A STUDY ON RARE m_X SETS AND RARELY m_X CONTINUOUS FUNCTIONS

Sharmistha Bhattacharya (Halder)*

Received 15:02:2008 : Accepted 28:10:2009

Abstract

The aim of this paper is to introduce the concept of rare m_X sets, dense m_X sets and rarely m_X continuous functions. Some properties of these sets are studied and it is shown that only the null set is both a rare m_X set and an open m_X set.

Keywords: m_X set, Rare set, Rarely continuous function.

2000 AMS Classification: $54 \operatorname{A} 05$.

1. Introduction

The family of all semi-open (resp. preopen, α - open, β - open, regular open) sets in (X, τ) is denoted by SO(X) (resp. PO(X), $\alpha(X)$, $\beta(X)$, RO(X)). Obviously, SO(X) (PO(X), $\alpha(X)$, $\beta(X)$ and RO(X)) are minimal structures on X. The concept of m_X open sets and m_X - closed sets in ordinary topological space has been introduced by Popa and Noiri [10]. It is to be noted that none of these sets forms even a supra topological space. So, a new concept of open m_X set and closed m_X set are defined which form a supra topological space and a dual supra topological space. Then, a new concept of rare m_X [resp., dense m_X] set is introduced, and it is shown that only the null [resp., the universal] set is a rare m_X [resp dense m_X] set and an open m_X [resp closed m_X] set jointly.

It can be shown that these sets form a pseudo [resp., dual pseudo] supra topological space. The concept of closed rare m_X set and open dense m_X set are introduced. Also the concept of rarely m_X - m_Y continuous function is introduced, and it can be shown that if (X, m_X) , (Y, m_Y) are topological spaces then rarely continuous functions and rarely m_X - m_Y continuous functions coincide.

In the next section, some of the important preliminaries required are cited. These are required to proceed further through this paper.

^{*}Department of Mathematics, Tripura University, Suryamaninagar, Tripura, India. E-mail: halder_731@rediffmail.com

2. Preliminaries

In this section some of the important required preliminaries are given.

2.1. Definition. [10] A subfamily m_X of P(X) is called a *minimal structure* on X if $\emptyset \in m_X$ and $X \in m_X$. Each member of m_X is said to be an m_X open set, and the complement of an m_X open set is said to be an m_X closed set. We denote by (X, m_X) a nonempty set X with a minimal structure m_X on X.

2.2. Definition. [10] Let X be a nonempty set and m_X a minimal structure on X. For a subset A of X, m_X - Cl A and m_X - Int A are defined as follows:

$$m_X - \operatorname{Cl} A = \bigcap \{F : A \subseteq F, X \setminus F \in m_X\},\$$
$$m_X - \operatorname{Int} A = \bigcup \{G : G \subseteq A, G \in m_X\}.$$

2.3. Theorem. [10] Let (X, m_X) be a minimal structure. For any subsets A, B of X the following hold:

- (a) $m_X Int(X \setminus A) = X \setminus m_X Cl(A)$.
- (b) $A \in \mathbf{m}_X \implies \mathbf{m}_X \operatorname{Int} A = A$.
- (c) $X \setminus A \in \mathfrak{m}_X \implies \mathfrak{m}_X \operatorname{Cl} A = A$.
- (d) If $A \subseteq B$, m_X Int $A \subseteq m_X$ Int B and m_X Cl $A \subseteq m_X$ Cl B.
- (e) $m_X Int(m_X Int A) = m_X Int A$ and $m_X Cl(m_X Cl A) = m_X Cl A$.

2.4. Definition. [6] A rare set is a set S such that $IntS = \emptyset$, and a dense set is a set S such that ClS = X.

2.5. Definition. [9] A function $f: X \longrightarrow Y$ is called a *rarely continuous function* if for each $x \in X$ and each $G \in O(Y, f(x))$, there exist a rare set R_G with $G \cap \operatorname{Cl}(R_G) = \emptyset$ and $U \in O(X, x)$ such that $f(U) \subseteq G \cup R_G$.

2.6. Definition. [3] A topological space (X, T) is said to be *sub maximal* if every dense subset of X is open in X.

2.7. Definition. [7] A minimal structure m_X on X is said to have property (B) if every union of m_X - open sets is a m_X - open set

2.8. Definition. [11] Let X be a nonempty set, which has a minimal structure m_X , and let A be a subset of X. The m_X - frontier of A, denoted by m_X - Fr(A), is defined by m_X - $Fr(A) = m_X$ - $Cl(A) \cap m_X$ - Cl(X - A)

2.9. Definition. [2] Let $f: (X, m_X) \longrightarrow (Y, m_Y)$ be a mapping from a minimal structure (X, m_X) to a minimal structure (Y, m_Y) . Then, f is said to be an m_X - continuous mapping if the inverse image of an m_X open set is an m_X open set.

Throughout the paper, an ordinary topological space is denoted as T and the complement of a set A is denoted as A^{C} .

3. On open m_X sets

In this section, the concepts of open m_X set and closed m_X set are introduced and the corresponding spaces formed by this sets is identified.

3.1. Definition. Let m_x be a minimal structure on X. A subset A of X is said to be an *open* m_X [resp., *closed* m_X] *set* if m_X - Int A = A [resp., m_X - Cl A = A].

3.2. Example. Let $X = \{a, b, c\}$, $m_X = \{\emptyset, X, \{a\}, \{b\}, \{c\}\}$. Let $A = \{b, c\}$. Then m_X - Int $A = \bigcup \{G : G \subseteq A, G \in m_X\} = \{b\} \cup \{c\} \cup \emptyset = \{b, c\} = A$. Therefore A is an open m_X set. Similarly, A^C is a closed m_X set. But A is not an m_X open set

3.3. Theorem. A subset A of X is an open m_X set iff $X \setminus A$ is a closed m_X set.

Proof. Let A be an open m_X set. Then from the definition, m_X - Int A = A iff $X \setminus [m_X - Int A] = X \setminus A$ iff $m_X - Cl(X \setminus A) = X \setminus A$ iff $X \setminus A$ is a closed m_X set. \Box

3.4. Remark. From Theorem 2.3 (e) it is clear that $m_X - \text{Int } A$ [resp., $m_X - \text{Cl } A$] is an open m_X [resp., a closed m_X] set.

3.5. Remark. If a subset A of X is an m_X open [resp m_X closed] set, then it is an open [resp., a closed] m_X set, but not conversely which follows from the Example 3.2.

3.6. Theorem. In a minimal structure (X, m_X) having property B, m_X open sets and open m_X sets coincide.

Proof. Since arbitrary union of open m_X sets is an m_X open set, so, m_X - Int A = A is an m_X open set. That is, an open m_X set is an m_X open set.

3.7. Remark. Let (X, m_X) be a minimal structure formed from the topological space (X,T). Then if a subset A of (X, m_X) is a closed set then it is a closed m_X set since $\operatorname{Cl} A \subseteq m_X - \operatorname{Cl} A$. Similarly, if a subset A of (X, m_X) is an open set then it is an open m_X set.

3.8. Theorem. The collection of all open m_X sets forms a supra topological space.

Proof. The sets X, \emptyset are obviously open m_X sets. Let $A = \bigcup \{A_\alpha : \alpha \in \Delta\}$ be a union of open m_X sets, i.e. m_X - Int $(A_\alpha) = A_\alpha$ for each α . Now, $A_\alpha \subseteq A$ so $A_\alpha = m_X$ - Int $A_\alpha \subseteq m_X$ - Int A for each α . Hence

 $A = \bigcup \{ A_{\alpha} : \alpha \in \Delta \} \subseteq \mathbf{m}_X \operatorname{-Int} A,$

which gives $A \subseteq m_X$ - Int A. But we know that m_X - Int $A \subseteq A$, so $A = m_X$ - Int A, that is an arbitrary union of open m_X sets is an open m_X set. So, the collection of all open m_X sets forms a supra topological space.

3.9. Remark. Arbitrary (even finite) intersections (unions) of open (closed) m_X sets need not be open (closed) m_X sets. This follows from the following example. Let $X = \{a, b, c\}, m_X = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b\}\}$. Let $A = \{a\}, B = \{c\}$. Then $m_X - \text{Cl} A = \{a\}$ and $m_X - \text{Cl} B = \{c\}$. But $A \cup B = \{a, c\}, m_X - \text{Cl} (A \cup B) = X \neq (m_X - \text{Cl} A) \cup (m_X - \text{Cl} B)$. Similarly, $m_X - \text{Int } A^C \cap m_X$ - Int $B^C \neq m_X$ - Int $(A^C \cap B^C)$.

3.10. Remark. From the above theorem and remark it is clear that the collection of all open m_X sets forms a supra topological space, and the collection of all closed m_X sets forms a dual supra topological space. These may be denoted by (X, T_{m_X}) and $(X, T_{m_X}^C)$, respectively.

4. On rare m_X sets

In this section, the concept of rare m_X set and dense m_X set are defined, and the corresponding spaces are obtained. Also it is shown that the non-null [resp non-universal] rare m_X [resp dense m_X] sets are not open [resp closed] m_X sets. The concept of open dense m_X set and closed rare m_X set is also introduced and the corresponding topological spaces obtained in this section of the paper.

4.1. Definition. A subset A of X is said to be a rare [resp., dense] m_X set if m_X - Int $A = \emptyset$ [resp., m_X - Cl A = X].

4.2. Example. Let $X = \{a, b, c, d\}$ and $m_X = \{X, \emptyset, \{a, b\}\}$. Let $A = \{b, c\}$. Then m_X - Int $A = \emptyset$. Again, $A^C = \{a, d\}$, m_X - Cl $A^C = X$. Therefore, A is a rare m_X -set and A^C a dense m_X set.

4.3. Remark. If $m_X = T$ then rare m_X set and rare set are the same concept. Also, dense m_X set and the dense sets are the same concept.

4.4. Theorem. A subset A of X is a rare m_X set iff A^C is a dense m_X set.

Proof. Obvious.

4.5. Theorem. A subset A of X is both an open [resp., closed] m_X set and a rare [resp., dense] m_X set iff it is the null [resp., universal] set.

Proof. Let A be a set which is an open m_X set (i.e. $m_X - \text{Int } A = A$) and a rare m_X set (i.e. $m_X - \text{Int } A = \emptyset$). Then i.e. $m_X - \text{Int } A = A = \emptyset$, i.e. A is the null set. The proof of the second result is similar.

4.6. Remark. Since m_X open sets are open m_X sets, a non-null m_X open set would be a rare m_X set, which gives a contradiction. Hence no non-null m_X open set is a rare m_X set. Similarly the only m_X closed set which is also a dense m_X set, is X.

4.7. Remark. A subset A of X can be both a rare m_X set and a dense m_X set. This follows from the following example. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, X, \{a, b\}\}$. Consider the set $A = \{a, c\}$. Then $m_X - \operatorname{Cl} A = X$ and $m_X - \operatorname{Int} A = \emptyset$. So, A is both a rare m_X set and a dense m_X set.

4.8. Theorem. A subset A of (X, m_X) is both a rare m_X set and a dense m_X set iff there there exists neither an m_X open set contained in A nor an m_X closed set containing A, except for \emptyset and X.

Proof. Obvious.

4.9. Remark. If a subset A of (X, m_X) is both a rare m_X set and a dense m_X set then A is neither an m_X open set nor an m_X closed set. The converse need not be true, as follows from the following example. Let $X = \{a, b, c\}, m_X = \{\emptyset, X, \{a\}\}$. Let $A = \{b\}$. This is neither an m_X closed set nor an m_X open set, but $m_X - \text{Cl} A = \{b, c\} \neq X$ i.e. A

4.10. Theorem.

Ø

is not a dense m_X set.

- (1) X is a dense m_X set, but not a rare m_X set.
- (2) \emptyset is a rare m_X set, but not a dense m_X set.
- (3) Arbitrary intersections [resp., unions] of rare [resp., dense] m_X sets are rare [resp., dense] m_X sets.

Proof. (1) and (2) are obvious from the definition.

To prove (3), let $A = \bigcap \{A_{\alpha} : \alpha \in \Delta\}$ be an intersection of rare m_X sets, i.e. m_X -Int $A_{\alpha} = \emptyset$ for each $\alpha \in \Delta$. Then $\bigcap \{m_X - \operatorname{Int} A_{\alpha} : \alpha \in \Delta\} = \emptyset$. We know that

$$= \bigcap \{ m_X - \operatorname{Int} A_\alpha : \alpha \in \Delta \} \supseteq m_X - \operatorname{Int} \bigcap \{ A_\alpha : \alpha \in \Delta \},\$$

i.e. $m_X - Int \bigcap (A_\alpha : \alpha \in \Delta) \} = m_X - Int A = \emptyset$. Hence arbitrary intersections of rare m_X sets are rare m_X sets. Similarly it can be proved that arbitrary unions of dense m_X sets are dense m_X sets.

4.11. Remark. Finite unions of rare m_X sets need not be rare m_X sets. This follows from the following example. Let $X = \{a, b, c\}$, $m_X = \{X, \emptyset, \{a\}, \{b, c\}$. Let $A = \{b\}$ and and $B = \{c\}$. Then m_X - Int $A = \emptyset$, m_X - Int $B = \emptyset$. Here $A \cup B = \{b, c\}$, m_X - Int $(A \cup B) = \{b, c\} \neq \emptyset$.

Similarly, $m_X - \operatorname{Cl}(A^C) = X$ and $m_X - \operatorname{Cl}(B^C) = X$, but $m_X - \operatorname{Cl}(A^C \cap B^C) = \{a\} \neq X$.

4.12. Remark. The collection of all rare m_X set forms a pseudo supra topological space, and the collection of all dense m_X sets forms a dual pseudo supra topological space.

4.13. Theorem. A subset A of X is a dense [resp., rare] m_X set iff for every open [resp., closed] m_X set G satisfying $A \subseteq G$ [resp., $A \supseteq G$] we have m_X -Cl $A \supseteq G$ [resp., m_X -Int $A \subseteq G$].

Proof. Let us first assume that A is a dense m_X set and take an open m_X set G with $A \subseteq G$. Then $m_X - \operatorname{Cl} A = X \supseteq G$.

Conversely, let the given condition hold and take G = X. Then G is an open m_X set and $A \subseteq G$, so m_X - Cl $A \supseteq G = X$, i.e. m_X - Cl A = X so A is a dense m_X set. The other part can be proved similarly.

4.14. Remark. A subset A of X is a rare m_X set if there exist no non-null open m_X set contained in A.

4.15. Theorem. The union [resp., intersection] of a dense [resp., rare] m_X set and a closed [resp., open] m_X set is a dense [resp., rare] m_X set.

Proof. Let A be a dense m_X set and F a closed m_X set. If U is a open m_X set with $A \cup F \subseteq U$ then $A \subseteq U$ and so m_X -Cl $A \supseteq U$ by Theorem 4.13. Now,

 $m_X - Cl(A \cup F) \supseteq m_X - ClA \cup F \supseteq U \cup F \supseteq U$,

i.e. the union of a dense m_X set and a closed m_X set is a dense m_X set by Theorem 4.13. The result for rare m_X sets can be similarly proved.

4.16. Theorem. m_X - Cl A [resp., m_X - Int A] is a dense [resp rare] m_X set whenever A is a dense [resp rare] m_X set.

Proof. Clear from Theorem 2.3 (e).

4.17. Remark. Let (X, m_X) be a minimal structure formed from the topological space (X, T). Then if a subset A of (X, m_X) is a dense set it is a dense m_X set since, $ClA \subseteq m_X$ - ClA. Similarly, if a subset A of (X, m_X) is a rare set then it is a rare m_X set.

4.18. Definition. A subset A of X is said to be a *closed rare* [resp., *open dense*] m_X set if the set A is both a closed m_X set and a rare m_X set [resp., an open m_X set and a dense m_X set].

4.19. Example. Let $X = \{a, b, c, d\}$ and $m_X = \{X, \emptyset, \{a\}, \{b\}\}$. Let $A = \{c, d\}, m_X$ - Int $(A) = \emptyset$ and m_X - Cl A = A then A is a closed rare m_X set.

4.20. Remark. Let A be a dense m_X set. Then there exists an open dense m_X set G containing A.

4.21. Theorem. A subset A of X is a closed [resp., open] rare [resp., dense] m_X set iff A is a closed m_X set which does not contain any non-null open m_X set.

Proof. Obvious.

 m_X

4.22. Theorem. If a subset A of X is a dense m_X set then m_X - $Fr(A) = X \setminus m_X$ - Int (A).

Proof. Let A be a dense m_X set i.e. $m_X - ClA = X$. Then,

$$-\operatorname{Fr}(A) = \operatorname{m}_{X} - \operatorname{Cl}(A) \cap \operatorname{m}_{X} - \operatorname{Cl}(X \setminus A)$$
$$= X \cap \operatorname{m}_{X} - \operatorname{Cl}(X \setminus A)$$
$$= \operatorname{m}_{X} - \operatorname{Cl}(X \setminus A)$$
$$= X \setminus \operatorname{m}_{X} - \operatorname{Int}(A).$$

4.23. Theorem. If a subset A of X is a rare m_X set, then $m_X - Fr(A) = m_X - Cl(A)$.

Proof. Similar to the above.

4.24. Theorem. A subset A of X is a both dense m_X set and a rare m_X set iff m_X -Fr(A) = X.

Proof. Necessity follows from the above two theorems. Conversely, Let $m_X - Fr(A) = X$. Then $m_X - Cl(A) \cap m_X - Cl(X \setminus A) = X$, i.e. $m_X - Cl(A) = X$ and $m_X - Cl(X \setminus A) = X$. The first equality shows A is a dense m_X set, and from the second $m_X - Cl(X \setminus A) = X \setminus m_X$ - Int A = X, i.e. m_X - Int $A = \emptyset$, so A is a rare m_X set.

4.25. Theorem.

- (1) \emptyset is a closed rare m_X set.
- (2) Arbitrary intersections of closed rare m_X sets are closed rare m_X sets.

Proof. (1) and (2) are true from Theorem 4.10 and Theorem 3.8.

4.26. Remark. X is not closed rare m_X set, since X is a closed m_X set but not a rare m_X set. Also, arbitrary unions of closed rare m_X sets need not be closed rare m_X sets.

4.27. Remark. The collection of all open dense m_X sets, together with the set \emptyset , forms a supra topological space. This is called the *pseudo open dense* m_X supra topological space, and is denoted by $(X, OD(m_X))$. Likewise, the collection of all closed rare m_X sets forms a dual pseudo closed rare supra topological space which is denoted by $(X, CR(m_X))$.

4.28. Theorem. Let $g: (X, m_X) \to (Y, m_Y)$ be m_X - m_Y continuous and injective. Then g preserves rare m_X sets.

Proof. Suppose that R_G is a rare m_X set but that $g(R_G)$ is not a rare m_Y set. Then m_Y -Int $g(R_G) \neq \emptyset$, so there exist a non-null open m_Y set V contained in $g(R_G)$, i.e. $V \subseteq g(R_G)$. Since g is injective, $g^{-1}(V) \subseteq R_G$. Since g is $m_X \cdot m_Y$ continuous, $g^{-1}(V)$ is an open m_X set. But this contradicts the fact that R_G is rare. So, g preserves rare m_X sets.

5. On rarely m_X - m_Y continuous functions

Popa introduced the concept of rarely continuous function in [9]. M. Caldas and S. Jafari [4] introduced the concept of rarely δ - continuous function. In this section a more general form of rarely m_X - m_Y continuous function is introduced and some theorems are stated and proved.

5.1. Definition. A function $f: (X, m_X) \to (Y, m_Y)$ is called a rarely m_X - m_Y continuous function if for each open m_Y set G containing f(x) there exists a rare m_Y set R_G with $G \cap m_Y$ - $\operatorname{Cl}(R_G) = \emptyset$ and an open m_X set U containing x such that $f(U) \subseteq G \cup R_G$.

5.2. Remark. If $(X, m_X) = (X, T)$, $(Y, m_Y) = (Y, V)$ then rarely $m_X - m_Y$ continuous functions and rarely continuous functions are the same concept.

5.3. Theorem. The following statements are equivalent for a function $f: X \to Y$.

- (1) The function f is rarely $m_X m_Y$ continuous at $x \in X$.
- (2) For each open m_Y set G containing f(x) there exists a open m_X set U containing x such that m_Y Int $f(U) \cap m_Y$ Int $(Y \setminus G) = \emptyset$.
- (3) For each open m_Y set G containing f(x) there exists a open m_X set U containing x such that m_Y Int $f(U) \subseteq m_Y$ Cl(G).

300

Proof. (1) \Longrightarrow (2) Let G be an open m_Y set containing f(x). Since G is an open m_Y set,

 $G = m_Y \operatorname{-Int} G \subseteq m_Y \operatorname{-Int} (m_Y \operatorname{-Cl} G).$

Also, m_Y - Int $(m_Y - \operatorname{Cl} G)$ is an open m_Y set containing f(x). Since f is a rarely m_X continuous function there exists a rare m_Y set R_G with m_Y - Int $(m_Y - \operatorname{Cl} G) \cap m_Y$ - $\operatorname{Cl} R_G = \emptyset$, and an m_X open set U containing x so that $f(U) \subseteq m_Y$ - Int $(m_Y - \operatorname{Cl} G) \cup R_G$. So, we have

$$m_{Y} - \operatorname{Int} f(U) \cap m_{Y} - \operatorname{Int} (Y \setminus G)$$

$$\subseteq m_{Y} - \operatorname{Int} [m_{Y} - \operatorname{Int} (m_{Y} - \operatorname{Cl} G) \cup R_{G}] \cap [Y \setminus m_{Y} - \operatorname{Cl} (G)]$$

$$\subseteq [m_{Y} - \operatorname{Int} (m_{Y} - \operatorname{Cl} G) \cup m_{Y} - \operatorname{Int} R_{G}] \cap [Y \setminus m_{Y} - \operatorname{Cl} (G)]$$

$$\subseteq m_{Y} - \operatorname{Cl} G \cap (Y \setminus m_{Y} - \operatorname{Cl} G) = \emptyset.$$

(2)
$$\Longrightarrow$$
(3) From (3), m_Y - Int $f(U) \cap m_Y$ - Int $(Y \setminus G) = \emptyset$, so
 m_Y - Int $f(U) \subseteq Y \setminus m_Y$ - Int $(Y \setminus G) = m_Y$ - Cl G.

(3) \Longrightarrow (1) Let there exist an open m_Y set G containing f(x) with the properties given in (3). Then there exists a open m_X set U containing x such that m_Y -Int $f(U) \subseteq m_Y$ -ClG. We have

$$\begin{split} f(U) &= [f(U) \setminus m_Y \operatorname{-Int} f(U)] \cup m_Y \operatorname{-Int} f(U) \\ &\subseteq [f(U) \setminus m_Y \operatorname{-Int} f(U)] \cup m_Y \operatorname{-Cl} G \\ &= [f(U) \setminus m_Y \operatorname{-Int} f(U)] \cup G \cup (m_Y \operatorname{-Cl} G \setminus G) \\ &= [(f(U) \setminus m_Y \operatorname{-Int} f(U)) \cap (Y \setminus G)] \cup G \cup (m_Y \operatorname{-Cl} G \setminus G). \end{split}$$

Let $R_1 = [f(U) \setminus m_Y - \text{Int } f(U)] \cap (Y \setminus G)$ and $R_2 = m_Y - \text{Cl} G \setminus G$. Then, $R_G = R_1 \cup R_2$ is a rare set such that $m_Y - \text{Cl} R_G \cap G = \emptyset$ and $f(U) \subseteq G \cup R_G$. Therefore from Definition 5.3, f is a rarely $m_X - m_Y$ continuous function.

5.4. Theorem. Let $f : (X, m_X) \to (Y, m_Y)$ be a rarely $m_X \cdot m_Y$ continuous function. Then the following statements hold:

- (1) For each open m_Y set G containing f(x), there exists a rare m_Y set R_G with $G \cap m_Y$ -Cl $(R_G) = \emptyset$ such that $x \in m_X$ -Int $(f^{-1}(G \cup R_G))$.
- (2) For each open m_Y set G containing f(x), there exists a rare m_Y set R_G with $m_Y \operatorname{Cl} G \cap R_G = \emptyset$ such that $x \in m_X \operatorname{Int} (f^{-1}(m_Y \operatorname{Cl} G \cup R_G))$.

Proof. (1) Suppose that G is an open m_Y set containing f(x). Then there exists a rare m_Y set R_G with $G \cap m_Y$ - $\operatorname{Cl}(R_G) = \emptyset$, and an open m_X set U containing x such that $f(U) \subseteq G \cup R_G$. It follows that $x \in U \subseteq f^{-1}(G \cup R_G)$, which implies that $x \in m_X$ - Int $(f^{-1}(G \cup R_G))$.

(2) Suppose that G is an open m_Y set containing f(x). Then there exist a rare m_Y set R_G with $G \cap m_Y - \operatorname{Cl}(R_G) = \emptyset$ such that $x \in m_X - \operatorname{Int}(f^{-1}(G \cup R_G))$. Since $G \cap m_Y - \operatorname{Cl}(R_G) = \emptyset$, $R_G \subseteq (Y \setminus m_Y - \operatorname{Cl}G) \cup (m_Y - \operatorname{Cl}G \setminus G)$. Now, we have $R_G \subseteq (R_G \cup (Y \setminus m_Y - \operatorname{Cl}G)) \cup (m_Y - \operatorname{Cl}G \setminus G)$. Let $R_1 = (R_G \cup (Y \setminus m_Y - \operatorname{Cl}G))$. It follows that R_1 is a rare m_Y set with $m_Y - \operatorname{Cl}G \cap R_1 = \emptyset$. Therefore, $x \in m_X - \operatorname{Int}(f^{-1}(G \cup R_G)) \subseteq m_X - \operatorname{Int}(f^{-1}(m_Y - \operatorname{Cl}G \cup R_1)$.

5.5. Theorem. If f is a rarely $m_X \cdot m_Y$ continuous function then there exists a clopen set G such that for each open m_X set U containing x, f(U) is a dense m_Y set.

Proof. If G is a clopen subset of Y then $G \cup R_G$ is a dense m_Y set. Then, $m_Y - \operatorname{Cl}(f(U)) \subseteq m_Y - \operatorname{Cl}(G \cup R_G) = Y$. Hence $m_Y - \operatorname{Cl} f(U) = Y$ i.e. f(U) is a dense m_Y set. \Box

5.6. Remark. Let $f : X \to Y$ be a rarely $m_X - m_Y$ continuous function. Then there exists an open m_Y set G containing f(x) and a rare m_Y set R_G such that $G \cap m_Y - \operatorname{Cl}(R_G)$ is also a rare m_Y set.

5.7. Theorem. Let (X, \mathbf{m}_X) be an open dense \mathbf{m}_X set. Then a function $f : (X, \mathbf{m}_X) \to (Y, \mathbf{m}_Y)$ is a rarely \mathbf{m}_X - \mathbf{m}_Y continuous function iff for each open \mathbf{m}_Y set G containing f(x) there exists a rare \mathbf{m}_Y set R_G disjoint from the set G, and an open \mathbf{m}_X set U containing x such that $f(U) \subseteq G \cup R_G$.

Proof. Obvious.

5.8. Theorem. Let $f : (X, m_X) \to (Y, m_Y)$ be a rarely m_X - m_Y continuous function. Then the graph function $g : X \to X \times Y$, defined by g(x) = (x, f(x)) for every x in X, is a rarely m_X - $m_X \times m_Y$ continuous function.

Proof. Suppose that $x \in X$ and that W is any open $m_X \times m_Y$ set containing g(x). It follows that there exists an open m_X set U and an open m_Y set V such that $(x, f(x)) \in U \times V \subseteq W$. Since f is rarely $m_X \cdot m_X \times m_Y$ continuous, from Theorem 5.3 there exists an open m_X set G containing x such that $m_X \times m_Y$ - Int $f(G) \subseteq m_Y$ - Cl V. Let $E = U \cap G$. It follows that E is an open m_X set containing x for which

 $m_X \times m_Y$ - Int $[g(E)] \subseteq m_X \times m_Y$ - Int $(U \times f(G)) \subseteq U \times m_Y$ - $\operatorname{Cl} V \subseteq m_X \times m_Y$ - $\operatorname{Cl} W$.

Therefore, g is a rarely $m_X \cdot m_X \times m_Y$ continuous function.

5.9. Theorem. Let $f : (X, \mathbf{m}_X) \to (Y, \mathbf{m}_Y)$ be a rarely $\mathbf{m}_X \cdot \mathbf{m}_Y$ continuous function and $g : (Y, \mathbf{m}_Y) \to (Z, \mathbf{m}_Z)$ a one to one $\mathbf{m}_Y \cdot \mathbf{m}_Z$ continuous function. Then $g \circ f : (X, \mathbf{m}_X) \to (Z, \mathbf{m}_Z)$ is rarely $\mathbf{m}_X \cdot \mathbf{m}_Z$ continuous.

Proof. Suppose that $x \in X$ and $g \circ f(x) \in V$, where V is an open m_Z set in Z. By hypothesis, g is $m_Y \cdot m_Z$ continuous, therefore there exists an m_Y open set $G \subseteq Y$ containing f(x) such that $g(G) \subseteq V$. Since f is rarely $m_X \cdot m_Y$ continuous, there exists a rare m_Y set R_G with $G \cap m_Y \cdot \operatorname{Cl}(R_G) = \emptyset$, and an m_X open set U containing x such that $f(U) \subseteq G \cup R_G$. It follows from Theorem 4.28 that $g(R_G)$ is a rare m_Z set in Z. Since R_G is a subset of $Y \setminus G$, and g is injective, we have $m_Y \cdot \operatorname{Cl}(g(R_G)) \cap V = \emptyset$. This implies that $g \circ f(U) \subseteq V \cup g(R_G)$, hence the result.

6. Conclusion

For a topological space (X, T), RO(X), GO(X), etc. are all m_X structures, and so if we put $m_X = RO(X)$, etc. then the pair (X, m_X) is an m_X space. For families of this type we can apply the results in this paper.

References

- Abdel Monsef, M. E and Ramadan, A. E. On fuzzy supra topological spaces, Indian J. Pure and Appl. Math. 18, 322–329, 1987.
- [2] Bhattacharya (Halder), S. and Chanda, S. Some properties of $m_X \Lambda$ (resp. $m_X V$) sets and its applications, Acta Ciencia Indica, **XXXIV** (2), 513–??, 2008
- [3] Bourbaki, N. General Topology, Part I (Addison Wesley, Reading, Mass., 1996).
- [4] Caldas, M. and Jafari, S. A strong form of rare continuity, Soochow Journal of Mathematics 32 (1), 161–169, 2006.
- [5] Jafari, S. On some properties of rarely continuous functions, Univ. Bacau. Stud. Cerc. St. Ser. Mat. 7, 65–73, 1997.
- [6] Long, P.E. and Herrington, L.L. Properties of rarely continuous functions, Glasnik Mat. 17 (37), 229–236, 1982.

- [7] Maki, H. On generalizing semi open and preopen sets (Report for Meeting on Topological Spaces, Theory and its Applications, Yatsushiro College of Technology, 13 - 18, August 1996).
- [8] Mocano, M. Generalization of open functions, Univ Bacau. Stud. Cerc. Sl. Ser. Mat 13, 67–78, 2003.
- [9] Popa, V. Sur certain decomposition de la continuite dans les espaces topologiques, Glasnik Mat. Setr III, 14 (34), 359–362, 1979.
- [10] Popa, V. and Noiri, T. On M continuous functions, Anal. Univ. "Dunarea de Jos" Galati Ser. Mat. Fiz. Mec. Teor. Fasc. II 18 (23), 31–41, 2000.
- [11] Popa, V. and Noiri, T. Slightly m continuous functions, Radovi Matematicki 10, 219–232, 2001.