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Abstract

The logarithmic integral li(x) and its associated functions li+(x) and
li−(x) are defined as locally summable functions on the real line. Some
convolutions and neutrix convolutions of these functions and other func-
tions are then found.
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1. Introduction

The logarithmic integral li(x), see Abramowitz and Stegun [1], is defined by
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, for x > 1,

limǫ→0+

[
∫

−1+ǫ

0

dt

ln |t|
+

∫ x

−1−ǫ

dt

ln |t|

]

, for x < −1

where PV denotes the Cauchy principal value of the integral. We will therefore write

li(x) = PV

∫ x

0

dt

ln |t|
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for all values of x.

The associated functions li+(x) and li−(x) are now defined by

li+(x) = H(x) li(x), li−(x) = H(−x) li(x),

where H(x) denotes Heaviside’s function.

The distribution ln−1 |x| is defined by

ln−1 |x| = li′(x)

and its associated distributions ln−1 x+ and ln−1 x− are defined by

ln−1
x+ = H(x) ln−1 |x| = li′+(x), ln−1

x− = H(−x) ln−1 |x| = li′−(x).

The classical definition of the convolution of two functions f and g is as follows:

1.1. Definition. Let f and g be functions. Then the convolution f ∗ g is defined by

(f ∗ g)(x) =

∫

∞

−∞

f(t)g(x − t) dt

for all points x for which the integral exists.

It follows easily from the definition that if f ∗ g exists then g ∗ f exists, and

(1.1) f ∗ g = g ∗ f,

and if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exists, then

(1.2) (f ∗ g)′ = f ∗ g
′ (or f

′ ∗ g).

Definition 1.1 can be extended to define the convolution f ∗ g of two distributions f and
g in D

′ with the following definition, see Gel’fand and Shilov [6].

1.2. Definition. Let f and g be distributions in D
′. Then the convolution f ∗g is defined

by the equation

〈(f ∗ g)(x), ϕ(x)〉 = 〈f(y), 〈g(x),ϕ(x + y)〉〉

for arbitrary ϕ in D, provided f and g satisfy either of the conditions

(a) either f or g has bounded support, or
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗ g exists by this definition then equations (1.1)
and (1.2) are satisfied.

The above definition of the convolution is rather restrictive and so a neutrix convolu-
tion was defined in [3]. In order to define the neutrix convolution, we first of all let τ be
a function in D, see [7], satisfying the following properties:

(i) τ (x) = τ (−x),
(ii) 0 ≤ τ (x) ≤ 1,
(iii) τ (x) = 1 for |x| ≤ 1

2
,

(iv) τ (x) = 0 for |x| ≥ 1.

The function τn is now defined by

τn(x) =











1, |x| ≤ n,

τ (nnx − nn+1), x > n,

τ (nnx + nn+1), x < −n,

for n = 1, 2, . . ..

The following definition of the non-commutative neutrix convolution was given in [3].
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1.3. Definition. Let f and g be distributions in D
′ and let fn = fτn for n = 1, 2, . . ..

Then the non-commutative neutrix convolution f ©∗ g is defined as the neutrix limit of
the sequence {fn ∗ g}n∈N, provided the limit h exists in the sense that

N−lim
n→∞

〈fn ∗ g,ϕ〉 = 〈h, ϕ〉

for all ϕ in D, where N is the neutrix, see van der Corput [2], having domain N ′ the
positive reals and range N ′′ the real numbers, with negligible functions finite linear sums
of the functions

n
λ lnr−1

n, lnr
n : λ > 0, r = 1, 2, . . . ,

and all functions which converge to zero in the normal sense as n tends to infinity.

It is easily seen that any results proved with the original Definitions 1.1 and 1.2 of
the convolution hold with Definition 1.3 of the neutrix convolution. The following results
proved in [3] hold, first showing that the neutrix convolution is a generalization of the
convolution.

1.4. Theorem. Let f and g be distributions in D
′, satisfying either condition (a) or

condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution f ©∗ g

exists and

f ©∗ g = f ∗ g. �

1.5. Theorem. Let f and g be distributions in D
′, and suppose that the neutrix convo-

lution f ©∗ g exists. Then the neutrix convolution f ©∗ g′ exists and

(f ©∗ g)′ = f ©∗ g
′
.

If N−lim
n→∞

〈(fτ ′

n) ∗ g, ϕ〉 exists and equals 〈h, ϕ〉 for all ϕ in D, then f ′ ©∗ g exists and

(f ©∗ g)′ = f
′ ©∗ g + h. �

In the following, we need to extend our set of negligible functions to include finite
linear sums of the functions ns li(nr) and ns ln−r n, (n > 1) for s = 0, 1, 2, . . . and
r = 1, 2, . . ..

2. Main Results

Before proving our main results, we need the following lemmas.

2.1. Lemma.

(2.1) li(xr) = PV

∫ x

0

tr−1dt

ln |t|
.

Proof. Making the substitution t = ur, we have

li(xr) = PV

∫ xr

0

dt

ln |t|
= PV

∫ x

0

ur−1du

ln |u|
,

proving Equation (2.1). �

2.2. Lemma.

(2.2) lim
n→∞

∫ n+n−n

n

τn(t) li(t)(x − t)r
dt = 0

for r = 1, 2, . . ..
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Proof. We note that ln(t) > 1 when t > e and so

li(t) = li(e) +

∫ t

e

du

ln u
< li(e) + t − e.

Thus, when |x| < n − 1, we have

∫ n+n−n

n

τn(t) li(t)(x − t)r
dt <

∫ n+n−n

n

li(t)(x − t)r
dt

< (2n + n
−r − 1)r

∫ n+n−n

n

li(t) dt

< 4r
n

r
n
−n[li(e) − e + 2n + n

−n],

and Equation (2.2) follows. �

2.3. Lemma.

N−lim
n→∞

li[(x + n)r] = 0,(2.3)

N−lim
n→∞

n
r li[(x + n)] = 0,(2.4)

for r = 1, 2, . . ..

Proof. With x > 1, and putting f(x) = li(xr), we have

f
′(x) =

rxr−1

ln x
.

It follows that f (k)(x) is of the form

(2.5) f
(k)(x) =

k
∑

j=1

αkj

xk−r lnj x

and

(2.6) f
(r+1)(n + c) = O(n−1), (c ≥ 0).

By Taylor’s Theorem, we have

f(x + n) =
r
∑

k=0

xk

k!
f

(k)(n) +
xr+1

(r + 1)!
f

(r+1)(n + ξx)

=
r
∑

k=0

k
∑

j=1

αkj

nk−r lnj n

xk

k!
+ O(n−1)

and Equation (2.3) follows from Equations (2.5) and (2.6).

Equation (2.4) follows similarly. �

We now prove a number of results involving the convolution. First of all we have

2.4. Theorem. The convolutions li+(x) ∗ xr
+ and ln−1 x+ ∗ xr

+ exist, and

li+(x) ∗ x
r
+ =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)r−i+1
x

i li+(xr−i+2),(2.7)

ln−1
x+ ∗ x

r
+ =

r
∑

i=0

(

r

i

)

(−1)r−i
x

i li+(xr−i+1)(2.8)

for r = 0, 1, 2, . . ..
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Proof. It is obvious that li+(x) ∗ xr
+ = 0 if x < 0.

When x > 0, we have

li+(x) ∗ x
r
+ = PV

∫ x

0

(x − t)r

∫ t

0

du

ln u
dt

= PV

∫ x

0

1

ln u

∫ x

u

(x − t)r
dt du

= PV
1

r + 1

r+1
∑

i=0

(−1)r−i+1
x

i

(

r + 1

i

)

∫ x

0

ur−i+1

ln u
du

=
1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)r−i+1
x

i li+(xr−i+2),

on using Equation (2.1), and Equation (2.7) is proved.

Now, using Equation (1.2) and (2.7), we get

ln−1
x+ ∗ x

r
+ = r li+(x) ∗ x

r−1
+

=
r
∑

i=0

(

r

i

)

(−1)r−i
x

i li+(xr−i+1),

proving Equation (2.8). �

2.5. Corollary. The convolutions li−(x) ∗ xr
− and ln−1 x− ∗ xr

− exist, and

li−(x) ∗ x
r
− =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)r−i+2
x

i li−(xr−i+2),(2.9)

ln−1
x− ∗ x

r
− =

r
∑

i=0

(

r

i

)

(−1)r−i+1
x

i li−(xr−i+1)(2.10)

for r = 0, 1, 2, . . ..

Proof. Equations (2.9) and (2.10) are obtained applying a similar procedure as used in
obtaining equations (2.7) and (2.8). �

2.6. Theorem. The neutrix convolutions li+(x) ©∗ xr and ln−1 x+ ©∗ xr exist, and

li+(x) ©∗ x
r = 0,(2.11)

ln−1
x+ ©∗ x

r = 0(2.12)

for r = 0, 1, 2, . . ..

Proof. We put [li+(x)]n = li+(x)τn(x). Then the convolution [li+(x)]n ∗ xr exists, and

(2.13) [li+(x)]n ∗ x
r =

∫ n

0

li(t)(x − t)r
dt +

∫ n+n−n

n

τn(t) li(t)(x − t)r
dt,
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where
∫ n

0

li(t)(x − t)r
dt = PV

∫ n

0

(x − t)r

∫ t

0

du

ln u
dt

= PV

∫ n

0

1

ln u

∫ n

u

(x − t)r
dt du

= PV
1

r + 1

r+1
∑

i=0

(−1)r−i+1
x

i

(

r + 1

i

)

∫ n

0

ur−i+1 − nr−i+1

ln u
du

=
1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)r−i+1
x

i
[

li(nr−i+2) − n
r−i+1 li(n)

]

.

Thus from Lemma 2.3 we have

(2.14) N−lim
n→∞

∫ n

0

li(t)(x − t)r
dt = 0.

Equation (2.11) now follows using Lemma 2.2, Equations (2.13) and (2.14).

Differentiating Equation (2.11) and using Theorem 1.5 we get

(2.15) ln−1
x+ ©∗ x

r = N−lim
n→∞

[li+(x)τ ′

n(x)] ∗ x
r
,

where on integration by parts we have

(2.16)

[li+(x)τ ′

n(x)] ∗ x
r =

∫ n+n−n

n

τ
′

n(t) li(t)(x − t)r
dt

= − li(n)(x − n)r −

∫ n+n−n

n

ln−1(t)(x− t)r
τn(t) dt

+ r

∫ n+n−n

n

li(t)(x − t)r−1
τn(t) dt.

It is clear that

(2.17) lim
n→∞

∫ n+n−n

n

ln−1(t)(x − t)r
τn(t) dt = 0,

so Equation (2.12) follows from Lemma 2.2 and Equations (2.15), (2.16) and (2.17). �

2.7. Corollary. The neutrix convolutions li−(x) ©∗ xr and ln−1 x− ©∗ xr exist, and

li−(x) ©∗ x
r = 0,(2.18)

ln−1
x− ©∗ x

r = 0(2.19)

for r = 0, 1, 2, . . ..

Proof. Equations (2.18) and (2.19) are obtained applying a similar procedure as in the
case of Equations (2.11) and (2.12). �

2.8. Corollary. The neutrix convolutions li(x) ©∗ xr and ln−1 |x| ©∗ xr exist, and

li(x) ©∗ x
r = 0,(2.20)

ln−1 |x| ©∗ x
r = 0(2.21)

for r = 0, 1, 2, . . ..

Proof. Equation (2.20) follows on adding Equations (2.18) and (2.11), and Equation (2.21)
follows on adding Equations (2.12) and (2.19). �
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2.9. Corollary. The neutrix convolutions li+(x)©∗ xr
−, li−(x)©∗ xr

+, ln−1 x+ ©∗ xr
− and

ln−1 x− ©∗ xr
+ exist, and

li+(x) ©∗ x
r
− =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)i
x

i li+(xr−i+2),(2.22)

li−(x) ©∗ x
r
+ =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)i+1
x

i li−(xr−i+2),(2.23)

ln−1
x+ ©∗ x

r
− =

r
∑

i=0

(

r

i

)

(−1)i
x

i li+(xr−i+1),(2.24)

ln−1
x− ©∗ x

r
+ =

r
∑

i=0

(

r

i

)

(−1)i+1
x

i li−(xr−i+1),(2.25)

for r = 0, 1, 2, . . ..

Proof. Using that xr = xr
+ +(−1)rxr

−, and the fact that the neutrix convolution product
is distributive with respect to addition, we have

li+(x) ©∗ x
r = li+(x) ∗ x

r
+ + (−1)r li+(x) ©∗ x

r
−.

Equation (2.22) follows from Equations (2.7) and (2.11). Equation (2.23) is obtained by
applying a similar procedure as in the case of Equation (2.22).

Equation (2.24) follows from Equations (2.8) and (2.12), and Equation (2.25) is ob-
tained by applying a similar procedure as in the case of Equation (2.24). �

2.10. Theorem. The neutrix convolutions xr ©∗ li+(x) and xr ©∗ ln−1 x+ exist, and

x
r ©∗ li+(x) = 0,(2.26)

x
r ©∗ ln−1

x+ = 0(2.27)

for r = 0, 1, 2, . . ..

Proof. We put (xr)n = xrτn(x) for r = 0, 1, 2, . . .. Then the convolution (xr)n ∗ li+(x)
exists, and

(2.28) (xr)n ∗ li+(x) =

∫ x+n

0

li(t)(x − t)r
dt +

∫ x+n+n−n

x+n

τn(x − t) li(t)(x − t)r
dt,

where
∫ x+n

0

li(t)(x − t)r
dt = PV

∫ x+n

0

(x − t)r

∫ t

0

du

ln u
dt

= PV

∫ x+n

0

1

ln u

∫ x+n

u

(x − t)r
dt du

= PV
1

r + 1

r+1
∑

i=0

(−1)r−i+1
x

i

(

r + 1

i

)

∫ x+n

0

ur−i+1

lnu
du

− PV
(−n)r+1

r + 1

∫ x+n

0

du

ln u

=
1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)r−i+1
x

i li
[

(x + n)r−i+2
]

−
(−n)r+1

r + 1
li(x + n).
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Thus, on using Lemma 2.3, we have

(2.29) N−lim
n→∞

∫ x+n

0

li(t)(x − t)r
dt = 0.

Further, using Lemma 2.2 it is easily seen that

(2.30) lim
n→∞

∫ x+n+n−n

x+n

τn(x − t) li(t)(x − t)r
dt = 0,

and Equation (2.26) follows from Equations (2.28), (2.29) and (2.30).

Differentiating Equation (2.26) gives Equation (2.27). �

2.11. Corollary. The neutrix convolutions xr ©∗ li−(x) and xr ©∗ ln−1 x− exist, and

x
r ©∗ li−(x) = 0,(2.31)

x
r ©∗ ln−1

x− = 0(2.32)

for r = 0, 1, 2, . . ..

Proof. Equations (2.31) and (2.32) are obtained by applying a similar procedure as for
Equations (2.26) and (2.27). �

2.12. Corollary. The neutrix convolutions xr ©∗ li(x) and xr ©∗ ln−1 |x| exist, and

x
r ©∗ li(x) = 0,(2.33)

x
r ©∗ ln−1 |x| = 0(2.34)

for r = 0, 1, 2, . . ..

Proof. Equation (2.33) follows on adding Equations (2.31) and (2.26), and Equation (2.34)
follows on adding Equations (2.27) and (2.32). �

2.13. Corollary. The neutrix convolutions xr
−©∗ li+(x), xr

+ ©∗ li−(x), xr
−©∗ ln−1 x+ and

xr
+ ©∗ ln−1 x− exist, and

x
r
− ©∗ li+(x) =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)i
x

i li+(xr−i+2),(2.35)

x
r
+ ©∗ li−(x) =

1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)i+1
x

i li−(xr−i+2),(2.36)

x
r
− ©∗ ln−1

x+ =
1

r + 1

r
∑

i=0

(

r

i

)

(−1)i
x

i li+(xr−i+1),(2.37)

x
r
+ ©∗ ln−1

x− =
1

r + 1

r
∑

i=0

(

r

i

)

(−1)i+1
x

i li−(xr−i+1)(2.38)

for r = 0, 1, 2, . . ..

Proof. Equation (2.35) follows from Equations (2.7) and (2.26) on noting that

x
r ©∗ li+(x) = x

r
+ ∗ li+(x) + (−1)r

x
r
− ©∗ li+(x).

Equation (2.36) is obtained by arguing as in the case of Equation (2.35). Equation (2.37)
follows from Equations (2.8) and (2.27).

Equation (2.38) is obtained by arguing as in case of Equation (2.37). �
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For further results involving the convolution the reader is referred to [4] and [5].
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