IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS

S. Burcu Bozkurt^{*†} and A. Dilek Güngör^{*}

Received 24:02:2009 : Accepted 19:02:2010

Abstract

Let G = (V, E) be a digraph with n vertices and m arcs without loops and multi-arcs. The spectral radius $\rho(G)$ of G is the largest eigenvalue of its adjacency matrix. In this note, we obtain two sharp upper and lower bounds on $\rho(G)$. These bounds improve those obtained by G. H. Xu and C.-Q Xu (*Sharp bounds for the spectral radius of digraphs*, Linear Algebra Appl. **430**, 1607–1612, 2009).

Keywords: Digraph, Spectral radius, Bound.

2000 AMS Classification: 05 C 50, 05 C 10.

1. Introduction

Let G be a digraph with n vertices and m arcs without loops and multi-arcs on the vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. If (u, v) be an arc of G, then u is called the *initial vertex* and v the *terminal vertex* of this arc. The outdegree d_i^+ of a vertex v_i in the digraph G is defined to be the number of arcs in G with initial vertex v_i . Let $d_1^+, d_2^+, \ldots, d_n^+$ be the outdegree sequence and $\delta^+(G)$ the minimum outdegree of G. For convenience, we sometimes abbreviate $\delta^+(G)$ to δ^+ .

Let t_i^+ be the sum of the outdegrees of all vertices in $N_i^+(v_i) = \{v_j : (v_i, v_j) \in E\}$, and call it the 2-outdegree. Moreover, call $m_i^+ = \frac{t_i^+}{d_i^+}$ the average 2-outdegree, $1 \le i \le n$. If the average 2-outdegrees of the vertices in V are the same, we call G an average 2-outdegree regular digraph. If $V = U \cup W$, and the average 2-outdegrees of the vertices in U and

^{*}Department of Mathematics, Science Faculty, Selçuk University, 42003 Selçuklu, Konya, Turkey. E-mail: (Ş.B. Bozkurt) srf_burcu_bozkurt@hotmail.com (A.D. Güngör) drdilekgungor@gmail.com

[†]Corresponding Author.

W are m_1^+ and m_2^+ , respectively, we call G an average 2-outdegree semiregular digraph. Now we define:

$$(\alpha_{t^+})_i = \sum_{(v_i, v_j) \in E} (d_j^+)^{\alpha} \text{ and } (\alpha_{m^+})_i = \frac{\sum_{(v_i, v_j) \in E} (d_j^+)^{\alpha}}{(d_i^+)^{\alpha}},$$

where α is a real number. Note that $d_i^+ = (0_{t^+})_i = (0_{m^+})_i$, $t_i^+ = (1_{t^+})_i$ and $m_i^+ = (1_{m^+})_i$.

The spectral radius $\rho(G)$ of G is defined to be largest eigenvalue of its adjacency matrix A(G). Recently, the spectral radius of a digraph has been well studied in [2,3,5,6].

In this note, we present two sharp upper and lower bounds on the spectral radius of a digraph G, and obtain some known results from it. In fact, for undirected graphs, the following result has been obtained in [4].

1.1. Lemma. [4] Let G be a connected undirected graph. Then

$$\rho(G) \le \min_{\alpha} \max_{(v_i, v_j) \in E} \left\{ \sqrt{(\alpha_m)_i (\alpha_m)_j} \right\},\,$$

where d_i is the degree of v_i and $(\alpha_m)_i = \frac{\sum\limits_{(v_i, v_j) \in E} (d_j)^{\alpha}}{(d_i)^{\alpha}}$. Moreover, the equality holds for a particular value of α if and only if $(\alpha_m)_1 = (\alpha_m)_2 = \cdots = (\alpha_m)_n$, or G is a bipartite graph with the partition $\{v_1, \ldots, v_{n_1}\} \cup \{v_{n_1+1}, \ldots, v_n\}$ and $(\alpha_m)_1 = \cdots = (\alpha_m)_{n_1}$, $(\alpha_m)_{n_1+1} = \cdots = (\alpha_m)_n$.

Now, we will give a generation of this result on the spectral radius for digraphs.

2. Upper bound on the spectral radius of digraphs

Throughout this section, let G be a digraph with n vertices and m arcs without loops and multi-arcs. Let $(d_1^+, d_2^+, \ldots, d_n^+)$ be the outdegree sequence and A(G) the adjacency matrix of G. Let

$$\bar{D} = \operatorname{diag}\left(\left(d_1^+\right)^{\alpha}, \dots, \left(d_n^+\right)^{\alpha}\right)$$

2.1. Lemma. [1] Let A be a nonnegative matrix of order n. Let R_i be the sum of the *i*th row of A. Then

$$\min \{R_i : 1 \le i \le n\} \le \rho(A) \le \max \{R_i : 1 \le i \le n\}.$$

If A is irreducible, then equality holds in both cases if and only if $R_1 = R_2 = \cdots = R_n$. \Box

Now, we give our main result of this section.

2.2. Theorem. Let G be a digraph with n vertices, and δ^+ the minimum outdegree of G, $\delta^+ \geq 1$. Then

(1)
$$\rho(G) \le \min_{\alpha} \max_{(v_i, v) \in E_j} \left\{ \sqrt{(\alpha_{m+1})_i (\alpha_{m+1})_j} \right\}.$$

Moreover, if G is a strongly connected digraph, equality holds for a particular value of α if and only if $(\alpha_{m+})_1 = (\alpha_{m+})_2 = \cdots = (\alpha_{m+})_n$, or G is a bipartite graph with the partition $\{v_1, \ldots, v_{n_1}\} \cup \{v_{n_1+1}, \ldots, v_n\}$ and $(\alpha_{m+})_1 = \cdots = (\alpha_{m+})_{n_1}$, $(\alpha_{m+})_{n_1+1} = \cdots = (\alpha_{m+})_n$.

Proof. Note that $\rho(G) = \rho(\bar{D}^{-1}A(G)\bar{D})$. Now the (i, j)th element of $\bar{D}^{-1}A(G)\bar{D}$ is

$$\begin{cases} \frac{\left(d_j^+\right)^{\alpha}}{\left(d_i^+\right)^{\alpha}} & \text{if } (v_i, v_j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Let $X = (x_1, x_2, \ldots, x_n)^T$ be an eigenvector of $\overline{D}^{-1}A(G)\overline{D}$ corresponding to the eigenvalue $\rho(G)$. We can assume that one eigen-component, say x_i , is equal to 1 and the other eigen-components are less than or equal to 1, that is, $x_i = 1$ and $0 < x_k \leq 1$, for all k. Let

$$x_j = \max\left\{x_k : (v_i, v_k) \in E\right\}.$$

Since

$$\bar{D}^{-1}A(G)\bar{D}X = \rho(G)X,$$

we have

(2)
$$\rho(G)x_i = \sum_k \left\{ \frac{(d_k^+)^{\alpha}}{(d_i^+)^{\alpha}} x_k : (v_i, v_k) \in E \right\} \le (\alpha_{m^+})_i x_j,$$
$$\sum_k \left\{ (d_k^+)^{\alpha} \right\}$$

(3)
$$\rho(G)x_j = \sum_k \left\{ \frac{(d_k^+)^{\alpha}}{(d_j^+)^{\alpha}} x_k : (v_j, v_k) \in E \right\} \le (\alpha_{m+1})_j.$$

From (2) and (3), we get

$$\rho(G) \le \sqrt{(\alpha_{m^+})_i (\alpha_{m^+})_j}.$$

Now we assume that in (1) equality holds for a particular value of α . Then all the inequalities in the above argument must be equalities. In particular, we have from (2) that $x_k = x_j$ for all k such that $(v_i, v_k) \in E$. Also, from (3) we have that $x_k = x_i = 1$ for all k such that $(v_j, v_k) \in E$. Let $U = \{v_k \in V(G) : x_k = 1\}$. Then $v_i \in U$.

If $x_j = 1$, then we will show that U = V(G). Otherwise, if $U \neq V(G)$, there exist vertices $v_a, v_b \in U$, $v_c \notin U$, such that $(v_a, v_b) \in E$ and $(v_b, v_c) \in E$ since G is strongly connected. Therefore, from

$$\rho(G)x_a = \sum_k \left\{ \frac{\left(d_k^+\right)^{\alpha}}{\left(d_a^+\right)^{\alpha}} x_k : (v_a, v_k) \in E \right\} \le (\alpha_{m^+})_a$$

and

$$\rho(G)x_b = \sum_k \left\{ \frac{\left(d_k^+\right)^{\alpha}}{\left(d_b^+\right)^{\alpha}} x_k : \left(v_b, v_k\right) \in E \right\} < \left(\alpha_{m^+}\right)_b,$$

we have

$$p(G) < \sqrt{(\alpha_{m^+})_a (\alpha_{m^+})_b}$$

which contradicts that equality holds in (1). Thus U = V(G) and

$$(\alpha_{m^+})_1 = (\alpha_{m^+})_2 = \dots = (\alpha_{m^+})_n = \rho(G).$$

Suppose that $x_j < 1$, and let $W = \{v_k \in V(G) : x_k = x_j\}$. Then, $N_G(v_j) \subseteq U$ and $N_G(v_i) \subseteq W$. Now we show that $N_G(N_G(v_i)) \subseteq U$. Let $v_r \in N_G(N_G(v_i))$, there exists a vertex v_p such that $(v_i, v_p) \in E$ and $(v_r, v_p) \in E$. Therefore,

$$x_p = x_j \text{ and } \rho(G) x_p = \sum_w \left\{ \frac{(d_w^+)^{\alpha}}{(d_p^+)^{\alpha}} x_k : (v_p, v_w) \in E \right\} \le (\alpha_{m^+})_p.$$

Using (2), we get $\rho(G)^2 \leq (\alpha_{m^+})_i (\alpha_{m^+})_p$. We have $\rho(G)^2 \geq (\alpha_{m^+})_i (\alpha_{m^+})_p$, therefore

$$\rho(G)^2 = (\alpha_{m^+})_i (\alpha_{m^+})_n,$$

which shows that $x_r = 1$. Hence $N_G(N_G(v_i)) \subseteq U$. By a similar argument, we can show that $N_G(N_G(v_j)) \subseteq W$. Continuing the procedure, since G is strongly connected it is easy to see that $V = U \cup W$, and that the directed subgraphs induced by U and W, respectively, are empty digraphs. Hence G is bipartite. Moreover, $(\alpha_{m+1})_p$ are the same for all $v_p \in U$ and $(\alpha_{m+1})_q$ are the same for all $v_q \in W$.

Conversely, If G is a graph with $(\alpha_{m+})_1 = (\alpha_{m+})_2 = \cdots = (\alpha_{m+})_n$, then the equality in (1) is satisfied. Let G be a bipartite graph with bipartition $V = U \cup W$ and $(\alpha_{m+})_i = a$ for $v_i \in U$, $(\alpha_{m+})_i = b$ for $v_i \in W$. Let $M = \bar{K}^{-1} (\bar{D}^{-1}A(G)\bar{D}) \bar{K}$, where $\bar{K} =$ diag $\{\sqrt{(\alpha_{m+})_1}, \ldots, \sqrt{(\alpha_{m+})_n}\}$.

Note that the (i, j)th element of M is

$$\begin{cases} \sqrt{\frac{b}{a}} \frac{\left(d_{j}^{+}\right)^{\alpha}}{\left(d_{i}^{+}\right)^{\alpha}} & \text{if } (v_{i}, v_{j}) \in E \text{ and } v_{i} \in U, \\ \sqrt{\frac{a}{b}} \frac{\left(d_{j}^{+}\right)^{\alpha}}{\left(d_{i}^{+}\right)^{\alpha}} & \text{if } (v_{i}, v_{j}) \in E \text{ and } v_{i} \in W, \\ 0, & \text{otherwise.} \end{cases}$$

So each row sum of the matrix M is equal to \sqrt{ab} . Thus, by Lemma 2.1, we have $\rho(G) = \rho(M) = \sqrt{ab}$.

2.3. Corollary. Let G be a graph with n vertices and let δ^+ be the minimum outdegree of G, $\delta^+ \geq 1$. Then

(4)
$$\rho(G) \le \min_{\alpha} \max_{1 \le i \le n} \left\{ (\alpha_{m^+})_i \right\}.$$

Moreover, if G is a strongly connected digraph, equality holds for a particular value of α if and only if $(\alpha_{m^+})_1 = (\alpha_{m^+})_2 = \cdots = (\alpha_{m^+})_n$.

If $\alpha = 1$ in (1), then we get the following result.

2.4. Corollary. [5] Let G be a digraph on n vertices and δ^+ the minimum outdegree of G, $\delta^+ \geq 1$. Then

(5)
$$\rho(G) \le \max\left\{\sqrt{m_i^+ m_j^+} : (v_i, v_j) \in E\right\}$$

Moreover, If G is a strongly connected digraph, equality holds if and only if G is average 2-outdegree regular or average 2-outdegree semiregular.

3. Lower bound on the spectral radius of digraphs

3.1. Theorem. Let G be a digraph with n vertices and let δ^+ be the minimum outdegree of G, $\delta^+ \geq 1$. Then

(6)
$$\rho(G) \ge \max_{\alpha} \min_{\left(v_i, v_j\right) \in E} \left\{ \sqrt{\left(\alpha_{m^+}\right)_i \left(\alpha_{m^+}\right)_j} \right\}.$$

Moreover, if G is a strongly connected digraph, equality holds for a particular value of α if and only if $(\alpha_{m+})_1 = (\alpha_{m+})_2 = \cdots = (\alpha_{m+})_n$, or G is a bipartite graph with the partition $\{v_1, \ldots, v_n\} \cup \{v_{n_1+1}, \ldots, v_n\}$ and $(\alpha_{m+})_1 = \cdots = (\alpha_{m+})_{n_1}$, $(\alpha_{m+})_{n_1+1} = \cdots = (\alpha_{m+})_n$.

Proof. Let $X = (x_1, x_2, \ldots, x_n)^T$ be an eigenvector of $\overline{D}^{-1}A(G)\overline{D}$ corresponding to the eigenvalue $\rho(G)$. We can assume that one eigen-component, say x_i , is equal to 1 and the other eigen-components are greater than or equal to 1, that is, $x_i = 1$ and $x_k \ge 1$ for all $k \neq i$. Let $x_j = \min \{x_k : (v_i, v_k) \in E\}$.

Since

$$\bar{D}^{-1}A(G)\bar{DX} = \rho(G)X,$$

we have

(7)
$$\rho(G)x_i = \sum_k \left\{ \frac{\left(d_k^+\right)^{\alpha}}{\left(d_i^+\right)^{\alpha}} x_k : (v_i, v_k) \in E \right\} \ge (\alpha_{m^+})_i x_j,$$

(8)
$$\rho(G)x_j = \sum_k \left\{ \frac{(d_k^+)^{\alpha}}{(d_j^+)^{\alpha}} x_k : (v_j, v_k) \in E \right\} \ge (\alpha_{m+1})_j.$$

From (7) and (8), we get

$$\rho(G) \ge \sqrt{(\alpha_{m^+})_i (\alpha_{m^+})_j}.$$

Similarly as in the proof of the Theorem 2.2, we can show that equality holds for a particular value of α if and only if $(\alpha_{m^+})_1 = (\alpha_{m^+})_2 = \cdots = (\alpha_{m^+})_n$, or G is a bipartite graph with the partition $\{v_1, \ldots, v_n\} \cup \{v_{n_1+1}, \ldots, v_n\}$ and $(\alpha_{m^+})_1 = \cdots = (\alpha_{m^+})_{n_1}$, $(\alpha_{m^+})_{n_1+1} = \cdots = (\alpha_{m^+})_n$.

3.2. Corollary. Let G be a digraph with n vertices and let δ^+ be the minimum outdegree of G, $\delta^+ \geq 1$. Then

(9)
$$\rho(G) \ge \max_{\alpha} \min_{1 \le i \le n} \left\{ (\alpha_{m^+})_i \right\}.$$

Moreover, if G is a strongly connected digraph, equality holds for a particular value of α if and only if $(\alpha_{m^+})_1 = (\alpha_{m^+})_2 = \cdots = (\alpha_{m^+})_n$.

If $\alpha = 1$ in (6), the we get the following result.

3.3. Corollary. [5] Let G be a strongly connected digraph. Then

(10)
$$\rho(G) \ge \min\left\{\sqrt{m_i^+ m_j^+} : (v_i, v_j) \in E\right\}$$

Moreover, equality holds if and only if G is average 2-outdegree regular or average 2-outdegree semiregular. $\hfill \Box$

3.4. Example. Let G be a digraph with adjacency matrix

$$\begin{vmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix} .$$

Then the bound (1) is 1.847 when $\alpha = 0.5$, and the bound (5) from [5] is 2. For the same graph, the bound (6) is 1.414 when $\alpha = 0.5$, and the bound (10) from [5] is 1.154. Thus in both cases, the results obtained in this paper for $\alpha = 0.5$ are better than the bounds obtained in [5].

Acknowledgements This work is supported by the coordinating Office of Selçuk University Scientific Research Projects.

References

- Berman A. and Plemmons R. J. Nonnegative Matrices in Mathematics Sciences (Academic Press, New York, 1979).
- [2] Cvetković D. M., Doob M., Gutman I. and Torgašev, A. Recent Results in the Theory of Graph Spectra (North-Holland, 1988).
- [3] Cvetković D. M., Doob M. and Sachs, H. Spectra of Graphs (Academic Press, New York, 1980). (Second revised ed., Barth, Heidelberg, 1995).
- [4] Liu, H. and Lu, M. Sharp bounds on the spectral radius and the energy of graphs, MATCH Commun. Math. Comput. Chem. 59, 279–290, 2008.
- [5] Xu, G.-H. and Xu, C.-Q. Sharp bounds for the spectral radius of digraphs, Linear Algebra Appl. 430, 1607–1612, 2009.
- [6] Zhang, X.-D. and Li, J.-S. Spectral radius of nonnegative matrices and digraphs, Acta Math. Sin. 18 (2), 293–300, 2002.