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Abstract

Let G = (V, E) be a digraph with n vertices and m arcs without loops
and multi-arcs. The spectral radius p(G) of G is the largest eigenvalue
of its adjacency matrix. In this note, we obtain two sharp upper and
lower bounds on p(G). These bounds improve those obtained by G. H.
Xu and C.-Q Xu (Sharp bounds for the spectral radius of digraphs,
Linear Algebra Appl. 430, 1607-1612, 2009).
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1. Introduction

Let G be a digraph with n vertices and m arcs without loops and multi-arcs on the
vertex set V(G) = {v1,v2,...,vn}. If (u,v) be an arc of G, then w is called the initial
verter and v the terminal vertex of this arc. The outdegree d; of a vertex v; in the digraph
G is defined to be the number of arcs in G with initial vertex v;. Let df d;r7 ...,d} be
the outdegree sequence and 61 (G) the minimum outdegree of G. For convenience, we
sometimes abbreviate 57 (G) to §*.

Let t; be the sum of the outdegrees of all vertices in N;" (v;) = {v; : (vs,v;) € E}, and
+
call it the 2-outdegree. Moreover, call m;r = ;& the average 2-outdegree, 1 < i < n. If the

average 2-outdegrees of the vertices in V' are the same, we call G an average 2-outdegree
regular digraph. If V. = U U W, and the average 2-outdegrees of the vertices in U and
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W are mf and m;ﬂ respectively, we call G an average 2-outdegree semiregular digraph.
Now we define:
LT @)
[e% Vi,Vj
(atJr)i = Z (dj) and (am+)i = W7
i

(vi,vj)EE

where « is a real number. Note that df = (0,+);, = (0,,+);, t; = (1,+), and m; =
(1mJr )7, :

The spectral radius p(G) of G is defined to be largest eigenvalue of its adjacency matrix
A(G). Recently, the spectral radius of a digraph has been well studied in [2,3,5,6].

In this note, we present two sharp upper and lower bounds on the spectral radius of
a digraph G, and obtain some known results from it. In fact, for undirected graphs, the
following result has been obtained in [4].

1.1. Lemma. [4] Let G be a connected undirected graph. Then

p(G) <min max { (om),; (Ocm)j}7

o (vi,vi)EE

v (4)"
where d; is the degree of vi and (), = (Ui’vj();fa . Moreover, the equality holds for
a particular value of o if and only if (am); = (am)y = -+ = (am),,, or G is a bipartite
graph with the partition {v1,...,vn, } U {vn1+17 .. .,vn} and (o), = -++ = (a7”)n1’
(am)n1+1 == (am)n' O

Now, we will give a generation of this result on the spectral radius for digraphs.

2. Upper bound on the spectral radius of digraphs

Throughout this section, let G be a digraph with n vertices and m arcs without loops
and multi-arcs. Let (df,dJ,...,d}) be the outdegree sequence and A(G) the adjacency
matrix of G. Let

D = diag ((d)®, ..., (d})") .

2.1. Lemma. [1] Let A be a nonnegative matriz of order n. Let R; be the sum of the
ith row of A. Then

min{R;:1<i<n} <p(4) <max{R;:1<i<n}.
If A is irreducible, then equality holds in both cases if and only if Ri = Ro = ---=R,,. O
Now, we give our main result of this section.

2.2. Theorem. Let G be a digraph with n vertices, and 6 the minimum outdegree of
G, 87 > 1. Then

1 G) < mi { . } .

) Q) smin max |/ (@ )i (@)

Moreover, if G is a strongly connected digraph, equality holds for a particular value of

a if and only if (ot ); = (Qpt)g = -+ = (Qp+),, or G is a bipartite graph with the

partition {v1,...,vn, } U{vn41,.. ., 0n} and (et )y = -0 = (@t )y s (@t ) 40 =
= (am+)n‘
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Proof. Note that p(G) = p(D™'A(G)D). Now the (i, j)th element of D™'A(G)D is

dh)*”
Ed};a if (’l)i7’l)j) €E7
0 otherwise.

Let X = (z1,22,... ,In)T be an eigenvector of D™'A(G)D corresponding to the eigen-
value p(G). We can assume that one eigen-component, say x;, is equal to 1 and the other
eigen-components are less than or equal to 1, that is, x; = 1 and 0 < z, < 1, for all &.
Let

z; = max {zy : (vi,vx) € E}.

Since

we have

x ¢ (vi,vr) € E} < (), 5,

xk ¢ (vj,v) € E} < (amt); -
From (2) and (3), we get

P(G) < yf(@m+); () ;-

Now we assume that in (1) equality holds for a particular value of a. Then all the
inequalities in the above argument must be equalities. In particular, we have from (2)
that zp = z; for all k such that (v;,vx) € E. Also, from (3) we have that xp = z; =1
for all k such that (v;,vr) € E. Let U = {vy € V(G) : 2 = 1}. Then v; € U.

If z; = 1, then we will show that U = V(G). Otherwise, if U # V(G), there exist
vertices va,vs € U, v ¢ U, such that (va,vs) € E and (vs,ve) € E since G is strongly
connected. Therefore, from

+ [e3
p(G)ra = Z {%xk : (Va, vk) € E} < (Wn+),

k
and
(di)"
PGy =D 8 ma: (vp,v0) € B p < (s )y,
L (dy)
we have

p(G) < (am+)a (a7n+)b7
which contradicts that equality holds in (1). Thus U = V(G) and
(@t )y = (@) = -+ = (s, = P(G).
Suppose that z; < 1, and let W = {vy € V(G) : 2 = z;}. Then, Ng(v;) C U and

Ng(vi) C W. Now we show that Ng (Ng (vi)) C U. Let v, € Ng (Ng (vi)), there exists
a vertex vp such that (vi,vp) € E and (vr,v,) € E. Therefore,

()"
zp = x; and p(G)zp = Z (d*)amk D (Upyvw) € B p < (@t ), -

w
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Using (2), we get p(G)* < (), (@p+),- We have p(G)? > (et ), (ot ), therefore

p(G)2 = (am+)i (O‘m+ )p ’

which shows that . = 1. Hence Ng (Ng (vi)) C U. By a similar argument, we can show
that Ng (Ng (vj)) € W. Continuing the procedure, since G is strongly connected it is
easy to see that V = U U W, and that the directed subgraphs induced by U and W,
respectively, are empty digraphs. Hence G is bipartite. Moreover, (o, + )p are the same
for all v, € U and (ay,,+), are the same for all vy € W.

Conversely, If G is a graph with (a,,+); = (0+)y = -+ = (0 +),,, then the equality
in (1) is satisfied. Let G be a bipartite graph with bipartition V.= UUW and (a,,+);, = a
for vi € U, (a+); = b for v; € W. Let M = K~' (D 'A(G)D) K, where K =

7

diag {\/(pm+ )15/ (@mt), }-

Note that the (4, j)th element of M is

\/z(dj)a if (vi,v;) € E and v; € U,
a d+ 1y Y] K3 b

(a)”
\/Eﬂ if (vi,v;) € E and v; € W,
by 1w €W
0, otherwise.

So each row sum of the matrix M is equal to vab. Thus, by Lemma 2.1, we have
p(G) = p(M) = Vab. O

2.3. Corollary. Let G be a graph with n vertices and let 5T be the minimum outdegree
of G, 6T > 1. Then

@) p(@) < min max {(an);}-

Moreover, if G is a strongly connected digraph, equality holds for a particular value of o

if and only if (Qs )y = (s )y = =+ = (it ) O
If « =1in (1), then we get the following result.

2.4. Corollary. [5] Let G be a digraph on n vertices and 6% the minimum outdegree of
G, 67 > 1. Then

® o6 < max{\mfu (o) € B

Moreover, If G is a strongly connected digraph, equality holds if and only if G is average
2-outdegree regqular or average 2-outdegree semiregular.

3. Lower bound on the spectral radius of digraphs

3.1. Theorem. Let G be a digraph with n vertices and let 6 be the minimum outdegree
of G, 6T > 1. Then

(6) p(G) > max min { (), (i )J} .

@ (vi,vj)EE
Moreover, if G is a strongly connected digraph, equality holds for a particular value of
a if and only if (ot ); = (Qpt)g = -+ = (Qp+),, or G is a bipartite graph with the
partition {v1,...,vn, } U{vn41,.. ., 0n} and (et )y = -0 = (@t )y s (@t ) 40 =
= (am+)n‘
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Proof. Let X = (z1,x2,..., wn)T be an eigenvector of D™ A(G)D corresponding to the
eigenvalue p(G). We can assume that one eigen-component, say z;, is equal to 1 and the
other eigen-components are greater than or equal to 1, that is, z; = 1 and z; > 1 for all
k #i. Let x; = min {xy, : (vi,vx) € E}.
Since
D 'A(G)DX = p(G)X,

we have

x ¢ (vi,vp) € E} > (), T5,

) pGa =Y { e € E} > (o),
From (7) and (8), we get

P(G) 2 /() (@t ) -

Similarly as in the proof of the Theorem 2.2, we can show that equality holds for a

particular value of « if and only if (c,,+);, = (0+)y = -+ = (¥+),,, or G is a bipartite
graph with the partition {vi,...,vn; } U{vn,41,...,0n} and (a,+); = -+ = (am+)n1,
(am+)n1+1 == (O‘7n+)n' O

3.2. Corollary. Let G be a digraph with n vertices and let 5T be the minimum outdegree
of G, 57 > 1. Then

9) o(G) > max min {(a,+);}-

1<i<n

Moreover, if G is a strongly connected digraph, equality holds for a particular value of a
if and only if (s )y = (s )y =+ = (s ) 0

If « =1 in (6), the we get the following result.

3.3. Corollary. [5] Let G be a strongly connected digraph. Then

(10)  p(@Q) > min{m  (vi,07) € E} .

Moreover, equality holds if and only if G is average 2-outdegree regular or average 2-
outdegree semiregular. O

3.4. Example. Let G be a digraph with adjacency matrix

0 1 1 1
0 0 0 1
1 0 0 O
01 1 0

Then the bound (1) is 1.847 when o = 0.5, and the bound (5) from [5] is 2. For the same
graph, the bound (6) is 1.414 when a = 0.5, and the bound (10) from [5] is 1.154. Thus
in both cases, the results obtained in this paper for a = 0.5 are better than the bounds
obtained in [5].
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