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Abstract

In this paper, we give some results on principal ideals of a numerical
semigroup S = 〈s1, s2, . . . , sp〉 for p ≥ 2, p ∈ N. We also describe some
relations between Apery subsets and ideals of S.

Keywords: Numerical semigroup, Apery set, Ideal, Gap.

2000 AMS Classification: 20 M14.

1. Introduction

A numerical semigroup S is a subset of N (the set of nonnegative integers) closed
under addition, satisfying 0 ∈ S and for which N \ S has finitely many elements. For
a numerical semigroup S, A = {s1, s2, . . . , sp} ⊂ S is a generating set of S provided
that S = 〈s1, s2, . . . , sp〉 = {s1k1 + s2k2 + · · · + spkp : ki ∈ N, 1 ≤ i ≤ p}. The
set A = {s1, s2, . . . , sp} is called a minimal generating set of if no proper subset is a
generating set of S. It was observed in [1] that the set N \ S is finite if and only if
gcd{s1, s2, . . . , sp} = 1 (gcd stands for the greatest common divisor).

Another important invariant of S is the largest integer not belonging to S, known as
the Frobenius number of S and denoted by g(S), that is g(S) = max{x ∈ Z : x /∈ S} (see
[6, 1]). We define

n(S) = ♯({0, 1, . . . , g(S)} ∩ S)

where ♯(A) denotes the cardinality of A. It is also well-known that

S = {0, s1, s2, . . . , sn−1, sn = g(S) + 1,→ . . .}

where → means that every integer greater than g(S) + 1 belongs to S, n = n(S) and
si < si+1 for i = 1, 2, . . . , n.

For m ∈ S \ {0}, the Apery set of m in S is the set Ap (S, m) = {s ∈ S : s − m /∈ S}.
It can easily be proved that Ap (S, m) is formed by the smallest elements of S belonging
to the different congruence classes mod m. According to this, we have ♯(Ap (S, m)) = m
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and g(S) = max(Ap (S, m))−m. Various aspects and properties of Apery sets are given
in [2, 3].

The elements of N \ S, denoted by H(S), are called the gaps of S (see [6]). A subset
I of S is an ideal if I + S ⊆ I (that is, for all x ∈ I and s ∈ S, the element x + s is in
I). An ideal I of S is generated by A ⊂ S if I = A + S. We also say that the ideal I is
finitely generated if there exists a finite A ⊆ S such that I = A + S.

We say that I is principal if it can be generated by a single element. That is, there
exists x0 ∈ S such that I = {x0} + S = {x0 + s : s ∈ S}. We usually write I = [x0]
instead of I = {x0} + S (see [5]). The elements of H(I) = S \ I are called the gaps of I .
If I and J are ideals of S, we define their ideal sum by I + J = {i + j : i ∈ I, j ∈ J} (see
[1]).

The contents of this study are organized as follows. In section 2, we give some results
concerning the sum, union and intersection of principal ideals of S. In particular, the
main goal of this section is to prove Theorem 2.5. Furthermore, the aim of Section 3 is
to give some relations between the Apery subsets and the principal ideals of S.

Throughout this paper, we will assume the numerical semigroup S satisfies

S = 〈s1, s2, . . . , sp〉 = {s1k1 + s2k2 + · · · + spkp : ki ∈ N, 1 ≤ i ≤ p},

and that its principal ideals are Ii, for i = 1, 2, . . . , p (p ≥ 2, p ∈ N), respectively.

2. Some results for principal ideals of numerical semigroups

In this section, we give some results concerning the sum, union and intersection of
principal ideals of a numerical semigroup S. In particular, we obtain elements belonging
to the intersection of the principal ideals of S which are not in the sum of the principal
ideals of S.

2.1. Lemma.
p
∑

i=1

Ii ⊂ Ii, where
p
∑

i=1

Ii =
[ p

∑

i=1

si

]

and si ∈ S.

Proof. If x ∈
p
∑

i=1

Ii =
[ p

∑

i=1

si

]

, then there exists s ∈ S such that x =
p

∑

i=1

si + s. Thus, we

find x ∈ S. Therefore, we get
p
∑

i=1

Ii ⊂ S =⇒
p
∑

i=1,
k 6=i

Ii + Ik ⊂ S + Ik ⊂ Ik, 1 ≤ k ≤ p. �

We obtain the following result from Lemma 2.1.

2.2. Corollary.
p

∑

i=1

Ii ⊂
p
⋂

i=1

Ii.

2.3. Lemma. Let S and Ii be a numerical semigroup and principal ideals of S, respec-

tively. Then sp /∈ Ii for i = 1, 2, . . . , p − 1.

Proof. If sp ∈ Ii, then there exists s ∈ S such that si +s = sp for i = 1, 2, . . . , p−1. Thus
it follows that S = 〈s1, s2, . . . , sp−1〉, which is a contradiction since A = {s1, s2, . . . , sp}
is a minimal generating set of S. �

2.4. Lemma. Let S and Ii be a numerical semigroup and principal ideals of S, respec-

tively. Then
p−1
⋃

i=1

Ii ⊆ S \ {0, sp}.

Proof. If x ∈
p−1
⋃

i=1

Ii, then it follows that x 6= sp and x 6= 0 from definition of principal

ideal of S, and Lemma 2.3. �
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2.5. Theorem. Let S be a numerical semigroup, Ii and g(S) be its principal ideals and

Frobenius number, respectively. Then

g(S) +

p
∑

i=1

si ∈

p
⋂

i=1

Ii \

p
∑

i=1

Ii.

Proof. Firstly, we show that g(S) +
p

∑

i=1

si ∈
p
⋂

i=1

Ii:

g(S) +

p
∑

i=1

si = s1 + (g(S) + s2 + s3 + · · · + sp) ∈ I1,

since (g(S) + s2 + s3 + · · · + sp) ∈ S,

g(S) +

p
∑

i=1

si = s2 + (g(S) + s1 + s3 + · · · + sp) ∈ I2,

since (g(S) + s1 + s3 + · · · + sp) ∈ S,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

g(S) +

p
∑

i=1

si = sp + (g(S) + s1 + s2 + · · · + sp−1) ∈ Ip,

since (g(S) + s1 + s2 + · · · + sp−1) ∈ S.

Now, we must show that g(S)+
p

∑

i=1

si /∈
p
∑

i=1

Ii. Suppose on the contrary that g(S) +

p
∑

i=1

si ∈
p
∑

i=1

Ii. Then, there exists s ∈ S such that g(S)+
p
∑

i=1

si = s1 +s2+s3+ · · ·+sp +s.

Thus, we get g(S) = s ∈ S, which is a contradiction. �

2.6. Example. Let us consider the numerical semigroup S given by S = 〈4, 7, 9〉 =
{0, 4, 7, 8, 9, 11,→ . . .}. The Frobenius number of S is g(S) = 10. Then the principal
ideals of S are described by:

I = [4] = 4 + S = {4, 8, 11, 12, 13, 15,→ . . .},

J = [7] = 7 + S = {7, 11, 14, 15, 16, 18,→ . . .}, and

K = [9] = 9 + S = {9, 13, 16, 17, 18, 20,→ . . .}.

In this case, we find that

I + J + K = [20] = {20, 24, 27, 28, 29, 31,→ . . .} ⊂ I, J, K,

I ∪ J = {4, 7, 8, 11,→ . . .} ⊆ S \ {0, 9},

I ∩ J ∩ K = {16, 18, 20, 21,→ . . .} ⊃ I + J + K,

and g(S) + s1 + s2 + s3 = 10 + 4 + 7 + 9 = 30 ∈ I ∩ J ∩ K but 30 not in [4 + 7 + 9].

3. The relation between principal ideals and Apery sets

In this section, we obtain some relations between the principal ideals Ii =
[

si

]

and
the Apery sets Ap (S, si) = {s ∈ S : s − si /∈ S} for 1 ≤ i ≤ p.

3.1. Lemma. Ap (S, si) ⊆ Ic
i for each i, 1 ≤ i ≤ p.

Proof. We must show that Ii ∩ Ap (S, si) = ∅. Suppose that Ii ∩ Ap (S, si) 6= ∅ for some
i ∈ {1, 2, . . . , p}. If x ∈

[

si

]

∩ Ap (S, si), then x = si + s for some s ∈ S, and x − si /∈ S
for this i. But this is contradiction since x ∈ S. �
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The following is a consequence of Lemma 3.1.

3.2. Corollary. For each i ∈ {1, 2, . . . , p} the family
{[

si

]

, Ap (S, si)
}

is a partition of

S.

Proof. Take i ∈ {1, 2, . . . , p}. According to lemma 3.1, it is sufficient to show that
S =

[

si

]

∪ Ap (S, si). It is clear that
[

si

]

∪ Ap (S, si) ⊆ S, so take x ∈ S with x /∈
[

si

]

.
Then we have x − si /∈ S, so x ∈ Ap (S, si) which gives the required result. �

3.3. Lemma.
p
∑

i=1

si /∈ Ap (S, si) for each i ∈ {1, 2, . . . , p}.

Proof. The result follows from the fact that (
p
∑

i=1

si)−sj = s1+s2+s3+· · ·+sj−1+sj+1 ∈ S

for each i ∈ {1, 2, . . . , p} and 2 ≤ j ≤ p − 1. �

3.4. Lemma. Ap (S, si) ⊂ Ap (S,
p

∑

i=1

si) for each i ∈ {1, 2, . . . , p}.

Proof. For each i ∈ {1, 2, . . . , p}, if x /∈ Ap (S,
p

∑

i=1

si), then x − s1 − s2 − . . . − sp ∈ S. It

follows that x − si ∈ S, and hence x /∈ Ap (S, si). �

3.5. Lemma. Ap (S, si) = H(Ii) for each i ∈ {1, 2, . . . , p}.

Proof. The result follows from the following observation: for each i ∈ {1, 2, . . . , p},

x ∈ Ap (S, si) ⇐⇒ x − si /∈ S ⇐⇒ ∀ s ∈ S, s 6= x − si

⇐⇒ x 6= si + s ⇐⇒ x /∈ Ii ⇐⇒ x ∈ H(Ii). �

The following result is a consequence of Lemma 3.5.

3.6. Corollary. S \
( p

∑

i=1

Ii

)

= Ap
(

S,
p

∑

i=1

si

)

. �

3.7. Lemma.
p
⋃

i=1

H
(

Ii

)

⊆ H
( p

∑

i=1

Ii

)

.

Proof. From Lemma 2.1 we have
p

∑

i=1

Ii ⊆ Ii, and so H(Ii) ⊆ H
( p

∑

i=1

Ii

)

for each i ∈

{1, 2, . . . , p}. Thus, we obtain
p
⋃

i=1

H
(

Ii

)

⊆ H
( p

∑

i=1

Ii

)

�

3.8. Example. Let us consider a numerical semigroup S given by S = 〈5, 7, 9, 11, 13〉 =
{0, 5, 7, 9,→ . . .}. The Frobenius number of S is g(S) = 8. The principal ideals Ii of S
(for i = 1, 2, 3, 4, 5) are respectively;

I1 = [5] = {5, 10, 12, 14,→ . . .},

I2 = [7] = {7, 12, 14, 16,→ . . .},

I3 = [9] = {9, 14, 16, 18,→ . . .},

I4 = [11] = {11, 16, 18, 20,→ . . .}, and,

I5 = [13] = {13, 18, 20, 22,→ . . .}.
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Now, the subsets Ap (S, si) of S (for i = 1, 2, 3, 4, 5) are respectively;

Ap (S, 5) = {s ∈ S : s − 5 /∈ S} = {0, 7, 9, 11, 13}

= H(I1),

Ap (S, 7) = {s ∈ S : s − 7 /∈ S} = {0, 5, 9, 10, 11, 13, 15}

= H(I2),

Ap (S, 9) = {s ∈ S : s − 9 /∈ S} = {0, 5, 7, 10, 11, 12, 13, 15, 17}

= H(I3),

Ap (S, 11) = {s ∈ S : s − 11 /∈ S} = {0, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19}

= H(I4), and,

Ap (S, 13) = {s ∈ S : s − 13 /∈ S} = {0, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 21}

= H(I5).

From Corollary 3.2 , we can write

S =
[

si

]

∪ Ap (S, si),
[

si

]

∩ Ap (S, si) = ∅,
5

∑

i=1

si = 45 /∈ Ap (S, si),

and

Ap (S, si) ⊂ Ap (S , 45), for i = 1, 2, 3, 4, 5.

On the other hand, we have S \
5

∑

i=1

Ii = Ap (S, 45) and
5
⋃

i=1

H(Ii) ⊂ H([45]).
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