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Abstract

In this paper, the existence and uniqueness of the weak generalized
solution of a mixed problem with periodic boundary condition for a
quasi-linear Euler-Bernoulli equation are examined, and an estimation
of the differences between the exact and approximate solution is ob-
tained. In order to solve the problem, first the test functions are given,
then the weak generalized solution of the problem is defined in terms of
these functions. The weak solution is expressed as a Fourier series with
undetermined variable coefficients, and a system of non-linear infinite
integral equations for the coefficients mentioned above is obtained. The
existence and uniqueness of the solution of the system are proved by the
successive approximation method on the Banach space BT . Finally, in
view of the practical importance of the problem, the norm of the differ-
ence between the exact solution and successive approximations of the
infinite system is estimated on the space BT .
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1. Introduction

The investigation of various problems concerning 4 th order homogeneous, linear and
quasi-linear equations has been one of the most attractive areas for mathematicians and
engineers due to their importance in the solution of several engineering problems. The
reader is refereed to [1, 2, 3, 8, 9, 11, 14] for some relevant previous work on linear and
quasi-linear equations, and to [5, 6, 7, 10, 16] for applications. The textbooks [4, 12, 13,
15] also contain important results.

In this study, the existence and uniqueness of a weak generalized solution of a mixed
problem with periodic boundary condition for the quasi-linear Euler-Bernoulli equation
are examined by the non-linear Fourier method for the first time. We hope that, in addi-
tion to being of interest to mathematicians, the examination, results and method applied
in the study will be useful to engineers who are dealing with the solution of problems
involving dynamic stability, free and forced vibration of bars consisting of composite
materials and carbon nanotubes.

2. Establishing the problem

We consider the following mixed problem with periodic boundary condition:

∂2u

∂t2
− εb

2 ∂4u

∂t2∂x2
+ a

2 ∂
4u

∂4x
= f(t, x, u), (t, x) ∈ D{0 < t ≤ T, 0 < x < π},(2.1)

u(0, x, ε) = ϕ(x), ut(0, x, ε) = ψ(x), (0 ≤ x ≤ T ),(2.2)

u(t, 0, ε) = u(t, π, ε), ux(t, 0, ε) = ux(t, π, ε),

ux2(t, 0, ε) = ux2(t, π, ε), ux3(t, 0, ε) = ux3(t, π, ε), (0 ≤ x ≤ T ),
(2.3)

where a, b are constants, ε ∈ [0, ε0] is a parameter, ϕ(x), ψ(x) and f(t, x, u) are functions
defined on [0, π] and D̄{0 ≤ t ≤ T, 0 ≤ x ≤ π} × (−∞, ∞) respectively, and u(t, x, ε) is
a solution of the problem considered.

2.1. Definition. The function v(t, x) ∈ C(D̄) is called a test function if it has continuous
partial derivatives of orders involved in Equation (2.1), and satisfies both the following
conditions

v(T, x) = vt(T, x) = vx2(T, x) = vx2t(T, x) = 0

and the boundary condition (2.3).

We give the definition below from H. I. Chandirov [1] who, for the first time, introduced
the applicability of the Fourier method to non-linear mixed problems.

2.2. Definition. The function u(t, x, ε) ∈ C(D̄) × [0, ε0] satisfying the integral identity

(2.4)

∫ T

0

∫ π

0

{

u

[

∂2v

∂t2
− εb

2 ∂4v

∂x2∂t2
+ a

2 ∂
4v

∂x4

]

− f(t, x, u)v
}

dx dt+

∫ π

0

ϕ(x)
[

vt(0, x) − εb
2
vx2t(0, x)

]

dx−
∫ π

0

ψ(x)
[

v(0, x) − εb
2
vx2(0, x)

]

dx = 0

for an arbitrary test function v(t, x) is called a weak generalized solution of problem
(2.1)-(2.3).

The set

{

ū(t, ε)
}

=
{1

2
u0(t, ε), uc1(t, ε), us1(t, ε), . . . , uck(t, ε), usk(t, ε), . . .

}
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of functions continuous on [0, T ] × [0, ε0] satisfying the condition

1

2
max

t∈[0,T ]
|u0(t, ε)| +

∞
∑

k=1

[

max
t∈[0,T ]

|uck(t, ε)| + max
t∈[0,T ]

|usk(t, ε)|
]

<∞

will be denoted by BT . Let

∥

∥u(t, ε)
∥

∥

BT

=
1

2
max

t∈[0,T ]
|u0(t, ε)| +

∞
∑

k=1

[

max
t∈[0,T ]

|uck(t, ε)| + max
t∈[0,T ]

|usk(t, ε)|
]

be the norm in BT . It can be shown that BT is Banach space.

3. The solution

We search formerly for the weak generalized solution of problem (2.1)-(2.3) as

(3.1) u(t, x, ε) =
1

2
u0(t, ε) +

∞
∑

k=1

[uck(t, ε) cos 2kx+ usk(t, ε) sin 2kx]

where u0(t, ε), uck(t, ε), usk(t, ε), (k = 1,∞), are unknown functions. Employing the
equality (2.4) we get the following infinite non-linear system of integral equations:

(3.2)

u0(t, ε) = ϕ0 + ψ0t+
2

π

∫ t

0

∫ π

0

(t− τ )f
{

τ, ξ,
1

2
u0(τ, ε)

+
∞

∑

n=1

[ucn(τ, ε) cos 2nξ + usn(τ, ε) sin 2nξ]
}

dξ dτ,

uck(t, ε) = ϕck cosαkt+
ψck

αk
sinαkt+

2

παk

∫ t

0

∫ π

0

f
{

τ, ξ,
1

2
u0(τ, ε)

+

∞
∑

n=1

[ucn(τ, ε) cos 2nξ + usn(τ, ε) sin 2nξ]
}

× cos 2kξ sinαk(t− τ ) dξ dτ,

usk(t, ε) = ϕsk cosαkt+
ψsk

αk
sinαkt+

2

παk

∫ t

0

∫ π

0

f
{

τ, ξ,
1

2
u0(τ, ε)

+

∞
∑

n=1

[ucn(τ, ε) cos 2nξ + usn(τ, ε) sin 2nξ]
}

× sin 2kξ sinαk(t− τ ) dξ dτ,

αk =
a(2k)2

√

1 + εb2(2k)2
, k = 1,∞.

3.1. Theorem. Suppose the following conditions are satisfied:

a) f(t, x, u) is continuous respect to all arguments on D × (−∞,∞),
b) |f(t, x, u) − f(t, x, v)| ≤ b(t, x)|u− v|, where b(t, x) ∈ L2(D), b(t, x) > 0,
c) f(t, x, 0) ∈ L2(D),
d) ϕ(0) = ϕ(π), ϕ′(0) = ϕ′(π), ψ(0) = ψ(π),

where ϕ(x) ∈ C1[0, π], ψ(x) ∈ C[0, π].

Then the system (3.2) has a unique solution in BT .
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Proof. We will prove the theorem by the successive approximation method. The succes-
sive approximations for system (3.2) are as follows:

(3.3)

u
(N+1)
0 (t, ε) = u

(0)
0 (t, ε) +

2

π

∫ t

0

∫ π

0

(t− τ )f
{

τ, ξ,
1

2
u

(N)
0 (τ, ε)

+

∞
∑

n=1

[

u
(N)
cn (τ, ε) cos 2nξ + u

(N)
sn (τ, ε) sin 2nξ

] }

dξ dτ,

u
(N+1)
ck (t, ε) = u

(0)
ck (t, ε) +

2

παk

∫ t

0

∫ π

0

f
{

τ, ξ,
1

2
u

(N)
0 (τ, ε)

+
∞

∑

n=1

[

u
(N)
cn (τ, ε) cos 2nξ + u

(N)
sn (τ, ε) sin 2nξ

] }

× cos 2kξ sinαk(t− τ ) dξ dτ,

u
(N+1)
sk (t, ε) = u

(0)
sk (t, ε) +

2

παk

∫ t

0

∫ π

0

f
{

τ, ξ,
1

2
u

(N)
0 (τ, ε)

+
∞

∑

n=1

[

u
(N)
cn (τ, ε) cos 2nξ + u

(N)
sn (τ, ε) sin 2nξ

] }

× sin 2kξ sinαk(t− τ ) dξ dτ,

N = 0,∞,

where

u
(0)
0 (t, ε) = ϕ0 + ψ0t, u

(0)
ck (t, ε) = ϕck cosαkt+

ψck

αk
sinαkt,

u
(0)
sk (t, ε) = ϕsk cosαkt+

ψsk

αk
sinαkt, (k = 1,∞).

For simplicity, letting

Au
(N)(t, ξ, ε) =

1

2
u

(N)
0 (t, ε) +

∞
∑

n=1

[

u
(N)
cn (t, ε) cos 2nξ + u

(N)
sn (t, ε) sin 2nξ

]

and

{

u
(N)(t, ξ)

}

=
{1

2
u

(N)
0 (t, ε), u

(N)
c1 (t, ε), u

(N)
s1 (t, ε), . . . , u(N)

cn (t, ε), u(N)
sn (t, ε), . . .

}

,

the successive approximations of (3.2) become

(3.4)

u
(N+1)
0 (t, ε) = u

(0)
0 (t, ε) +

2

π

∫ t

0

∫ π

0

(t− τ )f [τ, ξ, Au(N)(τ, ξ, ε)]dξ dτ,

u
(N+1)
ck (t, ε) = u

(0)
ck (t, ε) +

2

παk

∫ t

0

∫ π

0

f [τ, ξ, Au(N)(τ, ξ, ε)]

× cos 2kξ sinαk(t− τ ) dξ dτ,

u
(N+1)
sk (t, ε) = u

(0)
sk (t, ε) +

2

παk

∫ t

0

∫ π

0

f [τ, ξ, Au(N)(τ, ξ, ε)]

× sin 2kξ sinαk(t− τ ) dξ dτ,

(k = 1,∞).
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It is clear that

(3.5)

max
0≤t≤T

|Au(N)(τ, ξ, ε)| ≤ 1

2
max

0≤t≤T
|u(N)

0 (t, ε)|

+
∞

∑

n=1

[

max
0≤t≤T

|u(N)
cn (t, ε)| + max

0≤t≤T
|u(N)

sn (t, ε)|
]

= ‖u(N)(t, ε)‖BT
.

First, let us prove u(N)(t, ε) ∈ BT . From the conditions of the theorem it is easily seen
that

‖u(0)(t, ε)‖BT
=

1

2
max

0≤t≤T
|u(0)

0 (t, ε)| +
∞

∑

n=1

[

max
0≤t≤T

|u(0)
cn (t, ε)| + max

0≤t≤T
|u(0)

sn (t, ε)

]

≤ 1

2
(|ϕ0| + |ψ0|T ) +

∞
∑

k=1

[

(|ϕck| +
1

αk
|ψck|)

+ (|ϕsk| +
1

αk
|ψsk|)

]

<∞.

Taking N = 0 in the equalities (3.4), the first equality obtained may be written as

u
(1)
0 (t, ε) = u

(0)
0 (t, ε) +

2

π

∫ t

0

∫ π

0

(t− τ )
{

f [τ, ξ, Au(0)(t, ξ, ε)] − f(τ, ξ, 0)
}

dξ dτ

+
2

π

∫ t

0

∫ π

0

(t− τ )f(τ, ξ, 0) dξ dτ,

then applying the Cauchy inequality with respect to t to both integrals on the right hand
side we get

|u(1)
0 (t, ε)| ≤ |u(0)

0 (t, ε)| + 2

π

[
∫ t

0

∫ π

0

(t− τ )2 dτ

]1/2

×
(

∫ t

0

[
∫ π

0

{

f [τ, ξ, Au(0)(t, ξ, ε)] − f(τ, ξ, 0)
}

dξ

]2

dτ

)1/2

+
2

π

[
∫ t

0

(t− τ )2 dτ

]1/2( ∫ t

0

[
∫ π

0

f(τ, ξ, 0) dξ

]2

dτ

)1/2

.

Calculating the fist integral in both summands on the right hand side containing integrals,
taking the first factor as 1 in the second integrals and applying Cauchy inequality with
respect to ξ, we have

|u(1)
0 (t, ε)| ≤|u(0)

0 (t, ε)|

+
2

π

√

πT 3

3

(
∫ t

0

∫ π

0

{

f [τ, ξ, Au(0)(t, ξ, ε)] − f(τ, ξ, 0)
}2
dξ dτ

)1/2

+
2

π

√

πT 3

3

[
∫ t

0

∫ π

0

f
2(τ, ξ, 0) dξ dτ

]1/2

.

Applying Lipschitz condition to the first integral on the right hand side and making some
calculations we get

|u(1)
0 (t, ε)| ≤ |u(0)

0 (t, ε)| + 2

π

√

T 3π

3

[(
∫ t

0

∫ π

0

b
2(τ, ξ)

[

Au
(0)(t, ξ, ε)

]2

dξ dτ

)1/2

+ ‖f(τ, x, 0)‖L2(D)

]

,
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hence we have

(3.6)

|u(1)
0 (t, ε)| ≤ |u(0)

0 (t, ε)| + 2

π

√

πT 3

3

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT

+ ‖f(t, x, 0)‖L2(D)

]

.

The second equality obtained from (3.4) for N = 0 can be written as

u
(1)
ck (t, ε) = u

(0)
ck (t, ε) +

2

παk

∫ t

0

∫ π

0

{

f [τ, ξ, Au(N)(τ, ξ, ε)] − f(τ, ξ, 0)
}

× cos 2kξ sinαk(t− τ ) dξ dτ

+
2

παk

∫ t

0

∫ π

0

f(τ, ξ, 0) cos 2kξ sinαk(t− τ ) dξ dτ.

Then applying the Cauchy inequality with respect to t to both integrals we get

|u(1)
ck (t, ε)| ≤ |u(0)

ck (t, ε)| +
√
T

αk

(
∫ t

0

[

2

π

∫ π

0

{

f [τ, ξ, Au(0)(t, ξ, ε)]

− f(τ, ξ, 0)
}

cos 2kξ dξ

]2

dτ

)1/2

+

√
T

αk

(
∫ t

0

[

2

π

∫ π

0

f(τ, ξ, 0) cos 2kξ dξ

]2

dτ

)1/2

.

Summing both sides with respect to k = 1,∞, we have

∞
∑

k=1

|u(1)
ck (t, ε)| ≤

∞
∑

k=1

|u(0)
ck (t, ε)| +

√
T

∞
∑

k=1

1

αk

(
∫ t

0

[

2

π

∫ π

0

{

f [τ, ξ, Au(0)(t, ξ, ε)]

− f(τ, ξ, 0)
}

cos 2kξ dξ

]2

dτ

)1/2

+
√
T

∞
∑

k=1

1

αk

(
∫ t

0

[

2

π

∫ π

0

f(τ, ξ, 0) cos 2kξ dξ

]2

dτ

)1/2

.

Applying Hölder’s inequality to the second and third sums after the required processes,
using Bessel’s inequality related to the Fourier coefficients, and taking the maximum of
the integrals on the right hand side respect to t, we have

(3.7)

∞
∑

k=1

|u(1)
ck (t, ε)| ≤

∞
∑

k=1

|u(0)
ck (t, ε)|

+M
√
T

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT
+ ‖f(t, x, 0)‖L2(D)

]

,

where M =
(

∞
∑

k=1

1

α2
k

)1/2

.

Analogously, for u
(1)
sk (t, ε) we get

(3.8)

∞
∑

k=1

|u(1)
sk (t, ε)| ≤

∞
∑

k=1

|u(0)
sk (t, ε)|

+M
√
T

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT
+ ‖f(t, x, 0)‖L2(D)

]

.
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Using the inequalities (3.6), (3.7) and (3.8) as follows

|u(1)
0 (t, ε)|

2
+

∞
∑

k=1

[

|u(1)
ck (t, ε)| + |u(1)

sk (t, ε)|
]

≤ |u(0)
0 (t, ε)|

2
+

∞
∑

k=1

[

|u(0)
ck (t, ε)| + |u(0)

sk (t, ε)|
]

+

(

√

T 3

3π
+ 2M

√
T

)

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT
+ ‖f(t, x, 0)‖L2(D)

]

,

then taking the maximum over t we obtain

‖u(1)(t, ε)‖BT

≤ ‖u(0)(t, ε)‖BT

+

(

√

T 3

3π
+ 2M

√
T

)

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT
+ ‖f(t, x, 0)‖L2(D)

]

.

Hence, according to the hypothesis of the theorem we obtain

‖u(1)(t, ε)‖BT
<∞.

By the principle of mathematical induction, we obtain that

‖u(N)(t, ε)‖BT

≤ ‖u(0)(t, ε)‖BT
+

√

T

3π
(T + 2

√
6πM)‖b(t, x)‖L2(D)‖u(N−1)(t, ε)‖BT

+

√

T

3π
(T + 2

√
6πM)‖f(t, x, 0)‖L2(D).

Proceeding in the same way, it can be shown analogously that if ‖u(N)(t, ε)‖BT
< ∞

then

‖u(N+1)(t, ε)‖BT
<∞.

Therefore, we have proven that

u
(N+1)(t, ε) =

{

1
2
u

(N+1)
0 (t, ε), u

(N+1)
c1 (t, ε), u

(N+1)
s1 (t, ε), . . .

. . . , u
(N+1)
ck (t, ε), u

(N+1)
sk (t, ε), . . .

}

∈ BT .

Now, let us make an estimation of the differences

|u(N+1)
0 (t, ε) − u

(N)
0 (t, ε)|, |u(N+1)

ck (t, ε) − u
(N)
ck (t, ε)|, |u(N+1)

sk (t, ε) − u
(N)
sk (t, ε)|,

where (N = 0,∞, k = 1,∞), respectively, in order to prove the convergence of the

successive approximation sequence {u(N)(t, ε)} in BT . Take

|u(1)
0 (t, ε) − u

(0)
0 (t, ε)| =

∣

∣

∣

∣

2

π

∫ t

0

∫ π

0

(t− τ )f [τ, ξ, Au(0)(τ, ξ, ε)] dξ dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

2

π

∫ t

0

∫ π

0

(t− τ ){f [τ, ξ, Au(0)(τ, ξ, ε)]− f(τ, ξ, 0)} dξ dτ
∣

∣

∣

∣

+

∣

∣

∣

∣

2

π

∫ t

0

(t− τ )

∫ π

0

f(τ, ξ, 0) dξ dτ

∣

∣

∣

∣

,
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then apply Cauchy’s inequality to the integrals on the right hand side with respect to t
to give

|u(1)
0 (t, ε) − u

(0)
0 (t, ε)|

≤
[
∫ t

0

(t− τ )2 dτ

]1/2

×
(

∫ t

0

[

2

π

∫ π

0

{f [τ, ξ, Au(0)(τ, ξ, ε)] − f(τ, ξ, 0)} dξ
]2

dτ

)1/2

+

[
∫ t

0

(t− τ )2 dτ

]1/2 (
∫ t

0

[

2

π

∫ π

0

f(τ, ξ, 0) dξ

]2

dτ

)1/2

.

We calculate the first integral in the summands on the right hand side, and apply Cauchy’s
inequality to the second integrals with respect to ξ. This gives

|u(1)
0 (t, ε) − u

(0)
0 (t, ε)|

≤ 2T

√

T

3π

[
∫ t

0

∫ π

0

{f [τ, ξ, Au(0)(t, ξ, ε)] − f(τ, ξ, 0)}2
dξ dτ

]1/2

+ 2T

√

T

3π

[
∫ t

0

∫ π

0

f
2(τ, ξ, 0) dξ dτ

]1/2

.

Applying the Lipschitz inequality to the first term on the right hand side and performing
some calculations, we get

(3.9) |u(1)
0 (t, ε)−u(0)

0 (t, ε)| ≤ 2T

√

T

3π

(

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT
+ ‖f(t, x, 0)‖L2(D)

)

.

We obtain the following estimation ia a similar way

|u(1)
ck (t, ε) − u

(0)
ck (t, ε)|

≤
√
T

αk

(

∫ t

0

[

2

π

∫ π

0

{f [τ, ξ, Au(0)(t, ξ, ε)] − f(τ, ξ, 0)} cos 2kξ dξ

]2

dτ
)1/2

+

√
T

αk

(

∫ t

0

[

2

π

∫ π

0

f(τ, ξ, 0) cos 2kξ dξ

]2

dτ
)1/2

.

Taking the sum of both side with respect to k, and applying Hölder’s inequality to the
integrals, we have the following (k = 1,∞),

∞
∑

k=1

|u(1)
ck (t, ε) − u

(0)
ck (t, ε)|

≤
√
T

(

∞
∑

k=1

1

α2
k

)1/2
( ∞

∑

k=1

∫ t

0

[

2

π

∫ π

0

{f [τ, ξ, Au(0)(t, ξ, ε)]

− f(τ, ξ, 0)} cos 2kξ dξ

]2

dτ

)1/2

+
√
T

(

∞
∑

k=1

1

α2
k

)1/2

( ∞
∑

k=1

∫ t

0

[

2

π

∫ π

0

f(τ, ξ, 0) cos 2kξ dξ

]2

dτ

)1/2

.
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From the conditions of the theorem, the series on the right hand side are integrable term
by term. Hence employing Bessel’s inequality we obtain:

∞
∑

k=1

∣

∣u
(1)
ck (t, ε) − u

(0)
ck (t, ε)

∣

∣

≤M

√

2T

π

[(
∫ t

0

∫ π

0

{f [τ, ξ, Au(0)(t, ξ, ε)]

− f(τ, ξ, 0)}2
dξ dτ

)1/2

+

(
∫ t

0

∫ π

0

f
2(τ, ξ, 0) dξ dτ

)1/2]

.

Applying the Lipschitz inequality to the first integral, and maximizing with respect to t,
we get

(3.10)

∞
∑

k=1

|u(1)
ck (t, ε) − u

(0)
ck (t, ε)| ≤M

√

2T

π

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT

+ ‖f(t, x, 0)‖L2(D)

]

.

In a similar manner we obtain

(3.11)

∞
∑

k=1

|u(1)
sk (t, ε) − u

(0)
sk (t, ε)| ≤M

√

2T

π

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT

+ ‖f(t, x, 0)L2(D)‖
]

.

From the inequalities (3.9), (3.10) and (3.11) we have

(3.12)

1

2
|u(1)

0 (t, ε) − u
(0)
0 (t, ε)| +

∞
∑

k=1

[

|u(1)
ck (t, ε) − u

(0)
ck (t, ε)|+ |u(1)

sk (t, ε) − u
(0)
sk (t, ε)|

]

≤ (T + 2
√

6M)

√

T

3π

[

‖b(t, x)‖L2(D)‖u(0)(t, ε)‖BT
+ ‖f(t, x, 0)‖L2(D)

]

:= AT ,

where it is clear that AT is a positive number. Taking the maximum with respect to t
on the left hand side of the last inequality we obtain

‖u(1)
0 (t, ε) − u

(0)
0 (t, ε)‖BT

≤ AT .

Following the process above and using the principle of mathematical induction the in-
equality

(3.13) ‖u(N+1)
0 (t, ε) − u

(N)
0 (t, ε)‖BT

≤ AT

[

(T + 2
√

6M)

√

T

3π

]N ‖b(t, x)‖N
L2(D)√

N !

can be proved (N = 1,∞). It is understood from (3.13) that the sequence

∞
∑

n=0

|u(N+1)(t, ε) − u
(N)(t, ε)|

is uniformly convergent in BT . Therefore the successive approximation sequence {u(N+1)(t, ε)},
whose general term is

u
(N+1)(t, ε) = u

(0)(t, ε) +
N

∑

n=1

[

u
(n+1)(t, ε) − u

(n)(t, ε)
]
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is uniformly convergent in BT . Let

lim
n→∞

u
(N+1)(t, ε) = u(t, ε)

=
{1

2
u0(t, ε), uc1(t, ε), us1(t, ε), . . . , uck(t, ε), usk(t, ε), . . .

}

.

In order to prove that u(t, ε) satisfies the system (3.2), substitute u(t, ε) in the system
(3.2), and let σ denote the absolute value of the difference of the systems (3.2) and (3.3).
By the previous scheme applied above we have

σ ≤ 2

π

∣

∣

∣

∣

∫ t

0

∫ π

0

(t− τ ){f [τ, ξ, Au(τ, ξ, ε)] − f [τ, ξ, Au(N)(τ, ξ, ε)]} dξ dτ
∣

∣

∣

∣

+
∞

∑

k=1

2

π

1

αk

∣

∣

∣

∣

∫ t

0

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} cos 2kξ sinαk(t− τ ) dξ dτ

∣

∣

∣

∣

+
∞

∑

k=1

2

π

1

αk

∣

∣

∣

∣

∫ t

0

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} sin 2kξ sinαk(t− τ ) dξ dτ

∣

∣

∣

∣

≤
√

T 3

3

(
∫ t

0

2

π

[
∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} cos 2kξ dξ

]2

dτ

)1/2

+
√
T

( ∞
∑

k=1

1

α2
k

)1/2[ ∞
∑

k=1

∫ t

0

(

2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} cos 2kξ dξ

)2]1/2

+
√
T

( ∞
∑

k=1

1

α2
k

)1/2[ ∞
∑

k=1

∫ t

0

(

2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} sin 2kξ dξ

)2]1/2

.

By means of the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we get

σ
2 ≤ T

3

∫ t

0

( 2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)] − f [τ, ξ, Au(N)(τ, ξ, ε)]} dξ
)2

dτ

+ 3M2
T

∞
∑

k=1

∫ t

0

( 2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} cos 2kξ dξ
)2

dτ

+ 3M2
T

∞
∑

k=1

∫ t

0

( 2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} sin 2kξ dξ
)2

dτ.
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Let max (2T 3, 3M2T ) = MT . Hence

σ
2 ≤MT

∫ t

0

1

2

(

2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)] − f [τ, ξ, Au(N)(τ, ξ, ε)]} dξ
)2

dτ

+MT

∞
∑

k=1

∫ t

0

(

2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} cos 2kξ dξ

)2

dτ

+MT

∞
∑

k=1

∫ t

0

(

2

π

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)]

− f [τ, ξ, Au(N)(τ, ξ, ε)]} sin 2kξ dξ

)2

dτ.

Applying Bessel’s inequality to the right hand side of the inequality, and then the Lips-
chitz condition, we get

σ
2 ≤ 2

π
MT

∫ t

0

∫ π

0

{f [τ, ξ, Au(τ, ξ, ε)] − f [τ, ξ, Au(N)(τ, ξ, ε)]}2
dξ

)2

dτ

≤ 2

π
MT

∫ t

0

∫ π

0

b
2(τ, ξ)

[

Au(τ, ξ, ε) − Au
(N)(τ, ξ, ε)

]2

dξ dτ

≤ 2

π
MT ‖b2(t, x)‖L2(D)‖u(t, ε) − u

(N)(t, ε)‖BT
.

Considering limn→∞ ‖u(t, ε) − u(N)(t, ε)‖ = 0, the norm ‖u(t, ε) − u(N+1)(t, ε)‖, which
is formed by the difference of (3.2) and (3.3), tends to zero as N → ∞, i.e. the limit
function u(t, ε) is a solution of the system (3.2).

In order to prove the uniqueness of the solution of the system (3.2), by contradiction
suppose that v(t, ε) is another solution. Evaluating the difference |u(t, ε) − v(t, ε)| in
accordance with the scheme above we get

[u(t, ε) − v(t, ε)]2 ≤ 2

π
MT

∫ t

0

(
∫ π

0

b
2(τ, ξ) dξ

)

[

u(t, ε) − v(t, ε)
]2
dτ.

However, |u(t, ε) − v(t, ε)| ≤ 0 in view of the Cronwall inequality gives u(t, ε) = v(t, ε).
Thus the theorem is proven. �

By Theorem 3.1, the following theorem related to the weak generalized solution of
problem (2.1) - (2.3) is also true.

3.2. Theorem. Suppose that the conditions of Theorem 3.1 are satisfied. Then there is
a unique weak generalized solution of problem (2.1) - (2.3), and this solution can be found
as a uniformly convergent series (3.1) in C(D).

Due to the practical significance of the problem handled, it is useful to obtain an
estimation of the difference between the exact solution

ū(t, ε) =
{1

2
u0(t, ε), uc1(t, ε), us1(t, ε), . . . , uck(t, ε), usk(t, ε), . . .

}

and the (N + 1)-th successive approximation

ū
(N+1)(t, ε) =

{1

2
u

(N+1)
0 (t, ε), u

(N+1)
c1 (t, ε), u

(N+1)
s1 (t, ε), . . .

. . . , u
(N+1)
ck (t, ε), u

(N+1)
sk (t, ε), . . .

}

of system (3.2). The following theorem may be proved by the method applied above.
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3.3. Theorem. Suppose that the conditions of Theorem 3.1 are satisfied. Then the
following inequality is true for the difference between the exact solution ū(t, ε) and the
approximate solution ū(t, ε) of problem (3.2)

‖u(t, ε) − u
(N+1)(t, ε)‖BT

≤
√

2

π

MT

N !

[

T + 2
√

6M
]N

× ‖b(t, x)‖N+1
L2(D)exp

MT

π
‖b(t, x)‖L2(D).

4. Conclusion

In this work, the existence and uniqueness of the weak generalized solution of a mixed
problem with periodic boundary condition for a quasi-linear Euler-Bernoulli equation
are examined, and an estimation of the difference between the exact and approximate
solution is given.
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[5] Demir C., Akgöz B. and Civelek O. Free vibration and bending analysis of carbon nanotubes

using Euler beam theory, Proceeding International Symp. on Engineering and Architectural
Sciences of Balkan and Turkic Republics, Vol. III, 50–55, 2009.

[6] Elishakoff, I. and Candan, S. Apparently first closed-form solution for vibrating inhomoge-

neous beams, Internat. J. Solids Structures 38 (19), 3411–3441, 2001.
[7] Gibson, R. F., Ayorinde, E.O. and Weng, Y. Vibration of carbon nano-tubes and their com-

posites: A review, Compos Sci. Tech. 67, 1–28, 2007.
[8] Halilov, H.M. Solution of the mixed non-linear problem for a class of quasi-linear equation

4th order, J. Mathematical Physics and Functional Analysis, Alma Ata, 27–32, 1966.
[9] Halilov, H., On the Mixed Problem for a class of quasilinear pseudo-parabolic equations,

Applicable Analysis 75 (1-2), 61–71, 2000.
[10] Halilov, H., Kutlu, K. and Güler, B. O. Investigation of the non-linear vibration problem,

Proceedings of the Symposium on Engineering and Architectural Sciences of Balkan, Cauca-
sus and Turkic Republics, Isparta, 79–84, 2009.

[11] Il’in, V. A. Solvability of mixed problem for hyperbolic and parabolic equations, Uspekhi
Math. Nauk. 15-2 (92), 97–154, 1960 (in Russian).

[12] Ladyzhenskaya, D.A. Boundary Value Problem of Mathematical Physics (Springer, New
York, 1985).

[13] Lattes R. and Lions, J.-L. Methode de Quasi-Reversibilitè et Applications (Dunod, Paris,
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