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Abstract

The purpose of this present paper is to derive certain coefficient esti-
mates for a normalized analytic function defined in the open unit disk
A ={z:z€Cand |z| <1}. A certain application of our main result
for a class of functions defined by a Hadamard product is given. As a
special case of our result, we obtain the Fekete-Szegd inequality for a
class of functions defined through fractional derivatives.
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1. Introduction

Let A denote the class of all functions f(z) of the form

(1.1)  f(2) ::/:—&—z:an:/:"7
n=2

which are analytic in the open unit disk
A:={z:z€Cand |z <1}
and S be the subclass of A consisting of univalent functions.
Let f and g be functions analytic in A. Then we say that the function f is subordinate

to g if there exists a Schwarz function w(z), analytic in A with

w(0) =0 and |w(z)| <1, (z € A),
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such that

[(z) = g9(w(2)), (z €A).
We denote this subordination by
f=<gor f(z) <g(z), (z € A).

In particular, if the function g is univalent in A, the above subordination is equivalent to
f(0) = g(0) and f(A) C g(A).

Let ¢(z) be an analytic function with ¢(0) = 1, ¢'(0) > 0 and
R(4(2)) >0, (z € A),

which maps the open unit disk A onto a region starlike with respect to 1 and is symmetric
with respect to the real axis. By S*(¢) and C(¢), respectively, we denote the subclasses
of the normalized analytic function class A which satisfy the following subordination
relations:

2f'(2) 2f"(2)

f(2) f'(2)

These classes were introduced and studied by Ma and Minda [3]. In particular, if we set

1+ (1-28)z

o(z) = LU= 207

we get the well-known classes S*(8) (0 = 8 < 1) of starlike functions of order 3 and the
class C(8) of convex functions of order «, respectively.

< ¢(z) and 1 + < ¢(2), (z€A).

, (zeA; 058<1)

In [3], the Fekete-Szego inequality for functions in the class C(¢) was obtained and in
view of the Alexander result between the class S*(¢) and C(¢), the Fekete-Szegt inequal-
ity for functions in S*(¢) was also obtained. For a brief history of the Fekete-Szegd prob-
lem for the class of starlike, convex and various other subclasses of analytic functions,
we refer the interested reader to [10].

Let « 20, A20,0< p<1and f €A Wesay that f € M(«, A, p) if it satisfies the
condition

N A T |

The class M (a, A, p) was introduced very recently by Guo and Liu [2].

Motivated essentially by the aforementioned works, we prove the Fekete-Szegd in-
equality in Theorem 2.1 for a more general class of analytic functions which we define
below in Definition 1.1. Also we give applications of our results to certain functions
defined through the Hadamard product and in particular we consider a class defined by
fractional derivatives. The results obtained in this paper generalize the results given in
[3] and [9].

Now, we define the following class Ma, (¢) of functions which unifies the classes S™(¢)
and C(¢):

1.1. Definition. Let ¢(z) be a univalent starlike function with respect to 1 which maps
the open unit disk A onto a region in the right half plane and is symmetric with respect
to the real axis, ¢(0) =1 and ¢'(0) > 0. A function f € A is in the class Mq, A(¢) if

{,{(()) (f()) A {1 . J{(()) - J{(()) e (j:(()) B 1)” o,

(@20, A2 0).
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Note that Mo,0(¢) = S™(¢) and Mo, 1(p) = C(#) given in [3].

To prove our main result, we need the following:

1.2. Lemma. [3] If p1(2) = 1+ c1z + 22 + -+ is a function with positive real part in
A, then
—4v+2, if v=<0,
lea —wvei] < {2, if 0<Swv <1,
4qu — 2, if v= 1.

1
When v < 0 or v > 1, equality holds if and only if p1(z) is 1—+Z, or one of its rotations.
—z

1+ 22

If 0 < v < 1, then equality holds if and only if p1(z) is T2

or one of its rotations. If

v =0, equality holds if and only if

1 1 1+2z 1 1 \1-=2
(2 4+ = — _Z <n<
p1(z) <2+2n) 1_Z+<2 277) T3, 0snsl
or one of its rotations. If v =1, equality holds if and only if p1 is the reciprocal of one
of the functions such that equality holds in the case of v = 0.

Although the above upper bound is sharp, when 0 < v < 1, it can be improved as
follows:

le2 —vei | +vlei)* £2, (0<v<1/2)
and

le2 —vei |4+ (1 —v)|er]? £2, (1/2 < v £ 1).
We also need the following;:

1.3. Lemma. [7] If p1(2) = 1+ c1z 4+ 22 + -+ is a function with positive real part in
A, then

lea — vet] € 2max(1, |20 — 1)).
The result is sharp for the functions

_1+22

Pe) = 1o p() =

S 1—2z

2. A coefficient estimate
By making use of Lemma 1.2, we prove the following:

2.1. Theorem. Let 0 < <1, o> 0 and A 2 0. Further, let ¢(z) = 1+ Biz+ Boz? +
B3z® + -+, where the By,’s are real with By > 0, B2 2 0. If f(2) given by (1.1) belongs
to Mo, x(9), then

1 By
— (2B, — 221 if <
2§ ( 2 272 5 Zf n =01,
B
|a3_ua§| g {17 Zf Olglu‘éo—?y
1 Biy .
— (—2B >
25( 2t 55 ) if p2Z o2,



236 T. Rosy, S. Kavitha, G. Murugusundaramoorthy

where, for convenience,
73 (B2 — B1) + ((a + 3)A — p) BY

g1 = )

2% B2
gy i 27 (B2t Bi) + ((a + 3)A = p) B
2%B? ’
- 2728y — (p® — (o + 3)\) B}
2% B2 ’

2.1) vi=p—(a+3)A+ 2u¢,
2.2) p=0ao+a-—2,

2.3) &= (a+2)(1+2X), and
2.4) T:=(14+0a)(1+A).
Further, if o1 < u < o3, then

2
B B B
|a3—/l(12|+§B (1 B—1+;Tl)| 2| < !

If o3 £ pu < o2, then

IIN
|

2
Bz ’yB
las — pa3| + — ¢E, (1+ B 2721) |as|?

These results are sharp.

Proof. If f € Ma, x(¢), then there is a Schwarz function w(z), analytic in A, with
w(0) =0 and |w( )] <1 in A such that

(2.5) { ( ) { B OO 7 O (Zf'(z) - 1)” = p(w(z)).

f'(2) f(z) f(z)
Define the functlon p1(z) by

(26)  pu(z) = H“’EZ;

Since w(z) is a Schwarz function, we see that R(p1(z)) > 0 and p1(0) = 1. Let us define
the function p(z) by

(20 (1N ) HE) ()

o P (F2) a5 - 5 e (5 -0}
:1+b1z+bzz2+~~~ .

In view of the equations (2.5), (2.6), (2.7), we have

28 s =o(2ET).

Using (2.6) in (2.8), we get,

—1—|—clz—|—6222—|—--~.

1 1 1 1
b1 = §B101 and by = §B1 (C2 — 50?) + ZBQC%'

A computation shows that

!
z})j(S) =1+ a2z + (2a3 — a%)z2 + (a4 + a% _ 3a3a2)z3 T
Similarly we have
1+ Zf (Z) = 1+2a22+(6a3—4a§)z2+... '

f'(z)
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An easy computation shows that
{5 (82) 8- = ()]}
=14+ 1 +a)(l+Nazz+ (a+2)(1 + 2\)azz’
+<a to —(a+3)A— )a%zz—b----.

In view of equation (2.7), we see that

by = (1 + Oé)(l + )\)az

a2+a

b2:(a+2)(1+2)\)a3+( —(a+3))\—1) a3

or equivalently, we have

@ = 2((a+£21+2x>> ( ;<l‘%+BIA°) )

where
o? —|—oz> 1
2 4((1+a)(1+A)*

AoZ((a+3))\—|—1—

Therefore, we have
B, (
2 ((a+2)(14+2X))

2 2
as — paz = Cco — vcl)
where

v

1 (1_ By a2+a—2+2p(a+2)(1+2)\)—(a+3))\B )
"2\ B’ 2((1+a)(1+A))° A
The assertion of Theorem 2.1 now follows by an application of Lemma 1.2.
To show that the bounds are sharp, we define the functions Ky, (n = 2,3,...) with
Ky, (0) =0 = [Ky,]'(0) — 1, by
2(Ky,)'(2) (Ko (2)\"
Ky, (2) z
2(Kp,)"(2) _ 2(Ks,)'(2) (Z(K¢ )'(2) )} n-1
+A {1 + & - & +a & —1)| =¢(= ,
KoV ) K (2) Ko, (7 =)
and the functions F,, and G, (0 < n £ 1), respectively, with F;,(0) = 0 = F,(0) — 1 and
Ga(0) = 0 = Gy (0) — 1 by
2(Fy)'(2) (Fa(2)\"
Fy(2) z

oy e e (a1 e ().

and

2(Gn)'(2) (Gn(2)\"
Gn(2) ( Z )
2G)"(2)  2Gn)'() | (HG)'(2) | Lzt
Al e e (e )] = ()
respectively. Clearly the functions Ky, , Fy), Gy, € Mo A (¢). Also we write Ky 1= Kg,.
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If p < o1 or u > o2, then equality holds if and only if f is Ky or one of its rotations.
When o1 < p1 < 02, then equality holds if and only if f is Ky, or one of its rotations.
If 4 = o1 then equality holds if and only if f is F}, or one of its rotations.

If 4 = o2 then equality holds if and only if f is G, or one of its rotations. O

By making use of Lemma 1.3, we immediately obtain the following:
2.2. Theorem. Let 0 S a <1, 0< B <1, and 0 £ X £ 1. Further, let
o(z) = 14 Biz+ Boz? + B3z® + -+ ,

where the By ’s are real with B1 > 0 and B2 2 0. If f € My, 3,2(¢), then for complez u,
we have

where v is as defined in (2.1). The result is sharp.

2.3. Remark. The coefficient bounds for |az| and |as| are special cases of our Theo-
rem 2.1.

2.4. Remark. For the choice A = 0, Theorem 2.1 reduces to the result obtained in [7].

For the choices @« = 0 and A = 0, Theorem 2.1 reduces to the following result for the

class S™(¢).
2.5. Corollary. If f given by (1.1) belongs to S*(¢), then

B 1 .
_Z_MB%-F—Bf if pw< o1
2 2
jaa — pa| < 4 2L if o1 Sp< o
B 1
—72 +HB%—§B% if pp2> 02

where,
(B2 —B1)+ B}
O1i= "——opm
2B;3
2B?

g2 =

The result is sharp.

For the choices @ = 0 and A = 1, Theorem 2.1 coincides with the following result
obtained for the class C'(¢) by Ma and Minda [3].

2.6. Corollary. (Ma and Minda [3]) Let 0 < p < 1. Further, let
#(2) =14 Biz+ Boz> + B32® + -+,
where the By ’s are real with B1 > 0, B2 > 0 and
2(B2 — B + BY)

o] = —— >

3B?
2(B: — B1 + B})
02 = ————(005
382
2(B: + BY)
03 i= ————5——

352
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If f(2) given by (1.1) belongs to C(¢), then
1 3
5 (Bz — SuBY +B%) ,ifpSon,

1 .
las — pa3| < 5B if 015 p = 02,

1 3 .
-5 (32 — SuBI + B%) . if > oo

Further, if o1 £ u < o3, then
2 3 B
|as — pa| + 3 BY (5uB% +Bi— Bs — B%) jaz|* < ==

If o5 < p < 02, then

2 3 B
las — pa3| + ng <—§MBf + B1 + B2 +B%> laz|® < ?1

These results are sharp.
For the choice of o = 0, Theorem 2.1 at once reduces to the following result.

2.7. Corollary. Let 0 < p <1, and 0 < X\ < 1. Further, let

¢(z):1+B1z+B222+B3z3+~~ ,
where the By, ’s are real with By > 0, Ba 2 0 and
_ 2(L+N)*(B2 = B1) — [(1+X)* — 3(1 +3))]BY
4(1+2)\)B? ’
2(1+ N)?*(B2 + B1) — [(1+X\)? = 3(1+ 3\ B}

2= A1+ 20 B2
- 2(1+A)?By — [(1+X\)? = 3(1 + 3)\)] B} '
4(1+2))B2
If f(2) given by (1.1) belongs to Mo, (), then
1 B} A
e P we] YeE
. By, if o1 = p = o,

P -G S —
|a3 ,u‘a2| = 2(1+2)\)

1 B? .
_ o1 >
TN { 2Bs + (1+)\)2’Yz} , if 2 o2,

where, for convenience,
v2 = (14 )\)2 —3(143X) +4p(1+2N).

Further, if o1 £ u < o3, then

2 (1422 Bs Y251 2 B
- TNy 22 RO < 2t
las = noal + 5N B B oz el = sy

If o5 < p < 02, then

2
1+ N 1 B Y2 B1 |a2|2 < B
Br 201+ ))?2

2
las = nazl + SN =2(1+2))

These results are sharp.
2.8. Remark. For the choices A =1, @« = 0 and 8 = 1, Theorem 2.1 reduces to a known

result of Ma and Minda [3].
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3. Application to functions defined by convolution

For an application of the results given in the previous section, we define the class
ng 5.2(¢). This will require the following concept:

3.1. Definition. (see [5, 6]; see also [11, 12]) Let f be analytic in a simply connected
region of the z-plane containing the origin. The fractional derivative of f of order ¢ is
defined by

Spiy e L d [T f(O)
D) = Fr dz/o i wss<),

where the multiplicity of (z — ¢)° is removed by requiring that log(z — ¢) is real for
z—(¢>0.

Using the above Definition 3.1 and its known extensions involving fractional derivatives
and fractional integrals, Owa and Srivastava [5] introduced the operator Q° : A — A
defined by

(Qf)(2) =T(2—8)2"DIf(2), (6 #2,3,4,--).
We define the class Mg, A(®) in the following way:
M3 \(¢) = {f € A and Qf € Ma, 7(9)}

where M, x(¢) is given by Defintion 1.1. Note that M3 ,(¢) is the special case of the
class M7 ,(¢) when

&I+ yre-9)
g(z)f2+7;2 T(n+1—3) z .
Let
g(z) =2+ gnz", (gn >0).
n=2
Since

f(2) =24 anz" € MZ \(¢) < (f*g) =2+ Y gnanz" € Map(9),
n=2

n=2

we obtain the coefficient estimate for functions in the class M g’ A (¢), from the corre-
sponding estimate for functions in the class Ma, x(¢). Applying Theorem 2.1 for the
function (f * g)(2) = z + g2a222 + gzazz® + - - -, we get the following Theorem 3.2 after
an obvious change of the parameter p.

3.2. Theorem. Let0 S <1, a =20 and A = 0. Further, let
¢(z):1+B1z+B222+B3z3+~~ ,

where the By’s are real with By > 0, B2 2 0, gn > 0. If f(2) given by (1.1) belongs to
Mik(qﬁ), then

1 B2y .
293§ (232 - F ) Zf H g g1,
|a3 —/la%| g %7 Zf o1 g 1% é 02,
3

1 Bi~y .
1. — | —2B >
[ 8@96]293£ ( 2t 5o ), ifuzo,
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where, for convenience,

g3 27°(B2 — B1) + (e +3)A — /J)B1

g5 26 B}
o o 9327°(B2+ Bi) + ((a+ 3)) — P)B1
2“'92 2683

Y2 i=p—(@+3)A+ 2ug3

and p,&, T are as defined in (2.2), (2.3) and (2.4). These results are sharp.

Since, (2°f)(2) = z + Z %anz7l7 we have
o r3)re2-y9) 2
R T Y
and
rare—-o 6
(3‘2) 93 = ( ) ( ) —

r4-06) — (2-0)(3-96)
For g2 and g3 given by (3.1) and (3.2), Theorem 3.2 reduces to the following.
3.3. Theorem. Let0 S <1, a =20 and A = 0. Further, let

o(z) = 14 Biz+ Boz? + B3z® + -+ ,

where the By ’s are real with By > 0, B2 2 0 andg, > 0. If f(z) given by (1.1) belongs to
ngk(qﬁ), then

2-6)(3-96 B? .
L_%%—J(ﬂﬁ—gg), if w< o,

2-6)(3-0)B )

las — pa3| < %7 if o1 S p < o,
2-6)(3-10 B
%2(6)( 2B+2w), if pZ oo,

where, for convenience,

2(3 —6) 27%(B2 — B1) + ((a + 3)A — p)B1

7T 32 )) 2B?
2(3=6)2r*(Ba+ B1) + ((a+3)A — p)B1
727 32 -9) 287
— 2(3-9)
Y31 =p (a—|—3))\+2u3(2_5)£,

and p,&, T are as defined in (2.2), (2.3) and (2.4). These results are sharp.
For the choices « = 0, A =0, By = % and By = %, Theorem 3.3 coincides with
™ T
the following result obtained in [9] for which Q* f(2) is a parabolic starlike function [1, 8].

3.4. Theorem. [9] Let 0 < p < 1. Let

B (0% e B9 (-5)
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If f(2) given by (1.1) belongs to M{io(qﬁ)7 then

4 122-0p 4 1\
312 (3 6)(2 5) ( (3 — 6)71'2 2 3) ) Zf H =01,
2 .
las — pa3| < 3,23 -0)(2-9), if 01 = p = o2,
4 _ B 1 i _ 12(2 = d)p . >
3.2 (3-96)(2-9) (3 + = 7(3 — oy ) , if u 2 oo.

These results are sharp.

3.5. Remark. For the choicesa =0, A =0, =1, By = % and By =
T

16

3.3 Theorem 3.3
™

coincides with the result obtained in [4].
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