ∼ N((95 + 5i), (2 + 2i)2), (i = 1, 2, . . . , k; j = 1, 2, . . . , n)

α

0.01 0.05 0.10

k n J R̃ J R̃ J R̃

3 3 0.1479 0.0102 0.4694 0.0569 0.6851 0.1463

4 0.3518 0.0230 0.6402 0.1661 0.7545 0.3512

5 0.4428 0.0690 0.7418 0.3289 0.8434 0.5047

6 0.5703 0.1458 0.8233 0.4516 0.9088 0.6320

7 0.6501 0.2362 0.8673 0.5630 0.9335 0.7188

8 0.7347 0.3189 0.9117 0.6529 0.9609 0.7817

9 0.7926 0.3931 0.9398 0.7219 0.9700 0.8297

10 0.8357 0.4773 0.9590 0.7619 0.9840 0.8702

15 0.9678 0.7510 0.9945 0.9276 0.9986 0.9600

20 0.9935 0.8958 0.9991 0.9712 0.9996 0.9903

30 1.0000 0.9843 1.0000 0.9968 1.0000 0.9987

4 3 0.4375 0.0087 0.7212 0.0613 0.8674 0.1294

4 0.6501 0.0196 0.8610 0.1806 0.9345 0.3962

5 0.7640 0.0816 0.9379 0.3864 0.9733 0.6031

6 0.8573 0.1945 0.9671 0.5657 0.9870 0.7308

7 0.9197 0.3268 0.9849 0.6796 0.9959 0.8117

8 0.9579 0.4587 0.9921 0.7669 0.9980 0.8742

9 0.9767 0.5610 0.9966 0.8398 0.9990 0.9160

10 0.9865 0.6440 0.9985 0.8817 0.9997 0.9415

15 0.9994 0.8842 1.0000 0.9795 1.0000 0.9898

20 1.0000 0.9735 1.0000 0.9948 1.0000 0.9985

5 3 0.6665 0.0090 0.9080 0.0529 0.9518 0.1188

4 0.8448 0.0189 0.9648 0.1933 0.9883 0.4171

5 0.9399 0.0802 0.9893 0.4467 0.9966 0.6602

6 0.9716 0.2386 0.9967 0.6415 0.9997 0.8000

7 0.9895 0.4268 0.9986 0.7661 0.9995 0.8736

8 0.9960 0.5364 0.9998 0.8351 1.0000 0.9221

9 0.9981 0.6598 1.0000 0.8978 1.0000 0.9560

10 0.9999 0.7461 1.0000 0.9291 1.0000 0.9699

15 1.0000 0.9535 1.0000 0.9908 1.0000 0.9965

10 3 0.9984 0.0121 0.9999 0.0532 1.0000 0.1132

4 0.9999 0.0184 1.0000 0.2000 1.0000 0.4475

5 1.0000 0.1184 1.0000 0.5487 1.0000 0.7753

6 1.0000 0.3352 1.0000 0.7958 1.0000 0.9167

7 1.0000 0.5743 1.0000 0.9042 1.0000 0.9648

It is obvious from Table 6 and Table 7 that R̃ yielded worse results than the classic J
under unequal variances in terms of power. It is remarkable that especially for Table 6,
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where there are minor variations in the means, as the sample size and the size of the
population became larger, the power values of the two tests increased, but the difference
between J and R̃ got larger and larger, with R̃ changing more slowly. However, when
the variation in the means was larger, there was a small improvement in R̃. Still, J in
all cases yielded better results.

For the ease of illustration of these cases, the results for k = 3 and α = 0.05 are
presented in Figure 2 (c) and 2 (d).

Figure 2. The power values of J and R̃ when k = 3 and α = 0.05

(a) (b)

(c) (d) 

6. Conclusion

The results obtained in this study can be summarized for two cases. The first is about
the selection of n0 in R̃. Chen et al. [10] have stated that n0 could be selected randomly
(2 ≤ n0 < ni). However, this study has established that the selection of n0 is important.
When n0 = 2 , the power of the test is extremely bad, and this changes only slightly
when the sample size becomes larger. No variation in test power is apparent for the
different values of k and n, especially for α = 0.01.

It has been observed that as ni increases, there is little increase in the power of test
for α = 0.05 and α = 0.10. On the other hand, it has been discovered that if n0 is chosen
as large as possible, such as n0 = ni − 1, the results obtained are better than those when
n0 = 2. Since v = n0 − 1, this is a statistically expected outcome.

The second case is about the results obtained from the comparison of R̃ and J in
terms of experimental type-I error and power. Both tests yielded almost the same results
in terms of experimental type-I error. For different values of k, ni and nominal type-I
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error, the values of the experimental type-I error for both tests obtained were near the
nominal type-I error. For all values of k, ni and nominal type-I error, the power values
of R̃ were worse than those of J . Therefore, R̃ exhibits a worse performance than the
classic J , even though it is a more recent test recommended for ordered alternatives.
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