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Abstract

In this paper a completion theorem for cone metric spaces and a com-
pletion theorem for cone normed spaces are proved. The completion
spaces are defined by means of an equivalence relation obtained by
convergence via the scalar norm of the Banach space E.
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1. Introduction and Preliminaries

Fixed point theory occupies a prominent place in the study of metric spaces. One
of the important questions that may arise in this connection is whether metric spaces
really provide enough space for this theory or not. Recently, in [6] the authors rather
implied that the answer is no. Actually, they introduced the notion of cone metric space,
and gave an example of a function which is a contraction in the category of cone metric
spaces but not a contraction if considered over metric spaces and hence, by proving a
fixed point theorem in cone metric spaces, ensured that this map must have a unique fixed
point. After that a series of articles about cone metric spaces started to appear. Some
of those articles dealt with fixed point theorems in those spaces, specially in complete
ones, and others dealt with the structure of the spaces themselves. For example we name
[15, 7, 8, 12, 13, 11, 1, 9, 4] and [14]. Motivated by this, we shall prove two completion
theorems for cone metric spaces and cone normed spaces in this article. Since we use the
scalar norm of the Banach space containing the cone in defining these completions, we
prefer to call them scalar completions, as in the titles of sections 2 and 3.

A subset P of a real Banach space E is called a cone if and only if

P1) P is closed, nonempty and P 6= {0}.
P2) If a, b ∈ R, a, b ≥ 0 and x, y ∈ P , then ax + by ∈ P .
P3) If both x ∈ P and −x ∈ P then x = 0.
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Given a cone P in E, a partial ordering ≤ on E via P is defined by x ≤ y if and only if
y − x ∈ P . We write x < y to indicate that x ≤ y but x 6= y, while x << y will stand for
y − x ∈ int(P ).

It is worthwhile to mention here, that there are certain real Banach spaces whose
positive cones have empty interior, such as the sequences spaces lp, 1 ≤ p < ∞ and the
Lebesgue integrable spaces Lp, 1 ≤ p < ∞ [5]. On the other hand the positive cone in the
Euclidean space R

n does not have empty interior. For example in R
2 the interior of the

positive cone P = {(x, y) : x ≥ 0, y ≥ 0} is {(x, y) : x > 0, y > 0}, which is non-empty.
For the infinite dimensional case the positive cones of AM − spaces can have non-empty
interiors [2]. For more details about cones we refer also to [3].

In the sequel, one also has to note that by using the properties of the cone and the
definition of the interior that int(P ) + int(P ) ⊆ int(P ) and αint(P ) ⊆ int(P ), α >

0. For the purposes in defining convergence [6] and other topological concepts in cone
metric spaces [13], the cones under consideration are always assumed to have non-empty
interiors.

The cone P is called normal if there exists a constant K > 0 such that for all a, b ∈ E,
0 ≤ a ≤ b implies ‖a‖ ≤ K‖b‖. The cone [0,∞) in (R, | · |), and the cone P = {(x, y) :
x ≥ 0, y ≥ 0} in R

2 are normal cones with constant K = 1. However, there are examples
of non-normal cones.

1.1. Example. [10] Let E = C1[0, 1] with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞, and consider
the cone P = {f ∈ E : f ≥ 0}.

For each k ≥ 1, put f(x) = x and g(x) = x2k. Then, 0 ≤ g ≤ f, ‖f‖ = 2 and
‖g‖ = 2k + 1. Since k‖f‖ < ‖g‖, k is not a normal constant of P and hence P is a
non-normal cone.

There are no normal cones with normal constant K < 1. Indeed, if P were a normal
cone with normal constant K < 1, we could choose a non-zero element x ∈ P and
0 < ǫ < 1 such that K < 1 − ǫ. Then, (1 − ǫ)x ≤ x, but (1 − ǫ)‖x‖ > K‖x‖, see [10].

For each k > 1, consider the real vector space

E =
{

f(x) = ax + b : a, b ∈ R; x ∈
[

1 − 1

k
, 1

]}

,

with the supremum norm and the cone P = {f(x) = ax + b : a ≤ 0, b ≥ 0}. Then, P is
regular and hence normal. Moreover, it can be shown that the normal constant for this
cone is bigger than k, for details see [10]. This shows that we can construct cones with
different normal constants K > 1.

1.2. Definition. A cone metric space is an ordered pair (X, d) , where X is any set and
d : X × X → E is a mapping satisfying:

d1) 0 < d(x, y) for all x, y ∈ X.
d2) d(x, y) = 0 if and only if x = y.
d3) d(x, y) = d(y, x) for all x, y ∈ X.
d4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

1.3. Definition. A sequence (xn) in a cone metric space (X, d) is said to converge to an
element x ∈ X if for any c ∈ E with c >> 0 there exists a natural number n0 such that

d(xn, x)<< c for all n ≥ n0.

In this case we write limn→∞ xn = x.

1.4. Definition. A sequence (xn) in a cone metric space (X, d) is said to be Cauchy if
for any c ∈ E with c >> 0 there exists a natural number n0 such that

d(xn, xm) << c for all m,n ≥ n0.
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Cone metric spaces in which every Cauchy sequence is convergent are called complete

cone metric spaces.

The following lemma, which characterizes convergence and Cauchyness by means of
the scalar norm of the Banach space E under the normality assumption for the cone P ,
makes it possible to obtain a scalar norm completion for cone metric spaces.

1.5. Lemma. [6] Let (X, d) be a cone metric space and P a normal cone with normal

constant K. Let (xn) be a sequence in X. Then,

(i) (xn) converges to x if and only if limn→∞ ‖d(xn, x)‖ = 0.
(ii) (xn) is Cauchy if and only if limm,n→∞ ‖d(xn, xm)‖ = 0. �

Regarding the above Lemma, it is worthwhile mentioning that normality is only used
in proving the necessity (for example see [10]). In connection to this, we state and prove
the following Lemma:

1.6. Lemma. If (xn) is a sequence in a cone metric space such that for some c0 >> 0 we

have

(1.1) d(xn, xm) <<
c0

n
for all m > n,

then (xn) is Cauchy.

Proof. Let c >> 0 be arbitrary, hence find δ > 0 such that c + Nδ(0) ⊆ P , where Nδ(0) =
{b ∈ E : ‖b‖ < δ}. Noting that c0

n
is convergent to zero in (E, ‖ · ‖), choose n0 such that

− c0
n

∈ Nδ(0), for all n ≥ n0. Then, c0
n

<< c for all n ≥ n0 and hence by (1.1)

(1.2) d(xn, xm) <<
c0

n
<< c for all m > n ≥ n0.

1.7. Lemma. [6] Let (X, d) be a cone metric space and P a normal cone with normal

constant K. Let (xn) and (yn) be two sequences in X such that limn→∞xn = x and

limn→∞yn = y. Then

lim
n→∞

‖d(xn, yn) − d(x, y)‖ = 0. �

1.8. Definition. A cone normed space is an ordered pair (X, ‖ · ‖c), where X is a vector
space over R and ‖ · ‖c : X → (E, ‖ · ‖) is a function satisfying:

C1) 0 < ‖x‖c, for all x ∈ X.
C2) ‖x‖c = 0 if and only if x = 0.
C3) ‖αx‖c = |α|‖x‖c, for each x ∈ X and α ∈ R.
C4) ‖x + y‖c ≤ ‖x‖c + ‖y‖c, for all x, y ∈ X.

It is clear that each cone normed space is a cone metric space. In fact, the cone metric
is given by d(x, y) = ‖x − y‖c. Complete cone normed spaces are called cone Banach

spaces.

According to the definition of convergence in cone metric spaces and Lemma 1.5, we
see that xn → x in (X, ‖ · ‖c) if and only if for all c >> 0 in E there exists n0 such that
‖xn−x‖c << c for all n ≥ n0 and, if the cone is normal, if and only if limn→∞ ‖‖xn−x‖c‖ =
0. Also, xn ∈ (X, ‖ · ‖c) will be Cauchy if and only if for all c >> 0 in E there exits n0

such that ‖xn − xm‖c << c for all m, n ≥ n0 and, if the cone is normal, if and only if
limm,n→∞ ‖‖xn − xm‖c‖ = 0.

1.9. Example. Let X = R
2, P = {(x, y) : x ≥ 0, y ≥ 0} ⊂ R

2 and ‖(x, y)‖c =
(α|x|, β|y|), α > 0, β > 0. Then, (X, ‖ · ‖c) is a cone normed space over R

2.
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2. The scalar norm completion of cone metric spaces

Before proceeding to prove a scalar norm completion theorem, we first give the mean-
ing of isometries of cone metric spaces.

2.1. Definition. Let (X, d) and (Y, ρ) be cone metric spaces. A mapping T of X into
Y is said to be an isometry if it preserves cone distances, that is, if for all x1, x2 ∈ X,

(2.1) ρ(Tx1, Tx2) = d(x1, x2).

It is clear that if T is bijective and an isometry, then it is, together with its inverse,
(sequentially) continuous and hence (X, d) and (Y, ρ) become topologically isomorphic
[13]. Throughout, we shall say that the cone metric space X is isometric with the cone
metric space Y if there exists a bijective isometry of X onto Y . In the sequel, one has
to note that every cone isometry is one to one.

The following lemma will be useful in proving a scalar-norm completion theorem for
cone metric spaces.

2.2. Lemma. Let (xn) and (yn) be two Cauchy sequences in a cone metric space (X, d)
over a normal cone with constant K. Then, limn→∞ d(xn, yn) exists in (E, ‖ · ‖).

Proof. Since (E, ‖ · ‖) is a Banach space, it will be enough to show that the sequence
{d(xn, yn)} is Cauchy in (E, ‖·‖). To this end, let ǫ > 0 and choose c ∈ E with c >> 0 and
‖c‖ < ǫ

4K+2
. Since (xn) and (yn) are Cauchy sequences, there exists a natural number

n0 such that

(2.2) d(xi, xj) <<c and d(yi, yj) <<c

for all i, j > n0. Then, we have

(2.3) d(xi, yi) ≤ d(xi, xj) + d(xj , yj) + d(yj , yi) ≤ d(xj , yj) + 2c

and

(2.4) d(xj , yj) ≤ d(xj, xi) + d(xi, yi) + d(yi, yj) ≤ d(xi, yi) + 2c,

and hence, (2.3) and (2.4) lead to

(2.5) 0 ≤ d(xj , yj) + 2c − d(xi, yi) ≤ d(xi, yi) + 2c + 2c − d(xi, yi) = 4c.

Since the cone is normal, then (2.5) implies that

(2.6) ‖d(xj , yj) + 2c − d(xi, yi)‖ ≤ K‖4c‖.

Finally, by the triangle inequality of the norm ‖ · ‖ and (2.6) we have

(2.7) ‖d(xj , yj) − d(xi, yi)‖ ≤ ‖d(xj , yj) + 2c − d(xi, yi)‖ + ‖2c‖ ≤ ‖c‖(4K + 2) < ǫ.

Therefore, {d(xi, yi)} is Cauchy in (E, ‖ · ‖) and hence convergent. �

2.3. Lemma. Let (xn), (x′

n), (yn), (y′

n) be sequences in a cone metric space (X, d) over

a normal cone P with normal constant K. If

lim
n→∞

d(xn, x
′

n) = 0 and lim
n→∞

d(yn, y
′

n) = 0

in (E, ‖ · ‖), then

(2.8) lim
n→∞

d(xn, yn) = lim
n→∞

d(x′

n, y
′

n) in (E, ‖ · ‖).
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Proof. Let ǫ > 0 and choose c ∈ E such that c >> 0 and ‖c‖ < ǫ
4K+2

. For this c >> 0 find
δ > 0 such that

(2.9) ‖x‖ < δ implies c − x ∈ int(P ).

By assumption, for the above δ > 0 find n0 such that for all n ≥ n0 we have

(2.10) ‖d(xn, x
′

n)‖ < δ and ‖d(yn, y
′

n)‖ < δ.

But then (2.9) and (2.10) imply that

(2.11) d(xn, x
′

n) <<c and d(yn, y
′

n) <<c,

for all n > n0. Now, by the triangle inequality and (2.11), for all n ≥ n0 we have

(2.12) d(xn, yn) ≤ d(xn, x
′

n) + d(x′

n, y
′

n) + d(y′

n, yn) ≤ d(x′

n, y
′

n) + 2c

and

(2.13) d(x′

n, y
′

n) ≤ d(xn, x
′

n) + d(xn, yn) + d(y′

n, yn) ≤ d(xn, yn) + 2c,

and hence, (2.12) and (2.13) lead to

(2.14) 0 ≤ d(x′

n, y
′

n) + 2c − d(xn, yn) ≤ d(xn, yn) + 2c + 2c − d(xn, yn) = 4c.

Since the cone is normal, then (2.14) together with the choice of c >> 0 imply that

(2.15) ‖d(xn, yn) − d(x′

n, y
′

n)‖ ≤ ‖d(x′

n, y
′

n) + 2c − d(xn, yn)‖ + ‖2c‖ < ǫ

for all n > n0, which completes the proof. �

We can now state and prove the theorem that every cone metric space can be com-
pleted. The space Xs appearing in this theorem is called the norm scalar completion of
the given space X.

2.4. Theorem. For a cone metric space (X, d) over a normal cone there exists a complete

cone metric space (Xs, ds) which has a subspace W that is isometric with X and dense

in Xs. The space (Xs, ds) is unique up to isometry, that is, if Z is any complete cone

metric space having a dense subspace U isometric with X, then Z and Xs are isometric.

Proof. The proof will be divided into four steps. We construct:

(a) (Xs, ds),
(b) An isometry T of X onto W , where W is dense in Xs.

Then, we prove

(c) The completeness of Xs,
(d) Uniqueness of Xs except for isometries.

Here are the details of these steps:

(a) Let (xn) and (x′

n) be Cauchy sequences in (X, d). Define (xn) to be equivalent to
(x′

n), written (xn) ∼ (x′

n), if

(2.16) lim
n→∞

d(xn, x
′

n) = 0 in (E, ‖ · ‖).

Let Xs be the set of all equivalence classes xs, ys, . . . of Cauchy sequences. We write
(xn) ∈ xs to mean that (xn) is a member xs (a representative of the class xs). We now
set

(2.17) ds(x
s
, y

s) = lim
n→∞

d(xn, yn).

By Lemma 2.2, the limit in (2.17) exists and by Lemma 2.3 it is independent of the
particular choice of the representatives.
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The proof that ds satisfies the first three axioms of cone metrics is straightforward.
The triangle inequality follows from the closeness of the cone P and from

(2.18) d(xn, yn) ≤ d(xn, zn) + d(zn, yn),

by letting n → ∞.

(b) Define T : X → Xs as follows. For each b ∈ X associate the class bs ∈ Xs

which contains the constant Cauchy sequence (b, b, . . .). Then, let T (b) = bs, where
(b, b, . . .) ∈ bs. Let W = T (X). We see that T is an isometry because (2.17) becomes
simply

ds(b
s
, a

s) = d(b, a),

where as is the class of the sequence (yn) with yn = a for all n. Any isometry is one to
one, and T : X → W is onto. Hence W and X are isometric.

To show that W is dense in Xs, take xs ∈ Xs. Let (xn) ∈ xs. Since (xn) is Cauchy,
for every c >> 0 there is a natural number n0 such that

(2.19) d(xn, xn0
)<<

c

2
for all n ≥ n0.

Let (xn0
, xn0

, . . .) ∈ xs
n0

. Then xs
n0

∈ W . By (2.17),

(2.20) ds(xs
, x

s
n0

) = lim
n→∞

d(xn, xn0
) ≤

c

2
<< c.

This shows that every c-neighborhood of xs ∈ Xs contains an element of W . Hence, W

is dense in Xs.

(c) Completeness of (Xs, ds): Let xs
n be any Cauchy sequence in (Xs, ds). Since W

is dense in (Xs, ds), then for each fixed c >> 0 and every xs
n there is zs

n ∈ W such that

(2.21) ds(x
s
n, z

s
n)<<

c

n
.

Hence by the triangle inequality,

(2.22) ds(z
s
m, z

s
n) ≤ ds(z

s
m, x

s
m) + ds(x

s
m, x

s
n) + ds(x

s
n, z

s
n)<<

c

m
+ ds(x

s
m, x

s
n) +

c

n
.

Apply the norm ‖ · ‖ for (2.22), use normality of P , take the limit as m,n → ∞ of
both sides and make use of Lemma 1.5 to conclude that (zs

m) is a Cauchy sequence in
(Xs, ds), or alternatively, Cauchyness can be obtained from Lemma 1.6 without using
normality. Since T : X → W is cone isometric, then clearly the sequence zm = T−1zs

m is
also Cauchy in (X, d). Let xs be the equivalence class to which (zm) belongs. We show
that xs is the limit of xs

n in (Xs, ds).

By (2.21),

(2.23) ds(x
s
n, x

s) ≤ ds(x
s
n, z

s
n) + ds(z

s
n, x

s)<<
c

n
+ ds(z

s
n, x

s).

Since zm ∈ xs and zs
n ∈ W , so that (zn, zn, zn, . . .) ∈ zs

n, the above inequality (2.23)
becomes

(2.24) ds(x
s
n, x

s) ≤ ds(x
s
n, z

s
n) + ds(z

s
n, x

s)<<
c

n
+ lim

m→∞

d(zn, zm).

Then with the help of the normality of the cone P and the fact that zn is Cauchy, (2.24)
(or alternatively, by an idea similar to Lemma 1.6 without using normality) shows that
xs

n → xs in (Xs, ds).

(d) Uniqueness of (Xs, ds) up to isometry: If (Y s, ρs) is another complete cone metric
space with U dense in (Y s, ρs) and isometric with X, then for any xs, ys ∈ Xs we have the
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sequences (xs
n), (ys

n) in W such that xs
n → xs and ys

n → ys in (Xs, ds); hence Lemma 1.7
implies that

(2.25) ds(x
s
, y

s) = lim
n→∞

ds(x
s
n, y

s
n).

That U is isometric with W and U is dense in (Y s, ρs) lead to the cone distances on Xs

and Y s being the same. Hence, Xs and Y s are isometric. �

3. The scalar norm completion of cone normed spaces

As every cone normed space is a cone metric space, and cone metric spaces can be
completed, as we have done in the previous section, this suggests a method for completing
a cone normed spaces. Before stating and proving this result, we define the meaning of
isometry of cone normed spaces.

3.1. Definition. Two cone normed spaces (X, ‖ · ‖c1) and (Y, ‖ · ‖c2) are said to be
isometric if there exists a bijective linear operator T : X → Y such that

‖Tx‖c2 = ‖x‖c1 , for all x ∈ X.

3.2. Theorem. Let (X, ‖ · ‖c) be a cone normed space over a normal cone. Then there

is a cone Banach space (Xs, ‖ · ‖s) and an isometry T from X onto a subspace W of Xs

which is dense in Xs. The space Xs is unique up to isometry.

Proof. Since cone normed spaces are cone metric spaces, then Theorem2.4 implies the
existence of a complete cone metric space (Xs, ds) and an isometry T : X → W = T (X),
where W is dense in Xs and Xs is unique up to isometry. Consequently, to prove the
present theorem, we must make Xs into a vector space, then provide Xs with a suitable
cone norm.

To define on Xs the two algebraic operations of a vector space, we consider any
xs, ys ∈ Xs and any representatives (xn) ∈ xs and (yn) ∈ ys, where to recall that xs and
ys are equivalence classes of Cauchy sequences in (X, ‖ · ‖c). Set zn = xn + yn. Then
(zn) is Cauchy sequence in (X, ‖ · ‖c) since

‖zn − zm‖c = ‖xn + yn − (xn + xm)‖c ≤ ‖xn − xm‖c + ‖yn − ym‖c.

Define the sum zs = xs + ys of xs and ys to be the equivalence class for which (zn) is
a representative; thus (zn) ∈ zs. This definition is independent of the particular choice
of Cauchy sequences belonging to xs and ys. In fact, if (xn) ∼ (x′

n) (i.e., limn→∞ ‖xn −
x′

n‖c = 0 in (E, ‖ · ‖)) and (yn) ∼ (y′

n) (i.e., limn→∞ ‖yn − y′

n‖c = 0 in (E, ‖ · ‖)), then
normality of the cone P and

‖xn + yn − (x′

n + y
′

n)‖c ≤ ‖xn − x
′

n‖c + ‖yn − y
′

n‖c

imply that (xn + yn) ∼ (x′

n + y′

n).

Similarly, the product αxs ∈ Xs of a scalar α and xs is defined as the equivalence
class for which the sequence (αxn) is a representative. Again, this definition is indepen-
dent of the particular choice of a representative of xs. The zero element of Xs is the
equivalence class containing all Cauchy sequences which converge to zero in the sense of
the cone norm. Showing that the two defined algebraic operations satisfy all the required
properties for a vector space is straightforward. Also, from the definition it follows that
on W the vector space operations induced from Xs agree with those induced from X by
means of T .

Furthermore, T induces on W a cone norm ‖·‖1 whose value at every ys = Txs ∈ W is
‖ys‖1 = ‖x‖c. The corresponding cone metric on W is the restriction of ds to W , since T

is an isometry. The cone norm ‖ · ‖1 can be extended to Xs by setting ‖xs‖s = ds(0
s, xs)



74 T. Abdeljawad

for every xs ∈ Xs. In fact, it is obvious that ‖ · ‖s satisfies N1 and N2, and the other two
axioms follow from those for ‖ · ‖1 by a limit process. �
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