CONTRA SEMI-I-CONTINUOUS FUNCTIONS

Jamal M. Mustafa

Received 12:01:2009 : Accepted 19:12:2009

Abstract

In this paper, we apply the notion of semi-I-open sets in ideal topological spaces to present and study a new class of functions called contra semi-I-continuous functions. Relationships between this new class and other classes of functions are established.

Keywords: Ideal topological space, Semi-I-open sets, Contra semi-I-continuous functions, Contra I-irresolute functions, Perfectly contra I-irresolute functions.

2000 AMS Classification: 54C08, 54C10.

1. Introduction

In 1996, Dontchev [1] introduced a new class of functions called contra-continuous functions. He defined a function \(f : X \rightarrow Y \) to be contra-continuous if the preimage of every open set of \(Y \) is closed in \(X \). A new weaker form of this class of functions, called contra-semi-continuous functions, is introduced and investigated by Dontchev and Noiri [2]. In this direction, we will introduce the concept of contra semi-I-continuous functions via the notion of semi-I-open sets. We also obtain some properties of such functions.

The subject of ideals in topological spaces has been studied by Kuratowski [6] and Vaidyanathaswamy [9]. An ideal on a topological space \((X, \tau)\) is defined as a non-empty collection \(I \) of subsets of \(X \) satisfying the following two conditions:

1. If \(A \in I \) and \(B \subseteq A \), then \(B \in I \);
2. If \(A \in I \) and \(B \in I \), then \(A \cup B \in I \).

An ideal topological space is a topological space \((X, \tau)\) with an ideal \(I \) on \(X \), and is denoted by \((X, \tau, I)\). For a subset \(A \subseteq X \), the set

\[A^*(I) = \{ x \in X : U \cap A \notin I \} \]

for every \(U \in \tau \) with \(x \in U \), is called the local function of \(A \) with respect to \(I \) and \(\tau \) [5]. We simply write \(A^* \) instead of \(A^*(I) \) in case there is no chance of confusion. It is well known that \(\text{Cl}^*(A) = A \cup A^* \) defines a Kuratowski closure operator for \(\tau^*(I) \).

Throughout this paper, for a subset \(A \) of a topological space \((X, \tau)\), \(\text{Cl}(A) \) and \(\text{Int}(A) \) denote the closure and the interior of \(A \), respectively.

*Department of Mathematics, Al al-Bayt University, P.O.Box: 130095, Mafraq, Jordan.
E-mail: jjmrr971@yahoo.com
A subset \(A \) of an ideal topological space \((X, \tau, I)\) is said to be semi-\(I\)-open \([3]\) (resp., semi-open \([7]\), \(I\)-open \([5]\)) if \(A \subseteq \text{Cl}^*\left(\text{Int}(A)\right) \) (resp., \(A \subseteq \text{Cl}(\text{Int}(A)), A \subseteq \text{Int}(A^*) \)). The complement of a semi-\(I\)-open (resp., semi-open, \(I\)-open) set is called semi-\(I\)-closed \([3]\) (resp., semi-closed \([7]\), \(I\)-closed \([5]\)). If the set \(A \) is semi-\(I\)-open and semi-\(I\)-closed, then it is called semi-\(I\)-clopen.

2. Contra semi-\(I\)-continuous functions

2.1. Definition. A function \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is called contra semi-\(I\)-continuous if \(f^{-1}(V) \) is semi-\(I\)-closed in \(X \) for each open set \(V \) in \(Y \).

2.2. Theorem. For a function \(f : (X, \tau, I) \rightarrow (Y, \rho) \), the following are equivalent:

 a) \(f \) is contra semi-\(I\)-continuous.

 b) For every closed subset \(F \) of \(Y \), \(f^{-1}(F) \) is semi-\(I\)-open in \(X \).

 c) For each \(x \in X \) and each closed subset \(F \) of \(Y \) with \(f(x) \in F \), there exists a semi-\(I\)-open subset \(U \) of \(X \) with \(x \in U \) such that \(f(U) \subseteq F \).

Proof. The implications (a) \(\implies \) (b) and (b) \(\implies \) (c) are obvious.

 (c) \(\implies \) (b) Let \(F \) be any closed subset of \(Y \). If \(x \in f^{-1}(F) \) then \(f(x) \in F \), and there exists a semi-\(I\)-open subset \(U_x \) of \(X \) with \(x \in U_x \) such that \(f(U_x) \subseteq F \). Therefore, we obtain \(f^{-1}(F) = \cup\{U_x : x \in f^{-1}(F)\} \). Now, by [4, Theorem 3.4] we have that \(f^{-1}(F) \) is semi-\(I\)-open. \(\square \)

Recall that a function \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is called contra semi-continuous \([2]\) if the preimage of every open subset of \(Y \) is semi-closed in \(X \).

Since every semi-\(I\)-open set is semi-open, then every contra semi-\(I\)-continuous function is contra semi-continuous, but the converse need not be true as shown by the following example:

2.3. Example. Let \(X = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{2\}, \{3\}, \{2, 3\}, \{1, 2\}, \{1, 2, 3\}, \{2, 3, 4\}\} \) and \(I = \{\emptyset, \{3\}\} \). Let \(f : (X, \tau, I) \rightarrow (X, \tau) \) be defined by \(f(1) = 2, f(2) = 1, f(3) = 4 \) and \(f(4) = 3 \). Observe that \(f \) is contra semi-continuous. But \(f \) is not contra semi-\(I\)-continuous, since \(\{1, 2\} \) is open and \(f^{-1}(\{1, 2\}) = \{1, 2\} \) is not semi-\(I\)-closed.

A function \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is called contra \(I\)-continuous if the preimage of every open subset of \(Y \) is an \(I \)-closed subset of \(X \).

The following two examples show that the concepts of contra-\(I\)-continuity and contra semi-\(I\)-continuity are independent of each other.

2.4. Example. Let \(X = \{1, 2\}, \tau = \{\emptyset, X, \{1\}\} \) and \(I = \{\emptyset, \{1\}\} \). Let \(f : (X, \tau, I) \rightarrow (X, \tau) \) be defined by \(f(1) = 2 \) and \(f(2) = 1 \). Observe that \(f \) is contra semi-\(I\)-continuous. But \(f \) is not contra-\(I\)-continuous since \(\{1\} \) is open and \(f^{-1}(\{1\}) = \{2\} \) is not \(I \)-closed.

2.5. Example. Let \(X = Y = \{1, 2\}, \tau = \{\emptyset, X\}, I = \{\emptyset, \{1\}\} \) and \(\rho = \{\emptyset, Y, \{1\}\} \). Let \(f : (X, \tau, I) \rightarrow (Y, \rho) \) be the identity function. Observe that \(f \) is contra \(I\)-continuous. But \(f \) is not contra semi-\(I\)-continuous, since \(\{1\} \) is open in \(Y \) and \(f^{-1}(\{1\}) = \{1\} \) is not semi-\(I\)-closed in \(X \).

Recall that a function \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is called semi-\(I\)-continuous \([3]\) if the preimage of every open subset of \(Y \) is semi-\(I\)-open in \(X \).

The following two examples show that the concepts of semi-\(I\)-continuity and contra semi-\(I\)-continuity are independent of each other.
2.6. Example. Let \(X = \{1, 2\} \), \(\tau = \{\emptyset, X, \{1\}\} \) and \(I = \{\emptyset, \{2\}\} \). Let \(f : (X, \tau, I) \rightarrow (X, \pi) \) be defined by \(f(1) = 2 \) and \(f(2) = 1 \). Observe that \(f \) is contra semi-I-continuous. But \(f \) is not semi-I-continuous, since \(\{1\} \) is open and \(f^{-1}(\{1\}) = \{2\} \) is not semi-I-open.

2.7. Example. Let \(X = \mathbb{R}, \tau \) the usual topology and \(I = \{\emptyset, \{1\}\} \). The identity function \(f : (\mathbb{R}, \tau, I) \rightarrow (\mathbb{R}, \pi) \) is semi-I-continuous. But \(f \) is not contra semi-I-continuous, since the inverse image of \((0, 1)\) is not semi-I-closed.

2.8. Theorem. If a function \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is contra semi-I-continuous and \(Y \) is regular, then \(f \) is semi-I-continuous.

Proof. Let \(x \in X \) and let \(V \) be an open subset of \(Y \) with \(f(x) \in V \). Since \(Y \) is regular, there exists an open set \(W \) in \(Y \) such that \(f(x) \in W \subseteq \text{Cl}(W) \subseteq V \). Since \(f \) is contra semi-I-continuous, by Theorem 2.2, there exists a semi-I-open set \(U \) in \(X \) with \(x \in U \) such that \(f(U) \subseteq \text{Cl}(W) \subseteq V \). Hence, by [4, Theorem 4.1], \(f \) is semi-I-continuous.

Note that if \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is semi-I-continuous and \(Y \) is regular, then \(f \) need not be contra semi-I-continuous, as shown in Example 2.7.

2.9. Definition. A topological space \((X, \tau, I)\) is said to be semi-I-connected if \(X \) is not the union of two disjoint non-empty semi-I-open subsets of \(X \).

2.10. Theorem. If \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is a contra semi-I-continuous function from a semi-I-connected space \(X \) onto any space \(Y \), then \(Y \) is not a discrete space.

Proof. Suppose that \(Y \) is discrete. Let \(A \) be a proper non-empty clopen set in \(Y \). Then \(f^{-1}(A) \) is a proper non-empty semi-I-clopen subset of \(X \), which contradicts the fact that \(X \) is semi-I-connected.

2.11. Theorem. A contra semi-I-continuous image of a semi-I-connected space is connected.

Proof. Let \(f : (X, \tau, I) \rightarrow (Y, \rho) \) be a contra semi-I-continuous function from a semi-I-connected space \(X \) onto a space \(Y \). Assume that \(Y \) is disconnected. Then \(Y = A \cup B \), where \(A \) and \(B \) are non-empty clopen sets in \(Y \) with \(A \cap B = \emptyset \). Since \(f \) is contra semi-I-continuous, we have that \(f^{-1}(A) \) and \(f^{-1}(B) \) are semi-I-open non-empty sets in \(X \) with \(f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(Y) = X \) and \(f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\emptyset) = \emptyset \). This means that \(X \) is not semi-I-connected, which is a contradiction. Then \(Y \) is connected.

2.12. Theorem. Let \((X, \tau, I)\) be a semi-I-connected space and \((Y, \rho)\) a \(T_1 \)-space. If \(f : (X, \tau, I) \rightarrow (Y, \rho) \) is a contra semi-I-continuous function, then \(f \) is constant.

Proof. Let \(\Delta = \{f^{-1}(\{y\}) : y \in Y\} \). Since \((Y, \rho)\) is \(T_1 \), \(\Delta \) is a disjoint semi-I-open partition of \(X \). If \(|\Delta| \geq 2 \), then \(X \) is the union of two non-empty semi-I-open sets. Since \((X, \tau, I)\) is semi-I-connected, \(|\Delta| = 1 \). Therefore, \(f \) is constant.

2.13. Definition. A space \((X, \tau, I)\) is said to be semi-I-\(T_2 \) if for each pair of distinct points \(x \) and \(y \) in \(X \), there exists two semi-I-open sets \(U \) and \(V \) in \(X \) such that \(x \in U \), \(y \in V \) and \(U \cap V = \emptyset \).

2.14. Theorem. Let \(f : (X, \tau, I) \rightarrow (Y, \rho) \) be a contra semi-I-continuous injection. If \(Y \) is a Urysohn space, then \(X \) is semi-I-\(T_2 \).
2.2. Corollary. If K exists a finite subset $U \subseteq X$ is semi-α.

2.23. Definition. A function $f : (X, \tau, I) \to (Y, \rho, J)$ is called contra I-irresolute if $f^{-1}(V)$ is semi-I-closed in X for each semi-I-open set V of Y.

Recall that a function $f : (X, \tau, I) \to (Y, \rho, J)$ is said to be I-irresolute [4] if $f^{-1}(V)$ is semi-I-open in X for each semi-J-open set V of Y. In fact, contra I-irresoluteness and I-irresoluteness are independent, as shown by the following two examples.

2.24. Example. The function f in Example 2.6 is contra I-irresolute but not I-irresolute.

2.25. Example. Let (X, τ, I) be the ideal topological space in Example 2.6. Then the identity function on the space (X, τ, I) is an example of an I-irresolute function which is not contra I-irresolute.
Also, every contra I-irresolute function is contra semi-I-continuous, but the converse is not true as shown by the following example.

2.26. Example. Let $X = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{1\}\}$ and $I = \{\emptyset, \{2\}\}$. Define a function $f : (X, \tau, I) \to (Y, \rho, J)$ by $f(1) = 2$, $f(2) = 1$ and $f(3) = 3$. Then f is contra semi-I-continuous but f is not contra I-irresolute.

The following results can be easily verified and the proofs are omitted.

2.27. Theorem. A function $f : (X, \tau, I) \to (Y, \rho, J)$ is contra I-irresolute if and only if the inverse image of each semi-I-closed set in Y is semi-I-open in X. \hfill \Box$

2.28. Theorem. Let $f : (X, \tau, I) \to (Y, \rho, J)$ and $g : (Y, \rho, J) \to (Z, \sigma, K)$. Then

1) gof is contra I-irresolute if g is I-irresolute and f is contra I-irresolute.

2) gof is contra I-irresolute if g is contra I-irresolute and f is I-irresolute. \hfill \Box

2.29. Theorem. Let $f : (X, \tau, I) \to (Y, \rho, J)$ and $g : (Y, \rho, J) \to (Z, \sigma)$. Then

1) gof is contra semi-I-continuous if g is continuous and f is contra semi-I-continuous.

2) gof is contra semi-I-continuous if g is semi-I-continuous and f is contra I-irresolute. \hfill \Box

Recall that a function $f : (X, \tau) \to (Y, \rho, J)$ is called semi-I-open [4] if for each $U \in \tau$, $f(U)$ is semi-I-open in Y.

2.30. Theorem. Let $f : (X, \tau, I) \to (Y, \rho, J)$ be surjective, I-irresolute and semi-I-open, and let $g : (Y, \rho, J) \to (Z, \sigma)$ be any function. Then gof is contra semi-I-continuous if and only if g is contra semi-I-continuous.

Proof. \implies Let gof be contra semi-I-continuous and C a closed subset of Z. Then $(gof)^{-1}(C)$ is a semi-I-open subset of X. That is $f^{-1}(g^{-1}(C))$ is semi-I-open. Since f is semi-I-open, $f(f^{-1}(g^{-1}(C)))$ is a semi-I-open subset of Y. So $g^{-1}(C)$ is semi-I-open in Y. Therefore, g is contra semi-I-continuous.

\impliedby Straightforward. \hfill \Box

2.31. Definition. A function $f : (X, \tau, I) \to (Y, \rho, J)$ is called perfectly contra I-irresolute if the inverse image of every semi-I-open set in Y is semi-I-clopen in X.

2.32. Example. Let $X = Y = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, X, \{2\}, \{4\}, \{2, 4\}\}$, $I = \{\emptyset, \{4\}\}$, $\rho = \{\emptyset, Y, \{2\}\}$ and $J = \{\emptyset, \{2\}\}$. Let $f : (X, \tau, I) \to (Y, \rho, J)$ be defined by $f(1) = 3$, $f(2) = 4$, $f(3) = 1$ and $f(4) = 2$. Then f is perfectly contra I-irresolute.

Every perfectly contra I-irresolute function is contra I-irresolute and I-irresolute. The following two examples show that a contra I-irresolute function may not be perfectly contra I-irresolute, and an I-irresolute function may not be perfectly contra I-irresolute.

2.33. Example. The function in Example 2.6 is contra I-irresolute, but not perfectly contra I-irresolute.

2.34. Example. Let $X = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{1\}\}$ and $I = \{\emptyset, \{2\}\}$. Let $f : (X, \tau, I) \to (X, \tau, I)$ be the identity function. Then f is I-irresolute, but not perfectly contra I-irresolute.

2.35. Theorem. For a function $f : (X, \tau, I) \to (Y, \rho, J)$ the following conditions are equivalent:

1) f is perfectly contra I-irresolute.

2) f is contra I-irresolute and I-irresolute. \hfill \Box
References

