AN APPROACH TO NUMERICAL SEMIGROUPS

Sedat İlhan*

Received $03: 02: 2010$: Accepted 12:04:2010

Abstract

In this paper, we give some results on principal ideals of a numerical semigroup $S=\left\langle s_{1}, s_{2}, \ldots, s_{p}\right\rangle$ for $p \geq 2, p \in \mathbb{N}$. We also describe some relations between Apery subsets and ideals of S.

Keywords: Numerical semigroup, Apery set, Ideal, Gap.
2000 AMS Classification: 20 M 14.

1. Introduction

A numerical semigroup S is a subset of \mathbb{N} (the set of nonnegative integers) closed under addition, satisfying $0 \in S$ and for which $\mathbb{N} \backslash S$ has finitely many elements. For a numerical semigroup $S, A=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\} \subset S$ is a generating set of S provided that $S=\left\langle s_{1}, s_{2}, \ldots, s_{p}\right\rangle=\left\{s_{1} k_{1}+s_{2} k_{2}+\cdots+s_{p} k_{p}: k_{i} \in \mathbb{N}, 1 \leq i \leq p\right\}$. The set $A=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ is called a minimal generating set of if no proper subset is a generating set of S. It was observed in [1] that the set $\mathbb{N} \backslash S$ is finite if and only if $\operatorname{gcd}\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}=1(\operatorname{gcd}$ stands for the greatest common divisor).

Another important invariant of S is the largest integer not belonging to S, known as the Frobenius number of S and denoted by $g(S)$, that is $g(S)=\max \{x \in \mathbb{Z}: x \notin S\}$ (see $[6,1])$. We define

$$
n(S)=\sharp(\{0,1, \ldots, g(S)\} \cap S)
$$

where $\sharp(A)$ denotes the cardinality of A. It is also well-known that

$$
S=\left\{0, s_{1}, s_{2}, \ldots, s_{n-1}, s_{n}=g(S)+1, \rightarrow \ldots\right\}
$$

where \rightarrow means that every integer greater than $g(S)+1$ belongs to $S, n=n(S)$ and $s_{i}<s_{i+1}$ for $i=1,2, \ldots, n$.

For $m \in S \backslash\{0\}$, the Apery set of m in S is the set $\operatorname{Ap}(S, m)=\{s \in S: s-m \notin S\}$. It can easily be proved that $\operatorname{Ap}(S, m)$ is formed by the smallest elements of S belonging to the different congruence classes mod m. According to this, we have $\sharp(\operatorname{Ap}(S, m))=m$

[^0]and $g(S)=\max (\operatorname{Ap}(S, m))-m$. Various aspects and properties of Apery sets are given in $[2,3]$.

The elements of $\mathbb{N} \backslash S$, denoted by $H(S)$, are called the gaps of S (see [6]). A subset I of S is an ideal if $I+S \subseteq I$ (that is, for all $x \in I$ and $s \in S$, the element $x+s$ is in I). An ideal I of S is generated by $A \subset S$ if $I=A+S$. We also say that the ideal I is finitely generated if there exists a finite $A \subseteq S$ such that $I=A+S$.

We say that I is principal if it can be generated by a single element. That is, there exists $x_{0} \in S$ such that $I=\left\{x_{0}\right\}+S=\left\{x_{0}+s: s \in S\right\}$. We usually write $I=\left[x_{0}\right]$ instead of $I=\left\{x_{0}\right\}+S$ (see [5]). The elements of $H(I)=S \backslash I$ are called the gaps of I. If I and J are ideals of S, we define their ideal sum by $I+J=\{i+j: i \in I, j \in J\}$ (see [1]).

The contents of this study are organized as follows. In section 2, we give some results concerning the sum, union and intersection of principal ideals of S. In particular, the main goal of this section is to prove Theorem 2.5. Furthermore, the aim of Section 3 is to give some relations between the Apery subsets and the principal ideals of S.

Throughout this paper, we will assume the numerical semigroup S satisfies

$$
S=\left\langle s_{1}, s_{2}, \ldots, s_{p}\right\rangle=\left\{s_{1} k_{1}+s_{2} k_{2}+\cdots+s_{p} k_{p}: k_{i} \in \mathbb{N}, 1 \leq i \leq p\right\}
$$

and that its principal ideals are I_{i}, for $i=1,2, \ldots, p(p \geq 2, p \in \mathbb{N})$, respectively.

2. Some results for principal ideals of numerical semigroups

In this section, we give some results concerning the sum, union and intersection of principal ideals of a numerical semigroup S. In particular, we obtain elements belonging to the intersection of the principal ideals of S which are not in the sum of the principal ideals of S.
2.1. Lemma. $\sum_{i=1}^{p} I_{i} \subset I_{i}$, where $\sum_{i=1}^{p} I_{i}=\left[\sum_{i=1}^{p} s_{i}\right]$ and $s_{i} \in S$.

Proof. If $x \in \sum_{i=1}^{p} I_{i}=\left[\sum_{i=1}^{p} s_{i}\right]$, then there exists $s \in S$ such that $x=\sum_{i=1}^{p} s_{i}+s$. Thus, we
find $x \in S$. Therefore, we get $\sum_{i=1}^{p} I_{i} \subset S \Longrightarrow \sum_{\substack{i=1, k \neq i}}^{p} I_{i}+I_{k} \subset S+I_{k} \subset I_{k}, 1 \leq k \leq p$.
We obtain the following result from Lemma 2.1.
2.2. Corollary. $\sum_{i=1}^{p} I_{i} \subset \bigcap_{i=1}^{p} I_{i}$.
2.3. Lemma. Let S and I_{i} be a numerical semigroup and principal ideals of S, respectively. Then $s_{p} \notin I_{i}$ for $i=1,2, \ldots, p-1$.
Proof. If $s_{p} \in I_{i}$, then there exists $s \in S$ such that $s_{i}+s=s_{p}$ for $i=1,2, \ldots, p-1$. Thus it follows that $S=\left\langle s_{1}, s_{2}, \ldots, s_{p-1}\right\rangle$, which is a contradiction since $A=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ is a minimal generating set of S.
2.4. Lemma. Let S and I_{i} be a numerical semigroup and principal ideals of S, respectively. Then $\bigcup_{i=1}^{p-1} I_{i} \subseteq S \backslash\left\{0, s_{p}\right\}$.

Proof. If $x \in \bigcup_{i=1}^{p-1} I_{i}$, then it follows that $x \neq s_{p}$ and $x \neq 0$ from definition of principal ideal of S, and Lemma 2.3.
2.5. Theorem. Let S be a numerical semigroup, I_{i} and $g(S)$ be its principal ideals and Frobenius number, respectively. Then

$$
g(S)+\sum_{i=1}^{p} s_{i} \in \bigcap_{i=1}^{p} I_{i} \backslash \sum_{i=1}^{p} I_{i} .
$$

Proof. Firstly, we show that $g(S)+\sum_{i=1}^{p} s_{i} \in \bigcap_{i=1}^{p} I_{i}$:

$$
\begin{aligned}
& g(S)+\sum_{i=1}^{p} s_{i}=s_{1}+\left(g(S)+s_{2}+s_{3}+\cdots+s_{p}\right) \in I_{1}, \\
& \text { since }\left(g(S)+s_{2}+s_{3}+\cdots+s_{p}\right) \in S \text {, } \\
& g(S)+\sum_{i=1}^{p} s_{i}=s_{2}+\left(g(S)+s_{1}+s_{3}+\cdots+s_{p}\right) \in I_{2}, \\
& \text { since }\left(g(S)+s_{1}+s_{3}+\cdots+s_{p}\right) \in S, \\
& g(S)+\sum_{i=1}^{p} s_{i}=s_{p}+\left(g(S)+s_{1}+s_{2}+\cdots+s_{p-1}\right) \in I_{p}, \\
& \text { since }\left(g(S)+s_{1}+s_{2}+\cdots+s_{p-1}\right) \in S \text {. }
\end{aligned}
$$

Now, we must show that $g(S)+\sum_{i=1}^{p} s_{i} \notin \sum_{i=1}^{p} I_{i}$. Suppose on the contrary that $g(S)+$ $\sum_{i=1}^{p} s_{i} \in \sum_{i=1}^{p} I_{i}$. Then, there exists $s \in S$ such that $g(S)+\sum_{i=1}^{p} s_{i}=s_{1}+s_{2}+s_{3}+\cdots+s_{p}+s$. Thus, we get $g(S)=s \in S$, which is a contradiction.
2.6. Example. Let us consider the numerical semigroup S given by $S=\langle 4,7,9\rangle=$ $\{0,4,7,8,9,11, \rightarrow \ldots\}$. The Frobenius number of S is $g(S)=10$. Then the principal ideals of S are described by:

$$
\begin{aligned}
I & =[4]=4+S \\
J & =\{4,8,11,12,13,15, \rightarrow \ldots\} \\
=7+S & =\{7,11,14,15,16,18, \rightarrow \ldots\}, \text { and } \\
K & =[9]=9+S=\{9,13,16,17,18,20, \rightarrow \ldots\} .
\end{aligned}
$$

In this case, we find that

$$
\begin{aligned}
I+J+K & =[20]=\{20,24,27,28,29,31, \rightarrow \ldots\} \subset I, J, K \\
I \cup J & =\{4,7,8,11, \rightarrow \ldots\} \subseteq S \backslash\{0,9\}, \\
I \cap J \cap K & =\{16,18,20,21, \rightarrow \ldots\} \supset I+J+K, \\
\text { and } g(S)+s_{1}+s_{2} & +s_{3}=10+4+7+9=30 \in I \cap J \cap K \text { but } 30 \text { not in }[4+7+9] .
\end{aligned}
$$

3. The relation between principal ideals and Apery sets

In this section, we obtain some relations between the principal ideals $I_{i}=\left[s_{i}\right]$ and the Apery sets $\operatorname{Ap}\left(S, s_{i}\right)=\left\{s \in S: s-s_{i} \notin S\right\}$ for $1 \leq i \leq p$.
3.1. Lemma. $\operatorname{Ap}\left(S, s_{i}\right) \subseteq I_{i}^{c}$ for each $i, 1 \leq i \leq p$.

Proof. We must show that $I_{i} \cap \operatorname{Ap}\left(S, s_{i}\right)=\emptyset$. Suppose that $I_{i} \cap \operatorname{Ap}\left(S, s_{i}\right) \neq \emptyset$ for some $i \in\{1,2, \ldots, p\}$. If $x \in\left[s_{i}\right] \cap \operatorname{Ap}\left(S, s_{i}\right)$, then $x=s_{i}+s$ for some $s \in S$, and $x-s_{i} \notin S$ for this i. But this is contradiction since $x \in S$.

The following is a consequence of Lemma 3.1.
3.2. Corollary. For each $i \in\{1,2, \ldots, p\}$ the family $\left\{\left[s_{i}\right], \operatorname{Ap}\left(S, s_{i}\right)\right\}$ is a partition of S.

Proof. Take $i \in\{1,2, \ldots, p\}$. According to lemma 3.1, it is sufficient to show that $S=\left[s_{i}\right] \cup \operatorname{Ap}\left(S, s_{i}\right)$. It is clear that $\left[s_{i}\right] \cup \operatorname{Ap}\left(S, s_{i}\right) \subseteq S$, so take $x \in S$ with $x \notin\left[s_{i}\right]$. Then we have $x-s_{i} \notin S$, so $x \in \operatorname{Ap}\left(S, s_{i}\right)$ which gives the required result.
3.3. Lemma. $\sum_{i=1}^{p} s_{i} \notin \operatorname{Ap}\left(S, s_{i}\right)$ for each $i \in\{1,2, \ldots, p\}$.

Proof. The result follows from the fact that $\left(\sum_{i=1}^{p} s_{i}\right)-s_{j}=s_{1}+s_{2}+s_{3}+\cdots+s_{j-1}+s_{j+1} \in S$ for each $i \in\{1,2, \ldots, p\}$ and $2 \leq j \leq p-1$.
3.4. Lemma. $\operatorname{Ap}\left(S, s_{i}\right) \subset \operatorname{Ap}\left(S, \sum_{i=1}^{p} s_{i}\right)$ for each $i \in\{1,2, \ldots, p\}$.

Proof. For each $i \in\{1,2, \ldots, p\}$, if $x \notin \operatorname{Ap}\left(S, \sum_{i=1}^{p} s_{i}\right)$, then $x-s_{1}-s_{2}-\ldots-s_{p} \in S$. It follows that $x-s_{i} \in S$, and hence $x \notin \operatorname{Ap}\left(S, s_{i}\right)$.
3.5. Lemma. $\operatorname{Ap}\left(S, s_{i}\right)=H\left(I_{i}\right)$ for each $i \in\{1,2, \ldots, p\}$.

Proof. The result follows from the following observation: for each $i \in\{1,2, \ldots, p\}$,

$$
\begin{aligned}
x \in \operatorname{Ap}\left(S, s_{i}\right) & \Longleftrightarrow x-s_{i} \notin S \Longleftrightarrow \forall s \in S, s \neq x-s_{i} \\
& \Longleftrightarrow x \neq s_{i}+s \Longleftrightarrow x \notin I_{i} \Longleftrightarrow x \in H\left(I_{i}\right) .
\end{aligned}
$$

The following result is a consequence of Lemma 3.5.
3.6. Corollary. $S \backslash\left(\sum_{i=1}^{p} I_{i}\right)=\operatorname{Ap}\left(S, \sum_{i=1}^{p} s_{i}\right)$.
3.7. Lemma. $\bigcup_{i=1}^{p} H\left(I_{i}\right) \subseteq H\left(\sum_{i=1}^{p} I_{i}\right)$.

Proof. From Lemma 2.1 we have $\sum_{i=1}^{p} I_{i} \subseteq I_{i}$, and so $H\left(I_{i}\right) \subseteq H\left(\sum_{i=1}^{p} I_{i}\right)$ for each $i \in$ $\{1,2, \ldots, p\}$. Thus, we obtain $\bigcup_{i=1}^{p} H\left(I_{i}\right) \subseteq H\left(\sum_{i=1}^{p} I_{i}\right)$
3.8. Example. Let us consider a numerical semigroup S given by $S=\langle 5,7,9,11,13\rangle=$ $\{0,5,7,9, \rightarrow \ldots\}$. The Frobenius number of S is $g(S)=8$. The principal ideals I_{i} of S (for $i=1,2,3,4,5$) are respectively;

$$
\begin{aligned}
I_{1} & =[5]=\{5,10,12,14, \rightarrow \ldots\}, \\
I_{2} & =[7]=\{7,12,14,16, \rightarrow \ldots\}, \\
I_{3} & =[9]=\{9,14,16,18, \rightarrow \ldots\}, \\
I_{4} & =[11]=\{11,16,18,20, \rightarrow \ldots\}, \text { and, } \\
I_{5} & =[13]=\{13,18,20,22, \rightarrow \ldots\} .
\end{aligned}
$$

Now, the subsets $\operatorname{Ap}\left(S, s_{i}\right)$ of S (for $\left.i=1,2,3,4,5\right)$ are respectively;

$$
\begin{aligned}
\operatorname{Ap}(S, 5) & =\{s \in S: s-5 \notin S\}=\{0,7,9,11,13\} \\
& =H\left(I_{1}\right) \\
\operatorname{Ap}(S, 7) & =\{s \in S: s-7 \notin S\}=\{0,5,9,10,11,13,15\} \\
& =H\left(I_{2}\right) \\
\operatorname{Ap}(S, 9) & =\{s \in S: s-9 \notin S\}=\{0,5,7,10,11,12,13,15,17\} \\
& =H\left(I_{3}\right) \\
\operatorname{Ap}(S, 11) & =\{s \in S: s-11 \notin S\}=\{0,5,7,9,10,12,13,14,15,17,19\} \\
& =H\left(I_{4}\right), \text { and } \\
\operatorname{Ap}(S, 13) & =\{s \in S: s-13 \notin S\}=\{0,5,7,9,10,11,12,14,15,16,17,19,21\} \\
& =H\left(I_{5}\right)
\end{aligned}
$$

From Corollary 3.2, we can write

$$
S=\left[s_{i}\right] \cup \operatorname{Ap}\left(S, s_{i}\right),\left[s_{i}\right] \cap \operatorname{Ap}\left(S, s_{i}\right)=\emptyset, \sum_{i=1}^{5} s_{i}=45 \notin \operatorname{Ap}\left(S, s_{i}\right)
$$

and

$$
\operatorname{Ap}\left(S, s_{i}\right) \subset \operatorname{Ap}(S, 45), \text { for } i=1,2,3,4,5
$$

On the other hand, we have $S \backslash \sum_{i=1}^{5} I_{i}=\operatorname{Ap}(S, 45)$ and $\bigcup_{i=1}^{5} H\left(I_{i}\right) \subset H([45])$.

References

[1] Barucci, V., Dobbs, D. E. and Fontana, M. Maximality properties in numerical semigroups and applications to one-dimensional analyticalle irreducible local domains, Memoirs of The Amer. Math. Soc. 598, 13-25, 1997.
[2] Madero-Craven, M. and Herzinger, K. Apery set of numerical semigroups, Communications in Algebra 33, 3831-3838, 2005.
[3] Rosales, J. C. Numerical semigroups with Apery sets of unique expression, Journal of Algebra 226, 479-487, 2000.
[4] Rosales, J. C. and Garcia-Sanchez, P. A. Finitely Generated Commutative Monoids (Nova Science Publishers, New York, 1999).
[5] Rosales, J. C., Garcia-Sanchez, P. A. and Garcia-Garcia, J. I. Irreducible ideals of finitely generated commutative monoids, Journal of Algebra 238, 328-344, 2001.
[6] Rosales, J. C., Garcia-Sanchez, P. A., Garcia-Garcia, J. I. and Jimenez Madrid, J. A. Fundamental gaps in numerical semigroups, Journal of Pure and Applied Algebra 189, 301-313, 2004.

[^0]: *Dicle University, Faculty of Science, Department of Mathematics, 21280 Diyarbakır, Turkey. E-mail: sedati@dicle.edu.tr

