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Abstract

In this paper, we sharpen and generalize Carlson’s double inequality
for the arc cosine function.
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1. Introduction and main results

In [1, p. 700, (1.14)] and [3, p. 246, 3.4.30], it was listed that

(1.1)
6(1 − x)1/2

2
√

2 + (1 + x)1/2
< arccos x <

3
√

4 (1 − x)1/2

(1 + x)1/6
, 0 ≤ x < 1.

In [2], the right-hand side inequality in (1.1) was sharpened and generalized.

On the other hand, the left-hand side inequality in (1.1) was also generalized slightly
in [2] as follows: For x ∈ (0, 1), the function

(1.2) F1/2,1/2,2
√

2 (x) =
2
√

2 + (1 + x)1/2

(1 − x)1/2
arccos x

is strictly decreasing. Consequently, the double inequality

(1.3)
6(1 − x)1/2

2
√

2 + (1 + x)1/2
< arccos x <

(

1/2 +
√

2
)

π(1 − x)1/2

2
√

2 + (1 + x)1/2

holds on (0, 1) and the constants 6 and
(

1
2

+
√

2
)

π are the best possible.
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The aim of this paper is to further generalize the left-hand side inequality in (1.1).

Our main results may be stated as follows.

1.1. Theorem. Let a be a real number and

(1.4) Fa(x) =
a + (1 + x)1/2

(1 − x)1/2
arccos x, x ∈ (0, 1).

(1) If a ≤ 2(π−2)
4−π

, the function Fa(x) is strictly increasing;

(2) If a ≥ 2
√

2 , then the function Fa(x) is strictly decreasing;

(3) If
2(π−2)
4−π

< a < 2
√

2 , the function Fa(x) has a unique minimum.

1.2. Theorem. For a ≤ 2(π−2)
4−π

,

(1.5)
[π(1 + a)/2](1 − x)1/2

a + (1 + x)1/2
< arccos x <

(

2 +
√

2 a
)

(1 − x)1/2

a + (1 + x)1/2
, x ∈ (0, 1).

For
2(π−2)
4−π

< a < 2
√

2 ,

(1.6)

8(1 − 2/a2)(1 − x)1/2

a + (1 + x)1/2
< arccos x

<
max

{

2 +
√

2 a, π(1 + a)/2
}

(1 − x)1/2

a + (1 + x)1/2
, x ∈ (0, 1).

For a ≥ 2
√

2 , the inequality (1.5) reverses on (0, 1).

Moreover, the constants 2+
√

2 a and π
2
(1+a) in (1.5) and (1.6) are the best possible.

2. Remarks

Before proving our theorems, we give several remarks on them as follows.

2.1. Remark. The left-hand side inequality in (1.1) and the double inequality (1.3) are

the special case a = 2
√

2 of the double inequality (1.6). This shows that Theorem 1.1
and Theorem 1.2 sharpen and generalize the left-hand side inequality in (1.1).

2.2. Remark. It is easy to verify that the function a 7→ 1+a

a+(1+x)1/2
is increasing and the

function a 7→ 2+
√

2 a

a+(1+x)1/2 is decreasing. Therefore, the sharp inequalities deduced from

(1.5) are

(2.1)

π2(1 − x)1/2

2
[

2(π − 2) + (4 − π)(1 + x)1/2
] < arccos x

<
2
[

2
(

2 −
√

2
)

+
(√

2 − 1
)

π
]

(1 − x)1/2

2(π − 2) + (4 − π)(1 + x)1/2

and

(2.2)
π
(

1 + 2
√

2
)

(1 − x)1/2

2
[

2
√

2 + (1 + x)1/2
] > arccos x >

6(1 − x)1/2

2
√

2 + (1 + x)1/2

on (0, 1).

Furthermore, it is not difficult to see that the double inequalities (2.1) and (2.2) do
not include each other.
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2.3. Remark. Let

hx(a) =
1 − 2/a2

a + (1 + x)1/2

for 2(π−2)
4−π

< a < 2
√

2 and x ∈ (0, 1). Direct calculation yields

h′
x(a) =

4
√

1 + x + 6a − a3

a3
(

a +
√

1 + x
)2

which satisfies

(2 + a)
(
√

3 − 1 + a
)(

1 +
√

3 − a
)

= 4 + 6a − a3

< a3(a +
√

1 + x
)2

h′
x(a)

= 4
√

1 + x + 6a − a3

< 4
√

2 + 6a − a3

=
(

a +
√

2
)2(

2
√

2 − a
)

.

Accordingly,

(1) When 2(π−2)
4−π

< a ≤ 1 +
√

3 , the function a 7→ hx(a) is increasing;

(2) When 1 +
√

3 < a < 2
√

2 , the function a 7→ hx(a) attains its maximum

4 cos2
(

1
3

arctan
√

1−x√
1+x

)

− 1

4
[

2
√

2 cos
(

1
3

arctan
√

1−x√
1+x

)

+
√

1 + x
]

cos2
(

1
3

arctan
√

1−x√
1+x

)

at the point

2
√

2 cos

(

1

3
arctan

√
1 − x√
1 + x

)

.

As a result, the sharp inequalities deduced from (1.6) are

(2.3)
8
[

1 − 2/
(

1 +
√

3
)2]

(1 − x)1/2

1 +
√

3 + (1 + x)1/2
< arccos x <

π
(

2 −
√

2
)

(1 − x)1/2

4 − π +
(

π − 2
√

2
)

(1 + x)1/2

and

(2.4)
2
[

4 cos2
(

1
3

arctan
√

1−x√
1+x

)

− 1
]

(1 − x)1/2

[

2
√

2 cos
(

1
3

arctan
√

1−x√
1+x

)

+
√

1 + x
]

cos2
(

1
3

arctan
√

1−x√
1+x

) < arccos x

on (0, 1).

2.4. Remark. By the famous software Mathematica 7.0 and standard computation,
we show that

(1) The inequality (2.4) includes the right-hand side inequality in (2.2) and the
left-hand side inequality in (2.3);

(2) The left-hand side inequality (2.1) and the inequality (2.4) are not included in
each other;

(3) The upper bound in (2.3) is better than those in (2.1) and (2.2).
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In conclusion, we obtain the following best and sharp double inequality

(2.5)

π
(

2 −
√

2
)

(1 − x)1/2

4 − π +
(

π − 2
√

2
)

(1 + x)1/2

> arccos x

> max

{

2
[

4λ2(x) − 1
]

(1 − x)1/2

[

2
√

2λ(x) + (1 + x)1/2
]

λ2(x)
,

π2(1 − x)1/2

2
[

2(π − 2) + (4 − π)(1 + x)1/2
]

}

for x ∈ (0, 1), where

(2.6) λ(x) = cos

(

1

3
arctan

√
1 − x√
1 + x

)

, x ∈ (0, 1).

2.5. Remark. Letting arccos x = t in (2.5) leads to

(2.7)

max

{

2
[

4 cos2(t/6) − 1
]

sin(t/2)
[

2 cos(t/6) + cos(t/2)
]

cos2(t/6)
,

π2 sin(t/2)

2
[√

2 (π − 2) + (4 − π) cos(t/2)
]

}

< t

<
2π

(√
2 − 1

)

sin(t/2)

4 − π +
√

2
(

π − 2
√

2
)

cos(t/2)
, 0 < t <

π

2
.

This may be rearranged as

(2.8)

max

{

[

2 cos(t/6) + cos(t/2)
]

cos2(t/6)

4 cos2(t/6) − 1
,
4
[√

2 (π − 2) + (4 − π) cos(t/2)
]

π2

}

>
sin(t/2)

t/2

>
4 − π +

√
2

(

π − 2
√

2
)

cos(t/2)

π
(√

2 − 1
) , 0 < t <

π

2
.

Therefore, we have

(2.9)

max

{

[

2 cos(t/3) + cos t
]

cos2(t/3)

4 cos2(t/3) − 1
,
4
[√

2 (π − 2) + (4 − π) cos t
]

π2

}

>
sin t

t

>
4 − π +

√
2

(

π − 2
√

2
)

cos t

π
(√

2 − 1
) , 0 < t <

π

4
.

It is noted that the double inequality (2.9) improves related inequalities surveyed in [4,
Section 3] and [8, Section 1.7].

2.6. Remark. The approach used in this paper to prove Theorem 1.1 and Theorem 1.2
has been utilized in [2, 5, 6, 7, 9, 10] to establish similar monotonicity and inequalities
related to the arc sine, arc cosine and arc tangent functions. For more information on
this topic, please see the expository and survey article [8].

3. Proofs of Theorem 1.1 and Theorem 1.2

Now we are in a position to verify our theorems.
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Proof of Theorem 1.1. Straightforward differentiation yields

F ′
a(x) =

√
1 − x2

(

a
√

x + 1 + 2
)

2(x − 1)2(x + 1)

[

2(x − 1)
(

a
√

x + 1 + x + 1
)

√
1 − x2

(

a
√

x + 1 + 2
) + arccos x

]

,

√
1 − x2

(

a
√

x + 1 + 2
)

2(x − 1)2(x + 1)
Ga(x),

and

G′
a(x) =

(

a2
√

x + 1 − ax − a − 4
√

x + 1
)√

1 − x

(1 + x)
(

a
√

x + 1 + 2
)2

,
Ha(x)

√
1 − x

(1 + x)
(

a
√

x + 1 + 2
)2

It is clear that only if a 6∈
(

−2,−
√

2
)

the denominators of G′
a(x) and Ga(x) do not equal

zero on (0, 1) and that the function Ha(x) has two zeros

a1(x) =
x + 1 −

√
x2 + 18x + 17

2
√

x + 1
and a2(x) =

x + 1 +
√

x2 + 18x + 17

2
√

x + 1

whose derivatives are

a′
1(x) =

√
x2 + 18x + 17 − x − 1

4
√

(1 + x)(x2 + 18x + 17)
> 0

and

a′
2(x) =

1 + x +
√

x2 + 18x + 17

4
√

(1 + x)(x2 + 18x + 17)
> 0

with

lim
x→0+

a1(x) =
1 −

√
17

2
, lim

x→1−
a1(x) = −

√
2 ,

lim
x→0+

a2(x) =
1 +

√
17

2
, lim

x→1−
a2(x) = 2

√
2 .

Since the functions a1(x) and a2(x) are strictly increasing on (0, 1), the following conclu-
sions can be derived:

(1) When a ≤ −2 < 1−
√

17
2

< −
√

2 or a ≥ 2
√

2 , the function Ha(x) and the
derivative G′

a(x) are always positive on (0, 1), and so the function Ga(x) is
strictly increasing on (0, 1). From

(3.1) lim
x→0+

Ga(x) =
(π − 4)a + 2(π − 2)

2(a + 2)
and lim

x→1−
Ga(x) = 0,

it follows that the functions Ga(x) and F ′
a(x) are negative, and so the function

Fa(x) is strictly decreasing on (0, 1).

(2) When −
√

2 ≤ a ≤ 1+
√

17
2

, the function Ha(x) and the derivative G′
a(x) are

negative on (0, 1), and so the function Ga(x) is strictly decreasing on (0, 1).
From (3.1), it is obtained that the function Ga(x) and the derivative F ′

a(x) are
positive. So the function Fa(x) is strictly increasing on (0, 1).

(3) When 1+
√

17
2

< a < 2
√

2 , the functions Ha(x) and G′
a(x) have a unique zero

which is the unique maximum point of Ga(x). From (3.1), it is deduced that

(a) If 1+
√

17
2

< a ≤ 2(π−2)
4−π

, the functions Ga(x) and F ′
a(x) are positive, and so

the function Fa(x) is strictly increasing on (0, 1).

(b) If 2(π−2)
4−π

< a < 2
√

2 , the functions Ga(x) and F ′
a(x) have a unique zero

which is the unique minimum point of the function Fa(x) on (0, 1).
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On the other hand, the derivative F ′
a(x) can be rearranged as

F ′
a(x) =

√
1 − x2

2(x − 1)2(x + 1)

[

2(x − 1)
(

a
√

x + 1 + x + 1
)

√
1 − x2

+
(

a
√

x + 1 + 2
)

arccos x

]

,

√
1 − x2

2(x − 1)2(x + 1)
Qa(x),

with

Q′
a(x) =

arccos x

2
√

x + 1

(

a − 4
√

1 − x

arccos x

)

,
arccos x

2
√

x + 1
[a − P (x)],

P ′(x) =
2(x + 1)√

x + 1
√

1 − x2 (arccos x)2

[

2
√

1 − x2

x + 1
− arccos x

]

,
2(x + 1)√

x + 1
√

1 − x2 (arccos x)2
R(x)

and

R′(x) =
x − 1

(x + 1)
√

1 − x2
< 0.

From limx→1− R(x) = 0 and the decreasingly monotonic property of R(x), we obtain
that R(x) > 0, and so the function P (x) is strictly increasing. Since

lim
x→0+

P (x) =
8

π
and lim

x→1−
P (x) = 2

√
2 ,

the function Qa(x) is strictly decreasing (or increasing, respectively) with respect to

x ∈ (0, 1) for a ≤ 8
π

(or a ≥ 2
√

2 , respectively). By virtue of limx→1− Qa(x) = 0, it
follows that

(1) If a ≤ 8
π
, the function Qa(x) is positive on (0, 1);

(2) If a ≥ 2
√

2 , the function Qa(x) is negative on (0, 1).

These imply that the function Fa(x) is strictly increasing for a ≤ 8
π

< 2(π−2)
4−π

and strictly

decreasing for a ≥ 2
√

2 . The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. Easy calculation gives

lim
x→0+

Fa(x) =
π

2
(1 + a) and lim

x→1−
Fa(x) = 2 +

√
2 a.

By the monotonicity of Fa(x) procured in Theorem 1.1, it follows that

(1) If a ≤ 2(π−2)
4−π

, then

π

2
(1 + a) < Fa(x) < 2 +

√
2 a

on (0, 1), which can be rearranged as the inequality (1.5);

(2) If a ≥ 2
√

2 , the inequality (1.5) is reversed;

(3) If 2(π−2)
4−π

< a < 2
√

2 , the function Fa(x) has a unique minimum, so

Fa(x) < max
{π

2
(1 + a), 2 +

√
2 a

}

on (0, 1), which is equivalent to the right-hand side inequality (1.6).

Furthermore, the minimum point x0 ∈ (0, 1) of the function Fa(x) satisfies

arccos x0 =
2(1 − x0)

(

a
√

x0 + 1 + x0 + 1
)

√

1 − x2
0

(

a
√

x0 + 1 + 2
)

,
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and so

Fa(x0) =
2
(

a +
√

x0 + 1
)(

a
√

x0 + 1 + x0 + 1
)

√
1 + x0

(

a
√

x0 + 1 + 2
) ,

2(a + u)2

au + 2
≥ 8

(

1 − 2

a2

)

,

where u =
√

1 + x0 ∈
(

1,
√

2
)

. The left-hand side inequality in (1.6) follows.

The proof of Theorem 1.2 is complete. �

4. An open problem

Finally, we propose the following open problem.

4.1. Open Problem. For real numbers α, β and γ, let

(4.1) Fα,β,γ(x) =
γ + (1 + x)β

(1 − x)α
arccos x, x ∈ (0, 1).

Find the ranges of the constants α, β and γ such that the function Fα,β,γ(x) is monotonic
on (0, 1).
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