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Abstract

We characterize a finite length module over HNP that is annihilated by
an invertible ideal. We also characterize finite length modules over HNP
that have no composition factors annihilated by an invertible ideal.
The two characterizations are used to prove Levy’s Theorem about the
decomposition of finite length modules over HNPs. We also prove that
the ring of matrices over a uniserial ring is serial by generalizing the
technique of proving that the ring of matrices over a simple ring is
simple. This is done by exploring the form of a one sided ideal of a
matrix ring. We also characterize a uniserial Artinian ring as a local,
principle ideal, Artinian ring. We use the two results to prove that
the component that is annihilated by an invertible ideal in the Levy
decomposition is a serial module.
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1. Results

The Theorem of decomposing a finite length module over HNPs [4], will be proved in
another way. Let R be a HNP ring. First, we state Lemma 4.3(i) in [4].

1.1. Lemma. Let S, T be simple R-modules. If there is an invertible ideal annihilating

S but not annihilating T , then Ext1(S, T ) = 0.

In the next Theorem, we characterize a finite length R-module that is annihilated by
an invertible ideal.

1.2. Theorem. Let M be a finite length R-module. Then M is annihilated by an in-

vertible ideal if and only if each of its simple submodules is annihilated by an invertible

ideal.
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Proof. We prove by induction on the composition length of M . Let S be a simple module
of M annihilated by an invertible ideal I , and let T be a simple submodule of M/S. If
Ext1(S, T ) = 0, then T is isomorphic to a submodule of M and hence is annihilated
by an invertible ideal. If Ext1(S, T ) is non zero, then by Lemma 1.1, T is annihilated
by the same invertible ideal I as is S. Either way, the hypotheses of the Theorem are
satisfied by M/S, so by induction it is annihilated by some invertible ideal J , and then
M is annihilated by JI . �

As a consequence we have the following:

1.3. Corollary. Let M be a finite length R-module not annihilated by invertible ideals.

Then M has a simple submodule not annihilated by invertible ideals.

Next we will see a theorem related to the extension of a finite length R-module by a
finite length R-module.

1.4. Theorem. Let T, M be finite length R-modules. Let Ext1(T, X) = 0 for every

composition factor X of M . Then Ext1(T, M) = 0.

Proof. The proof is by induction on the composition length of M , the case of length 1
being trivial. Let us consider the following exact sequence:

Ext1(T, S) −→ Ext1(T, M) −→ Ext1(T, M/S).

Note that Ext1(T, M/S) = 0 by induction, and Ext1(T, S) = 0 by assumption, so
Ext1(M, S) = 0. �

Similarly we have the next Theorem:

1.5. Theorem. Let T, M be finite length R-modules. Let Ext1(X, T ) = 0 for every

composition factor X of M . Then Ext1(M, T ) = 0.

In the next Theorem we characterize a finite length module that has no composition
factors annihilated by invertible ideals.

1.6. Theorem. Let M be a finite length R-module. Then M has no composition fac-

tors annihilated by invertible ideals if and only if each of its simple submodules is not

annihilated by invertible ideals.

Proof. Suppose that each of the simple submodules of M is not annihilated by invertible
ideals. The theorem will be proved by induction on the length. Let the proposition be
true for modules with length < n. It will be proved that it is true for modules with
length n. Let M1 be a submodule of M with length n − 1. Then M1 only has simple
submodules that are not annihilated by invertible ideals. For the next composition series

0 ⊆ S = Mn−1 ⊆ · · · ⊆ M2 ⊆ M1 ⊆ M,

the factor module M1/S has no composition factors annihilated by invertible ideals. It
will be proved that M/M1 is not annihilated by invertible ideals. We can see that

M/M1 ≈ (M/S)/(M1/S).

Let us consider the next exact sequence

0 −→ M1/S −→ M/S −→ (M/S)/(M1/S).

Suppose (M/S)/(M1/S) is annihilated by an invertible ideal. By Lemma 1.1,

Ext((M/S)/(M1/S), T ) = 0

for every composition factor T of M1/S. By Theorem 1.4, then

Ext((M/S)/(M1/S), M1/S) = 0.
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This means that the exact sequence above is split. So we have (M/S)/(M1/S) is isomor-
phic with a simple submodule of M/S. Let the simple submodule be K/S. Then K/S is
a composition factor of a submodule of M with length n − 1. So K/S is not annihilated
by an invertible ideal. This is in contradiction with the fact that (M/S)/(M1/S) is an-
nihilated by an invertible ideal. So we have that M/M1 is not annihilated by invertible
ideals.

The converse is obviously true. �

The next Theorem is about the decomposition of a finite length module over HNPs.
This Theorem was proved as Theorem 4.6 in [4], inductively on the length of the module.
In this paper, it will be proved by separating it into simple submodules. The idea of this
method came from the method used in [1], about the decomposition of a module over a
Dedekind prime ring.

1.7. Theorem. Let M be a finite length R-module. Then M = Mu ⊕ Mh, where Mu

is annihilated by an invertible ideal and Mh has no composition factors annihilated by

invertible ideals.

Proof. Let S1, . . . , Sk be all of the different simple submodules annihilated by invert-
ible ideals, and Sk+1, . . . , Sn all of the different simple submodules not annihilated by
invertible ideals. Let

Φ = {T | T is a submodule of M that has no composition factors

annihilated by an invertible ideal}.

By the Noetherian property of M , then Φ has a maximal element. Let N be the maximal
element of Φ. Firstly it will be showed that M/N is annihilated by an invertible ideal.
Suppose it is not true. By Corollary 1.3, there is a simple submodule of M/N that is not
annihilated by invertible ideals. Let M ′/N be the simple submodule. Then the length
of M ′ is the length of N + 1. If M ′ has a simple submodule Si that is annihilated by
an invertible ideal, but N does not contain Si, then there is a submodule N ′ ⊇ Si, with
the length of N ′ equal to the length of N and N ∩ N ′ = 0. So we have M ′ ∼= N ⊕ N ′.
This cannot happen. So M ′ has no simple submodules annihilated by invertible ideals.
According to Theorem 1.6, then M ′ is a submodule that has no composition factors
annihilated by invertible ideals, with M ′ ⊇ N . This is a contradiction with the fact that
N is a maximal submodule that has no composition factors annihilated by invertible
ideals. So M/N must be annihilated by an invertible ideal.

Next it will be shown that M = N ⊕ M/N . All of the composition factors of M/N
are annihilated by an invertible ideal, because M/N is annihilated by an invertible ideal.
By Lemma 1.1, we have Ext(X,Y ) = 0 for all composition factors X of M/N and Y
of N . By Theorem 1.5, then Ext(M/N, Y ) = 0 for every composition factor Y of N .
By Theorem 1.4, then Ext(M/N,N) = 0. And we have M = N ⊕ M/N , where N has
no composition factors annihilated by invertible ideals, and M/N is annihilated by an
invertible ideal. �

It can be shown that we can obtain the maximal element of Φ by taking the sum of
all the elements of Φ.

Next it will be shown that the submodule Mu in Theorem 1.7 is a uniserial module.
Let Mu be annihilated by an invertible ideal I . Then we can see Mu as an R/I-module.
Generally it will be proved that for every invertible ideal I of a HNP ring R, then R/I
is a serial, Artinian ring. So Mu is a module over a serial, Artinian ring R/I . Then Mu

is a serial R/I-module, that is also a serial R-module.
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In [3], the theorem on the decomposition of an Artinian principal ideal ring was stated
as follows:

1.8. Theorem. An Artinian principal ideal ring can be decomposed into the direct sum

of the ring of matrices over an Artinian, local, principal ideal ring.

Next we will look at the structure of matrices over an Artinian, local, principal ideal
ring. We start by showing that the structure of an Artinian, local, principal ideal ring is
uniserial, and then we show that the matrices over a uniserial ring become a serial ring.

Let R be an Artinian ring. Then the Jacobson radical J is nilpotent. Consequently,
R has finite length and there is a natural number t such that

0 ⊆ Jt ⊆ · · · ⊆ J ⊆ R,

where Js = 0 for every number s ≥ t + 1, is a chain of R. If we add the local property
in R, then J is the only right/left maximal ideal. In the next theorem we will show that
the ring will be uniserial, Artinian if we add the property that J is a principal ideal. We
will also show the converse. To begin with we will first look at a Lemma.

1.9. Lemma. Let M be a right module over an Artinian ring R. Then M is uniserial

if and only if the following chain is a composition series.

0 ⊆ MJn ⊆ · · · ⊆ MJ ⊆ M

Proof. ⇐=. Let N1 be a maximal right submodule of M . If MJ 6= N1, then MJ +N1 =
M . Following Nakayama [3], because R is Artinian, then MJ <<< M . So M = N1. This
is a contradiction with the fact that N1 is a maximal submodule. So it must be MJ = N1.
Now let N2 be a maximal submodule of MJ . If MJ2 6= N2, then MJ2 + N2 = MJ .
Because of MJ << M , then MJ2 = (MJ)J << MJ . So MJ = N2. This is a
contradiction with N2 being a maximal submodule of MJ . So it must be MJ2 = N2.
The process is continued giving that M is uniserial.

=⇒. Let M/JM be a module over R/J . By the way we have R/J is semi simple
because R is an Artinian ring. Then M/JM is a semi simple module. So M/JM =
⊕

Mi/JM with Mi/JM simple modules. Then we can make two different composition
series as follow

JM ⊆ M1 ⊆ M1 ⊕ M2 ⊆ · · · ⊆ M

and

JM ⊆ M2 ⊆ M1 ⊕ M2 ⊆ · · · ⊆ M.

This cannot happen because M is uniserial. So M/JM must be simple. Next we have
that JM/J2M is an R/J-module, so we also have JM/J2M semi-simple. So there will
be more than one composition series between J2M and JM . And this is impossible
because JM is uniserial. So J2M must be simple. �

1.10. Theorem. Let R be a ring. Then the following are equivalent:

1. The ring R is uniserial, Artinian.

2. The ring R is Artinian, local and principal ideal ring.

3. The ring R is Artinian, local and the Jacobson radical J is a principal ideal.

Proof. 1 =⇒ 2 The ring R is uniserial, so 0 ⊆ Jt ⊆ · · · ⊆ J ⊆ R is the only composition
series. Obviously R is an Artinian, local ring. Let I be a non-trivial two sided ideal
in R. Then I = Js for a natural number s, where 1 ≤ s ≤ t. Let a ∈ Js − Js+1. So
Js+1 ⊂ Js+1 + aR ⊆ Js. By the way JsJ << JsR (<< means small), because R is an
Artinian ring. So we have aR = JsR = Js. Similarly we have Js = Rb for an element
b ∈ Js. So R is a principal ideal ring.
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2 =⇒ 3. Obvious.

3 =⇒ 1. We will show that the following chain is a composition series.

0 ⊆ Jt ⊆ · · · ⊆ J ⊆ R.

Because J is a principal ideal, there exists a and b in R such that J = aR = Rb. Let
aras ∈ J2. Because J is a two sided ideal and a ∈ J , then ra ∈ J , that means there
exists r′ ∈ R � ra = ar′. So aras = a2r′s ∈ a2R. We have

J2 ⊆ a2R.

The other containment is obvious. So J2 = a2R.

Similarly we can also show that

Jn = anR for every natural number n.

Now let us consider the homomorphism

ϕ : R → aR/a2R with ϕ(r) = aR + a2R∀ r ∈ R.

We can see that aR is contained in the kernel. But aR = J is the unique maximal right
ideal, so R/aR is simple, and hence aR/a2R is either simple or 0. If it is 0, then aR = 0
by Nakayama’s Lemma. The proof for akR/ak+1R is similar. So 0 ⊆ Jt ⊆ · · · ⊆ J ⊆ R
is a composition series. According to Lemma 1.9, we can conclude that the ring R is
uniserial. �

Next we will see the structure of matrices over a uniserial ring. The next theorem,
shown in [5], talks about a two sided ideal in the ring of matrices. The first lemma gives
the form of the right ideal of matrices over a ring R.

1.11. Lemma. Let R be a ring and I a right ideal in Mn(R). Then I = (U · · ·U) for a

right submodule U of Rn.

1.12. Lemma. Let R be a ring. Let
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, where Ji is a right ideal of R.

1.13. Theorem. Let R be a uniserial ring. Then Mn(R) is a serial ring.

Proof. Because R is a uniserial ring, then the composition series of R is unique, that is

0 ⊆ Jk ⊆ · · · ⊆ J ⊆ R.

We have the following fact,

Mn(R) =
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Consider the right ideal I =
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. Because each right ideal in R is just Jt for

some positive integer t, using the form of a right ideal in Mn(R) from Lemma 1.11,

and that of the right submodule of
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is a uniserial right module with composition series as follows:
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.

So Mn(R) is a direct sum of right uniserial modules. So Mn(R) is a serial ring. �

By Theorems 1.8, 1.10 and 1.13, we have the next corollary.

1.14. Corollary. An Artinian principal ideal ring is serial.

The next two theorems are proved in [7].

1.15. Theorem. Let I be an ideal in R. Then there is an ideal H ⊆ I such that R/H
is a serial ring.

By the way, we have that R/I is isomorphic with (R/H)/(I/H). So we have that
R/I is a serial ring. The component Mu that is annihilated by an invertible ideal I in
Theorem 1.7 is also an R/I-module. So Mu is a serial module.
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