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Abstract

In this paper, we present some characterizations of prime k-ideals and
maximal k-ideals of a semiring. Then we extend these properties to
prime k-subsemimodules and maximal k-subsemimodules of a semi-
module. After that, the correspondence between prime k-ideals and
prime k-subsemimodules, and between maximal k-ideals and maximal
k-subsemimodules are given.
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1. Introduction

In this work we investigate k-ideals of semirings and k-subsemimodules of semimod-
ules. In Section 2 the definitions of prime k-ideals and maximal k-ideals are given. Then
we give some characterizations of prime k-ideals and maximal k-ideals, and give the
prime avoidance theorem for k-ideals. In Section 3 we extend these properties to prime
k-subsemimodules and maximal k-subsemimodules. Then, relations between k-ideals and
k-subsemimodules are given.

First of all we recall some known definitions.

A set R together with two associative binary operations called addition (+) and mul-
tiplication (·) is called a semiring provided:

i) Addition is a commutative operation, and
ii) Multiplication distributes over addition both from the left and from the right.
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An element 0 ∈ R such that x + 0 = 0 + x = x and x0 = 0x = 0 for each x ∈ R is called
an absorbing zero element.

A subset I of a semiring R is called an ideal of R if for a, b ∈ I and r ∈ R we have
a + b ∈ I , ra ∈ I and ar ∈ I . An ideal I of a semiring R is called trivial iff I = R or
I = {0}. For each ideal I of a semiring R the k-closure I of I is defined by

I = {ā ∈ R | ā + a1 = a2 for some a1, a2 ∈ I},

and is an ideal of R satisfying I ⊆ I and I = I . An ideal I is called a k-ideal of R if and
only if I = I holds.

Given two semirings R and R′, a mapping η from R to R′ is called a homomorphism
if η(a + b) = η(a) + η(b) and η(ab) = η(a)η(b) for each a, b ∈ R. An isomorphism is a
one-to-one homomorphism (see [1] for more details). In this situation the semirings R
and R′ are called isomorphic.

Each ideal I of a semiring R defines a congruence κI on (R, + , · ) by

rκIr′ ⇐⇒ r + a1 = r′ + a2 for some a1, a2 ∈ I.

The corresponding congruence class semiring R/κI consisting of the classes [r]κI
= [r],

contains the k-closure I of I as one of its classes, and I is a multiplication absorbing zero
of R/κI . (see [6]).

An ideal I is called prime if ab ∈ I implies a ∈ I or b ∈ I for all a, b ∈ R. For details
of prime ideals the reader is refereed to [3,6] and [7]. Throughout this paper we let the
semiring R be commutative.

If R is a semiring, an additively written commutative semigroup M with neutral
element θ is called an R-semimodule if

i) r · (m + m′) = r · m + r · m′,
ii) (r + r′) · m = r · m + r′ · m,
iii) (rr′) · m = r · (r′ · m),
iv) 1 · m = m,
v) r · θ = 0 · m = θ,

for all m, m′ ∈ M and r, r′ ∈ R. A subset N of the R-semimodule M will be called a
subsemimodule of M if a, b ∈ N and r ∈ R implies a + b ∈ N and ra ∈ N .

The k-closure of a subsemimodule of the R-semimodule M is defined by

N = {ā ∈ M | ā + a1 = a2 for some a1, a2 ∈ N}.

Note that N is a subsemimodule, satisfying N ⊂ N and N = N . We say that a subsemi-
module N of M is a k-subsemimodule if N = N .

The annihilator of a subsemimodule M/N is defined by

AN (M) = {a ∈ R : aM ⊆ N}.

Clearly, AN(M) is an ideal of the semiring R. A subsemimodule N is called prime if
rm ∈ N implies r ∈ AN (M) or m ∈ N for all r ∈ R and m ∈ M .

Each subsemimodule N of a semimodule M defines a congruence κN on (M, +) by

mκNm′ ⇐⇒ m + a1 = m′ + a2 for some a1, a2 ∈ N.

The corresponding congruence class semimodule M/κN , consisting of the classes [m]κN
=

[m], contains the k-closure N of N as one of its classes, and N is a multiplication absorbing
zero of M/κN .
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2. Prime k-ideals and maximal k-ideals

Recall that the natural homomorphism Ψ : R → R/κI of a semiring R for some ideal
I of R is defined by r 7→ [r]κI

= [r].

2.1. Lemma. Let R be a semiring and I an ideal of the semiring R. Consider the

natural homomorphism Ψ : R −→ R/κI . Then

(i) If I ⊆ J is a k-ideal of R, then Ψ(J) is a k-ideal of R/κI ,

(ii) If J is a k-ideal of R/κI then Ψ−1(J) is a k-ideal of R.

Proof. Let Ψ : R → R/κI be the natural homomorphism, i.e Ψ(r) = [r].

(i) Let I ⊆ J be a k-ideal of R. Suppose that [x] + [r1] = [r2] for some r1, r2 ∈ J and
x ∈ R. Then we have for some a1, a2 ∈ I , x+r1 +a1 = r2 +a2. Since r1 +a1, r2 +a2 ∈ J
and J is a k-ideal we get x ∈ J , so Ψ(x) = [x] ∈ Ψ(J).

(ii) Let J be a k-ideal of R/κI , and suppose that x+ r1 = r2 for some r1, r2 ∈ Ψ−1(J)
and x ∈ R. Therefore we get [r2] = [x + r1] = [x] + [r1], and since J is a k-ideal we get
[x] ∈ J . So Ψ(x) = [x] ∈ J , consequently x ∈ Ψ−1(J). �

2.2. Definition. Let (R, + , · ) be a semiring and I a prime ideal of R. If I is a k-ideal,
then we call I a prime k-ideal.

2.3. Theorem. Let R be a semiring and I an ideal of the semiring R. Consider the

natural homomorphism Ψ : R → R/κI for some ideal I of R. Then an ideal I ⊆ J of R
is a prime k-ideal if and only if Ψ(J) is prime k-ideal of R/κI .

Proof. Let I ⊆ J be a prime k-ideal of R and for some r1, r2 ∈ R let Ψ(r1)Ψ(r2) ∈ Ψ(J).
Then Ψ(r1r2) = Ψ(x) ∈ Ψ(J) for some x ∈ J . Then for some a1, a2 ∈ I , r1r2+a1 = x+a2

and since J is a k-ideal we get r1r2 ∈ J . Therefore r1 ∈ J or r2 ∈ J. Thus Ψ(r1) ∈ Ψ(J)
or Ψ(r2) ∈ Ψ(J).

Conversely, assume that Ψ(J) is a prime k-ideal for an ideal J containing I . If r1r2 ∈ J
for some r1, r2 ∈ R, then Ψ(r1r2) ∈ Ψ(J). So Ψ(r1)Ψ(r2) ∈ Ψ(J). Therefore Ψ(r1) ∈
Ψ(J) or Ψ(r2) ∈ Ψ(J). Thus r1 ∈ J or r2 ∈ J . �

2.4. Lemma. Let P be a prime k-ideal of the commutative semiring R, and let I1, . . . , In

be ideals of R. Then the following statements are equivalent:

(i) P ⊇ Ij for some j with 1 ≤ j ≤ n,

(ii) P ⊇
⋂n

i=1
Ii,

(iii) P ⊇
∏n

i=1
Ii.

Proof. (i) =⇒ (ii) and (ii) =⇒ (iii) are trivial.

(iii) =⇒ (i) Let P ⊇
∏n

i=1
Ii for some ideals I1, . . . , In of R and prime k-ideal P .

Assume that P + Ij for all j with 1 ≤ j ≤ n. Then for all j there exist elements
aj ∈ Ij \ P , where 1 ≤ j ≤ n. Therefore a1 · · · an ∈

∏n

i=1
Ii ⊆ P . Since P is prime we

get for some j with 1 ≤ j ≤ n, aj ∈ P which is a contradiction. �

Let R be a ring with identity. One of the fundamental theorems of commutative ring
theory is the “prime avoidance” theorem, which states that if P1, P2, . . . , Pn are prime
ideals of R and I is an ideal of R such that I ⊆

⋃n

i=1
Pi, then I ⊆ Pi for some 1 ≤ j ≤ n.

In the following Theorem we will prove the “prime avoidance” theorem for semirings.
Now let us give a lemma for the theorem.

2.5. Lemma. Let P1, P2 be k-ideals of a commutative semiring R and I an ideal of R
such that I ⊆ P1 ∪ P2. Then I ⊆ P1 or I ⊆ P2.
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Proof. Let I ⊆ P1 ∪P2 and we assume that P1, P2 are k-ideals. Suppose that I * P1 and

I * P2. Thus there exist elements a1 ∈ I \P1 and a2 ∈ I \P2 so that a1 ∈ P2 and a2 ∈ P1.
Since I is an ideal we get a1 + a2 ∈ I ⊆ P1 ∪ P2, and thus a1 + a2 ∈ P1 or a1 + a2 ∈ P2.
Since P1, P2 are k-ideals, we have a1 ∈ P1 or a2 ∈ P2, which is a contradiction. Therefore
I ⊆ P1 or I ⊆ P2. �

2.6. Theorem. Let P1, . . . , Pn, n ≥ 2, be k-ideals of the commutative semiring R such

that at most two of P1, . . . , Pn are not prime. Let I be an ideal of R such that I ⊆
⋃n

i=1
Pi.

Then I ⊆ Pj for some j with 1 ≤ j ≤ n.

Proof. We will prove this using induction on n. Consider first the case n = 2. This is
given by Lemma 2.5. Now assume that it is true for n = k and let n = k + 1. Let
I ⊆

⋃k+1

i=1
Pi and, since at most 2 of the Pi are not prime, we can assume that they have

been indexed in such a way that Pk+1 is prime.

Suppose that for each j = 1, . . . , k + 1, it is the case that I *
⋃k+1

i=1, i6=j
Pi. We will

obtain a contradiction, so by the induction hypothesis I ⊆ Pt for some t = 1, . . . , k + 1
where t 6= j. Now we have elements aj ∈ I \

⋃k+1

i=1, i6=j
Pi with aj ∈ Pj . Also, since

Pk+1 is prime, we have a1 · · · ak /∈ Pk+1. Thus a1 · · · ak ∈
⋂k

i=1
Pi \ Pk+1 and ak+1 ∈

Pk+1 \
⋃k

i=1
Pi. Now, consider the element b = a1 · · · ak + ak+1. Since a1 · · · ak ∈ I and

ak+1 ∈ I we get b ∈ I ⊆
⋃k+1

i=1
Pi. Thus we have b ∈ Pk+1 or b ∈ Pj for some 1 ≤ j ≤ k.

If b ∈ Pk+1 then a1 · · · ak ∈ Pk+1, which is a contradiction. If b ∈ Pj for some 1 ≤ j ≤ k

then ak+1 ∈ Pj , which is again a contradiction. Hence we get I ⊆
⋃k+1

i=1, i6=j
Pi for some

j and by the induction hypothesis we get I ⊆ Pi for some 1 ≤ i ≤ k + 1, i 6= j. �

2.7. Definition. Let R be a semiring with an absorbing zero element 0. Then we call
R an integral semidomain if ab = 0 implies a = 0 or b = 0 for any a, b ∈ R.

2.8. Example. 1) N, the set of all non-negative integers, is an integral semidomain.

2) N is a semiring with the binary operations a + b = max{a, b} and ab = min{a, b}.
Then 0 is an absorbing zero of N, and N is an integral semidomain.

Note that, if R is a semiring and I is an ideal of R then R/κI has {I} = 0KI
as an

absorbing zero.

2.9. Theorem. Let R be a semiring. Then a k-ideal P of R is a prime k-ideal if and

only if R/κP is an integral semidomain.

Proof. Let P be a prime k-ideal of R and [r1][r2] = {P} = 0κP
for some r1, r2 ∈ R. Then

[r1r2] = 0κP
, so there exist a1, a2 ∈ P such that r1r2 + a1 = a2. Since P is a k-ideal we

get r1r2 ∈ P . Therefore, r1 ∈ P or r2 ∈ P . Hence [r1] = 0κP
or [r2] = 0κP

.

For the converse, suppose that R/κP is an integral semidomain. Assume that r1r2 ∈ P
and r2 /∈ P for some r1, r2 ∈ R. Then [r1r2] = [r1][r2] = 0κP

. Since R/κP is an integral
semidomain and r2 /∈ P we obtain [r1] = 0κP

. Thus, r1 ∈ P . �

2.10. Definition. Let R be a semiring. A k-ideal ℏ ⊂ R is called a maximal k-ideal of
R if there is no k-ideal I of R satisfying ℏ ⊂ I ⊂ R.

We note that a maximal k-ideal of R need not to be a maximal ideal of R. For
example, by [5, Sen 4.2], let N be the set of all non-negative integers. Then the maximal
k-ideals of N are of the form (p) = {pn : n ∈ N}, where p is prime, but none of these
are maximal ideals. Indeed, for a prime element p, (p) is properly contained in the ideal
B = {b ∈ N | b ≥ p}.

2.11. Theorem. Let R be a semiring. Then every maximal k-ideal is a prime k-ideal.
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Proof. See [5, Proposition 3.1]. �

2.12. Definition. A semiring R is called a k-semifield if it has only the trivial k-ideals.

2.13. Theorem. Let R be a semiring. Then ℏ is a maximal k-ideal of R if and only if

R/κℏ is a k-semifield.

Proof. Let ℏ be a maximal k-ideal of R. Assume that J is an k-ideal of R/κℏ such that
J 6= {ℏ}. By Lemma 2.1, Ψ−1(J) is an k-ideal and we get ℏ ⊆ Ψ−1(J). Since ℏ is a
maximal k-ideal we obtain Ψ−1(J) = R. Thus J = R/κℏ .

Conversely, let ℏ  J be a k-ideals of R. Then Ψ(J) is a k-ideal of R/κℏ . Since R/κℏ

is a k-semifield we get Ψ(J) = R/κℏ . Hence, J = R. �

3. Prime k-subsemimodules and maximal k-subsemimodules

3.1. Lemma. Let M be an R-semimodule, N a proper subsemimodule of M and consider

the natural homomorphism Ψ : M → M/κN given by Ψ(m) = [m]. Then:

(i) If N ⊂ K is a k-subsemimodule of M then Ψ(K) is a k-subsemimodule of M/κN .

(ii) If K is a k-subsemimodule of M/κN then Ψ−1(K) is a k-subsemimodule of M .

Proof. Similar to the proof of Lemma 2.1. �

3.2. Theorem. Let M be a semimodule over a commutative semiring R. If N is a

k-subsemimodule of M , then AN(M) is a k-ideal of R.

Proof. We know that AN(M) ⊆ AN(M) by the property of k-closure. Now, let x ∈

AN(M). Then there exist r1, r2 ∈ AN(M) such that x + r1 = r2. Therefore we obtain,
for all m ∈ M , that xm+ r1m = r2m. Since r1m, r2m ∈ N and N is a k-subsemimodule
we get xm ∈ N . Hence, x ∈ AN(M). �

The converse of this theorem is not true in general. To show this we give the following
example.

3.3. Example. Consider the semigroup (Z, + ) as an N-semimodule, where (N, + , . )
is regarded as a semiring. The subset N of Z is a subsemimodule of Z which is not a
k-subsemimodule. Indeed, −2 + 2 = 0 for 2, 0 ∈ N and −2 ∈ Z, but −2 /∈ N. But on the
other hand, AN(Z) = {0}, is a k-ideal of N.

Recall that a subsemimodule N of a semimodule M is called prime if rm ∈ N implies
r ∈ AN (M) or m ∈ N for r ∈ R and m ∈ M . The reader is refereed to [7] for details.

3.4. Definition. Let M be an R-semimodule and N a prime subsemimodule of M .
Then N is called a prime k-subsemimodule if it is k-subsemimodule.

3.5. Theorem. Let M be an R-semimodule and N be subsemimodule of M . Then

AN(M) is a prime k-ideal of R if N is a prime k-subsemimodule.

Proof. Let N be a prime k-subsemimodule of M . By Theorem 3.2 above, AN(M) is a
k-ideal. Now we will show that AN(M) is a prime ideal of R. Let a, b ∈ R such that
ab ∈ AN (M) but b /∈ AN(M). Then there exists an element m ∈ M such that bm /∈ N
but a(bm) ∈ N . Since N is prime we get a ∈ AN (M). �

Now we give an example showing that the converse of this theorem is not true in
general.

3.6. Example. (N×N, +) is an N-semimodule. It is clear that (0) is a prime k-ideal of
N. If we consider the subsemimodule K = 0×6N of N×N, then K is a k-subsemimodule
but not prime even though the annihilator (0) is prime.
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3.7. Definition. Let M be an R-semimodule over a semiring R. We call M a k-

multiplication semimodule if for all subsemimodules N of M there exists a k-ideal I of R
such that N = IM .

3.8. Theorem. Let M be a k-multiplication semimodule of the semiring R. Then a

k-subsemimodule N is prime if and only if AN(M) is a prime k-ideal.

Proof. Let N be a k-subsemimodule of M such that AN(M) is a prime k-ideal. Assume
that rm ∈ N for some r ∈ R and m ∈ M . Then (r)(m) ⊆ N . Since M is a k-
multiplication semimodule, there exist a k-ideal of R such that (m) = IM . Thus N ⊇
(r)(m) = (r)(IM) = (rI)M . So we get (rI) ⊆ AN(M). Hence, (r) ⊆ AN(M) or
I ⊆ AN(M). If (r) ⊆ AN(M), then r ∈ AN(M) and if I ⊆ AN(M), then IM ⊆ N . So
(m) ⊆ N and m ∈ N .

For the converse we may use the above theorem. �

3.9. Definition. Let M be an R-semimodule. A k-subsemimodule N ⊂ M is called
a maximal k-subsemimodule of M if there is no k-subsemimodule K of M satisfying
N ⊂ K ⊂ M .

3.10. Theorem. A proper k-subsemimodule N of an R-semimodule M is maximal if

and only if M/κN has only trivial k-subsemimodules.

Proof. Let N be maximal k-subsemimodule of M . Assume that C is a k-subsemimodule
of M/κN such that {N} ⊂ C ⊆ M/κN . Since Ψ−1(C) is a k-subsemimodule we get
Ψ−1(C) = M . Thus, C = M/κN .

Conversely, assume that M/κN has only trivial k-subsemimodules. Consider a k-
subsemimodule B of M such that N ⊂ B ⊆ M . Then Ψ(B) is a k-subsemimodule of
M/κN , so {N} ( Ψ(B) ⊂ M/κN . Therefore we obtain Ψ(B) = M/κN , which gives us
B = M . �

3.11. Theorem. Let M be a finitely generated semimodule over a semiring R. Then

each proper k-subsemimodule N of M is contained in a maximal k-subsemimodule of M .

Proof. Let M = (m1, . . . , mn) be a finitely generated semimodule over a semiring R,
N a k-subsemimodule of M and Σ the set of all k-subsemimodules K of M satisfying
N ⊆ K ⊂ M . This set is partially ordered by inclusion. Consider a chain {Ki | i ∈ I} in
Σ, where I is a index set. Then the subsemimodule K =

⋃
i∈I Ki is a k-subsemimodule

of M and K 6= M since M = (m1, . . . , mn). Hence K ∈ Σ is an upper bound of the
chain. So, by Zorn’s Lemma, Σ has a maximal element, as required. �

3.12. Example. If the semimodule M is cyclic then each proper k-subsemimodule of
M is contained in a maximal k-subsemimodule of M .

3.13. Definition. A semimodule M is said to satisfy condition (C) if and only if for all
a ∈ M ′ = M \ {0} and all m ∈ M there are r1, r2 ∈ R such that m + r1a = r2a.

3.14. Example. Consider the semigroup (N, + ). Then since every semigroup is a
(N, + , · )-semimodule, so is (N, +). Thus the N-semimodule (N, +) satisfies condition
(C).

3.15. Example. The set U = {0}∪{u ∈ N | u ≥ c} is a semigroup under usual addition
and is a N-semimodule. Then U satisfies condition (C) since u+0 ·u = 1 ·u for all u ∈ U .

3.16. Lemma. If a semimodule M satisfies condition (C ), then rm = θ for r ∈ R,

m ∈ M , implies m = θ or r ∈ AN (M).
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Proof. Assume that rm = θ and r 6= 0, m 6= θ for some r ∈ R, m ∈ M . Then for all
s ∈ M there exist r1, r2 ∈ R such that s + r1m = r2m. So, rs + rr1m = rr2m, which
gives us rs = θ for all s ∈ M . There for x ∈ M , if we use condition (C), x + r3s = r4s
for some r3, r4 ∈ R. Hence, x = θ. �

3.17. Theorem. Let M be a semimodule. Then condition (C ) implies that M contains

only trivial k-subsemimodules. The converse is true if Rm = {rm | r ∈ R} 6= {θ} holds

for all m ∈ M ′.

Proof. Assume that M satisfies condition (C). Let {θ} 6= N be a k-subsemimodule of M ,
i.e N contains at least one element a ∈ M ′. Then by condition (C), for all m ∈ M there
exist r1, r2 ∈ R such that m+r1a = r2a, since r1a, r2a ∈ N , and N is a k-subsemimodule.
This gives m ∈ N . Thus, N = M .

For the converse, let θ 6= m ∈ M . Then Rm 6= {θ} is a subsemimodule of M . By our

assumption, the k-subsemimodule Rm is equal to M , i.e Rm = M . This gives us

{θ} 6= Rm ⊆ Rm = {m̄ ∈ M | m̄ + r1m = r2m for some ri ∈ R} = M,

so the condition (C) is satisfied. �

3.18. Theorem. Let M be a semimodule over a commutative semiring R, and N a

k-subsemimodule of M . Then N is maximal if and only if M/N satisfies condition (C ).

Proof. Suppose that N is a maximal k-subsemimodule of M . Let cρN ∈ (M/N)′. Then
c /∈ N . Now let K be the smallest subsemimodule which contains N and c. Since N ⊂ K
we get

K = MK = {m̄ ∈ M | m̄ + s̄1 = s2, si ∈ K},

where si = sic+ni for si ∈ R, ni ∈ N . So m̄+s1c+n1 = s2c+n2, thus m̄ρN +s1(cρN) =
s2(cρN). This shows that M/N satisfies condition (c).

For the converse suppose that M/N satisfies condition (c), and let K be a k-subsemi-
module of M satisfying N ⊂ K. Then there is an element c ∈ K/N , so that cρN ∈
(M/N)′. By condition (c), for all mρN ∈ M/N there exist r1, r2 ∈ R such that mρN +
r1(cρN) = r2(cρN). Hence there exist n1, n2 ∈ N such that m + r1c + n1 = r2c + n2.
Since K is a k-subsemimodule, m ∈ K. Thus K = M . �

3.19. Theorem. Let M be a semimodule over a commutative semiring R. Then each

maximal k-subsemimodule N of M is prime.

Proof. By Theorem 3.18, M/N satisfies condition (C). Then for r /∈ AN(M), m /∈ N we
have r 6= 0 and mρN 6= θρN . Now if we use Lemma 3.16, we get r(mρN) 6= θρN , thus
rm /∈ N . �
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