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Abstract

The purpose of this present paper is to derive certain coefficient esti-
mates for a normalized analytic function defined in the open unit disk
∆ = {z : z ∈ C and |z| < 1}. A certain application of our main result
for a class of functions defined by a Hadamard product is given. As a
special case of our result, we obtain the Fekete-Szegö inequality for a
class of functions defined through fractional derivatives.
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1. Introduction

Let A denote the class of all functions f(z) of the form

(1.1) f(z) = z +

∞
∑

n=2

anzn,

which are analytic in the open unit disk

∆ := {z : z ∈ C and |z| < 1}

and S be the subclass of A consisting of univalent functions.

Let f and g be functions analytic in ∆. Then we say that the function f is subordinate
to g if there exists a Schwarz function w(z), analytic in ∆ with

w(0) = 0 and |w(z)| < 1, (z ∈ ∆),
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such that

f(z) = g(ω(z)), (z ∈ ∆).

We denote this subordination by

f ≺ g or f(z) ≺ g(z), (z ∈ ∆).

In particular, if the function g is univalent in ∆, the above subordination is equivalent to

f(0) = g(0) and f(∆) ⊂ g(∆).

Let φ(z) be an analytic function with φ(0) = 1, φ′(0) > 0 and

ℜ (φ(z)) > 0, (z ∈ ∆),

which maps the open unit disk ∆ onto a region starlike with respect to 1 and is symmetric
with respect to the real axis. By S∗(φ) and C(φ), respectively, we denote the subclasses
of the normalized analytic function class A which satisfy the following subordination
relations:

zf ′(z)

f(z)
≺ φ(z) and 1 +

zf ′′(z)

f ′(z)
≺ φ(z), (z ∈ ∆).

These classes were introduced and studied by Ma and Minda [3]. In particular, if we set

φ(z) =
1 + (1 − 2β)z

1 − z
, (z ∈ ∆; 0 ≦ β < 1)

we get the well-known classes S∗(β) (0 ≦ β < 1) of starlike functions of order β and the
class C(β) of convex functions of order α, respectively.

In [3], the Fekete-Szegö inequality for functions in the class C(φ) was obtained and in
view of the Alexander result between the class S∗(φ) and C(φ), the Fekete-Szegö inequal-
ity for functions in S∗(φ) was also obtained. For a brief history of the Fekete-Szegö prob-
lem for the class of starlike, convex and various other subclasses of analytic functions,
we refer the interested reader to [10].

Let α ≧ 0, λ ≧ 0, 0 ≦ ρ < 1 and f ∈ A. We say that f ∈ M(α, λ, ρ) if it satisfies the
condition

ℜ

{

zf ′(z)

f(z)

(

f(z)

z

)α

+ λ

[

1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
+ α

(

zf ′(z)

f(z)
− 1

)]}

> ρ.

The class M(α, λ, ρ) was introduced very recently by Guo and Liu [2].

Motivated essentially by the aforementioned works, we prove the Fekete-Szegö in-
equality in Theorem 2.1 for a more general class of analytic functions which we define
below in Definition 1.1. Also we give applications of our results to certain functions
defined through the Hadamard product and in particular we consider a class defined by
fractional derivatives. The results obtained in this paper generalize the results given in
[3] and [9].

Now, we define the following class Mα, λ(φ) of functions which unifies the classes S∗(φ)
and C(φ):

1.1. Definition. Let φ(z) be a univalent starlike function with respect to 1 which maps
the open unit disk ∆ onto a region in the right half plane and is symmetric with respect
to the real axis, φ(0) = 1 and φ′(0) > 0. A function f ∈ A is in the class Mα, λ(φ) if

{

zf ′(z)

f(z)

(

f(z)

z

)α

+ λ

[

1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
+ α

(

zf ′(z)

f(z)
− 1

)]}

≺ φ(z),

(α ≧ 0, λ ≧ 0).
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Note that M0, 0(φ) ≡ S∗(φ) and M0, 1(φ) ≡ C(φ) given in [3].

To prove our main result, we need the following:

1.2. Lemma. [3] If p1(z) = 1 + c1z + c2z
2 + · · · is a function with positive real part in

∆, then

|c2 − vc2

1| ≦















−4v + 2, if v ≦ 0,

2, if 0 ≦ v ≦ 1,

4v − 2, if v ≧ 1.

When v < 0 or v > 1, equality holds if and only if p1(z) is
1 + z

1 − z
, or one of its rotations.

If 0 < v < 1, then equality holds if and only if p1(z) is
1 + z2

1 − z2
or one of its rotations. If

v = 0, equality holds if and only if

p1(z) =

(

1

2
+

1

2
η

)

1 + z

1 − z
+

(

1

2
−

1

2
η

)

1 − z

1 + z
, (0 ≦ η ≦ 1)

or one of its rotations. If v = 1, equality holds if and only if p1 is the reciprocal of one

of the functions such that equality holds in the case of v = 0.

Although the above upper bound is sharp, when 0 < v < 1, it can be improved as
follows:

|c2 − vc2

1| + v|c1|
2

≦ 2, (0 < v ≦ 1/2)

and

|c2 − vc2

1| + (1 − v)|c1|
2

≦ 2, (1/2 < v ≦ 1).

We also need the following:

1.3. Lemma. [7] If p1(z) = 1 + c1z + c2z
2 + · · · is a function with positive real part in

∆, then

|c2 − vc2

1| ≦ 2max(1, |2v − 1|).

The result is sharp for the functions

p(z) =
1 + z2

1 − z2
, p(z) =

1 + z

1 − z
.

2. A coefficient estimate

By making use of Lemma 1.2, we prove the following:

2.1. Theorem. Let 0 ≦ µ ≦ 1, α ≧ 0 and λ ≧ 0. Further, let φ(z) = 1 + B1z + B2z
2 +

B3z
3 + · · · , where the Bn’s are real with B1 > 0, B2 ≧ 0. If f(z) given by (1.1) belongs

to Mα, λ(φ), then

|a3 − µa2

2| ≦































1

2ξ

(

2B2 −
B2

1γ

2τ 2

)

, if µ ≦ σ1,

B1

ξ
, if σ1 ≦ µ ≦ σ2,

1

2ξ

(

−2B2 +
B2

1γ

2τ 2

)

, if µ ≧ σ2,
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where, for convenience,

σ1 :=
2τ 2(B2 − B1) + ((α + 3)λ − ρ)B2

1

2ξB2

1

,

σ2 :=
2τ 2(B2 + B1) + ((α + 3)λ − ρ)B2

1

2ξB2

1

,

σ3 :=
2τ 2B2 − (ρ2 − (α + 3)λ)B2

1

2ξB2

1

,

γ := ρ − (α + 3)λ + 2µξ,(2.1)

ρ := α2 + α − 2,(2.2)

ξ := (α + 2)(1 + 2λ), and(2.3)

τ := (1 + α)(1 + λ).(2.4)

Further, if σ1 ≦ µ ≦ σ3, then

|a3 − µa2

2| +
τ 2

ξB1

(

1 −
B2

B1

+
γB1

2τ 2

)

|a2|
2

≦
B1

ξ
.

If σ3 ≦ µ ≦ σ2, then

|a3 − µa2

2| +
τ 2

ξB1

(

1 +
B2

B1

−
γB1

2τ 2

)

|a2|
2

≦
B1

ξ
.

These results are sharp.

Proof. If f ∈ Mα, λ(φ), then there is a Schwarz function w(z), analytic in ∆, with
w(0) = 0 and |w(z)| < 1 in ∆ such that

(2.5)

{

zf ′(z)

f(z)

(

f(z)

z

)α

+ λ

[

1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
+ α

(

zf ′(z)

f(z)
− 1

)]}

= φ(w(z)).

Define the function p1(z) by

(2.6) p1(z) :=
1 + w(z)

1 − w(z)
= 1 + c1z + c2z

2 + · · · .

Since w(z) is a Schwarz function, we see that ℜ(p1(z)) > 0 and p1(0) = 1. Let us define
the function p(z) by

(2.7)
p(z) :=

{

zf ′(z)

f(z)

(

f(z)

z

)α

+ λ

[

1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
+ α

(

zf ′(z)

f(z)
− 1

)]}

= 1 + b1z + b2z
2 + · · · .

In view of the equations (2.5), (2.6), (2.7), we have

(2.8) p(z) = φ

(

p1(z) − 1

p1(z) + 1

)

.

Using (2.6) in (2.8), we get,

b1 =
1

2
B1c1 and b2 =

1

2
B1

(

c2 −
1

2
c2

1

)

+
1

4
B2c

2

1.

A computation shows that

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a2

2)z
2 + (3a4 + a3

2 − 3a3a2)z
3 + · · · .

Similarly we have

1 +
zf ′′(z)

f ′(z)
= 1 + 2a2z + (6a3 − 4a2

2)z
2 + · · · .
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An easy computation shows that
{

zf ′(z)

f(z)

(

f(z)

z

)α

+ λ

[

1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
+ α

(

zf ′(z)

f(z)
− 1

)]}

= 1 + (1 + α)(1 + λ)a2z + (α + 2)(1 + 2λ)a3z
2

+

(

α2 + α

2
− (α + 3)λ − 1

)

a2

2z
2 + · · · .

In view of equation (2.7), we see that

b1 = (1 + α)(1 + λ)a2

b2 = (α + 2)(1 + 2λ)a3 +

(

α2 + α

2
− (α + 3)λ − 1

)

a2

2

or equivalently, we have

a2 =
B1c1

2(1 + α)(1 + λ)
,

a3 =
B1

2 ((α + 2)(1 + 2λ))

(

c2 −
1

2

(

1 −
B2

B1

+ B1Λ0

)

c2

1

)

,

where

Λ0 =

(

(α + 3)λ + 1 −
α2 + α

2

)

1

4 ((1 + α)(1 + λ))2
.

Therefore, we have

a3 − µa2

2 =
B1

2 ((α + 2)(1 + 2λ))

(

c2 − vc2

1

)

where

v :=
1

2

(

1 −
B2

B1

+
α2 + α − 2 + 2µ(α + 2)(1 + 2λ) − (α + 3)λ

2 ((1 + α)(1 + λ))2
B1

)

.

The assertion of Theorem 2.1 now follows by an application of Lemma 1.2.

To show that the bounds are sharp, we define the functions Kφn
, (n = 2, 3, . . .) with

Kφn
(0) = 0 = [Kφn

]′(0) − 1, by

z(Kφn
)′(z)

Kφn
(z)

(

Kφn
(z)

z

)α

+ λ

[

1 +
z(Kφn

)′′(z)

(Kφn
)′(z)

−
z(Kφn

)′(z)

Kφn
(z)

+ α

(

z(Kφn
)′(z)

Kφn
(z)

− 1

)]

= φ(zn−1),

and the functions Fη and Gη (0 ≦ η ≦ 1), respectively, with Fη(0) = 0 = F ′

η(0) − 1 and
Gη(0) = 0 = G′

η(0) − 1 by

z(Fη)′(z)

Fη(z)

(

Fη(z)

z

)α

+ λ

[

1 +
z(Fη)′′(z)

(Fη)′(z)
−

z(Fη)′(z)

Fη(z)
+ α

(

z(Fη)′(z)

Fη(z)
− 1

)]

= φ

(

z(z + η)

1 + ηz

)

,

and

z(Gη)′(z)

Gη(z)

(

Gη(z)

z

)α

+ λ

[

1 +
z(Gη)′′(z)

(Gη)′(z)
−

z(Gη)′(z)

Gη(z)
+ α

(

z(Gη)′(z)

Gη(z)
− 1

)]

= φ

(

−
z(z + η)

1 + ηz

)

,

respectively. Clearly the functions Kφn
, Fη, Gη ∈ Mα,λ(φ). Also we write Kφ := Kφ2

.
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If µ < σ1 or µ > σ2, then equality holds if and only if f is Kφ or one of its rotations.

When σ1 < µ < σ2, then equality holds if and only if f is Kφ3
or one of its rotations.

If µ = σ1 then equality holds if and only if f is Fη or one of its rotations.

If µ = σ2 then equality holds if and only if f is Gη or one of its rotations. �

By making use of Lemma 1.3, we immediately obtain the following:

2.2. Theorem. Let 0 ≦ α ≦ 1, 0 < β ≦ 1, and 0 ≦ λ ≦ 1. Further, let

φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · ,

where the Bn’s are real with B1 > 0 and B2 ≧ 0. If f ∈ Mα, β, λ(φ), then for complex µ,

we have

|a3 − µa2

2| =
B1

ξ
max

{

1,

∣

∣

∣

∣

−
B2

B1

+
γ

2τ 2
B1

∣

∣

∣

∣

}

,

where γ is as defined in (2.1). The result is sharp.

2.3. Remark. The coefficient bounds for |a2| and |a3| are special cases of our Theo-
rem 2.1.

2.4. Remark. For the choice λ = 0, Theorem 2.1 reduces to the result obtained in [7].

For the choices α = 0 and λ = 0, Theorem 2.1 reduces to the following result for the
class S∗(φ).

2.5. Corollary. If f given by (1.1) belongs to S∗(φ), then

|a3 − µa2

2| ≦



























B2

2
− µB2

1 +
1

2
B2

1 if µ ≦ σ1

B1

2
if σ1 ≦ µ ≦ σ2

−
B2

2
+ µB2

1 −
1

2
B2

1 if µ ≥ σ2

where,

σ1 :=
(B2 − B1) + B2

1

2B2

1

σ2 :=
(B2 + B1) + B2

1

2B2

1

.

The result is sharp.

For the choices α = 0 and λ = 1, Theorem 2.1 coincides with the following result
obtained for the class C(φ) by Ma and Minda [3].

2.6. Corollary. (Ma and Minda [3]) Let 0 ≦ µ ≦ 1. Further, let

φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · ,

where the Bn’s are real with B1 > 0, B2 ≥ 0 and

σ1 :=
2(B2 − B1 + B2

1)

3B2

1

,

σ2 :=
2(B2 − B1 + B2

1)

3B2

1

.

σ3 :=
2(B2 + B2

1)

3B2

1

.
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If f(z) given by (1.1) belongs to C(φ), then

|a3 − µa2

2| ≦































1

6

(

B2 −
3

2
µB2

1 + B2

1

)

, if µ ≦ σ1,

1

6
B1, if σ1 ≦ µ ≦ σ2,

−
1

6

(

B2 −
3

2
µB2

1 + B2

1

)

, if µ ≥ σ2.

Further, if σ1 ≦ µ ≦ σ3, then

|a3 − µa2

2| +
2

3
B2

1

(

3

2
µB2

1 + B1 − B2 − B2

1

)

|a2|
2

≦
B1

6
.

If σ3 ≦ µ ≦ σ2, then

|a3 − µa2

2| +
2

3
B2

1

(

−
3

2
µB2

1 + B1 + B2 + B2

1

)

|a2|
2

≦
B1

6
.

These results are sharp.

For the choice of α = 0, Theorem 2.1 at once reduces to the following result.

2.7. Corollary. Let 0 ≦ µ ≦ 1, and 0 ≦ λ ≦ 1. Further, let

φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · ,

where the Bn’s are real with B1 > 0, B2 ≧ 0 and

σ1 :=
2(1 + λ)2(B2 − B1) − [(1 + λ)2 − 3(1 + 3λ)]B2

1

4(1 + 2λ)B2

1

,

σ2 :=
2(1 + λ)2(B2 + B1) − [(1 + λ)2 − 3(1 + 3λ)]B2

1

4(1 + 2λ)B2

1

,

σ3 :=
2(1 + λ)2B2 − [(1 + λ)2 − 3(1 + 3λ)]B2

1

4(1 + 2λ)B2

1

.

If f(z) given by (1.1) belongs to M0, λ(φ), then

|a3 − µa2

2| ≦































1

4(1 + 2λ)

[

2B2 −
B2

1

(1 + λ)2
γ2

]

, if µ ≦ σ1,

1

2(1 + 2λ)
B1, if σ1 ≦ µ ≦ σ2,

1

4(1 + 2λ)

[

−2B2 +
B2

1

(1 + λ)2
γ2

]

, if µ ≧ σ2,

where, for convenience,

γ2 := (1 + λ)2 − 3(1 + 3λ) + 4µ(1 + 2λ).

Further, if σ1 ≦ µ ≦ σ3, then

|a3 − µa2

2| +
(1 + λ)2

2(1 + 2λ)B1

[

1 −
B2

B1

+
γ2B1

2(1 + λ)2

]

|a2|
2

≦
B1

2(1 + 2λ)
.

If σ3 ≦ µ ≦ σ2, then

|a3 − µa2

2| +
(1 + λ)2

2(1 + 2λ)B1

[

1 +
B2

B1

−
γ2B1

2(1 + λ)2

]

|a2|
2

≦
B1

2(1 + 2λ)
.

These results are sharp.

2.8. Remark. For the choices λ = 1, α = 0 and β = 1, Theorem 2.1 reduces to a known
result of Ma and Minda [3].
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3. Application to functions defined by convolution

For an application of the results given in the previous section, we define the class
Mδ

α, β, λ(φ). This will require the following concept:

3.1. Definition. (see [5, 6]; see also [11, 12]) Let f be analytic in a simply connected
region of the z-plane containing the origin. The fractional derivative of f of order δ is
defined by

Dδ
zf(z) :=

1

Γ(1 − δ)

d

dz

∫ z

0

f(ζ)

(z − ζ)δ
dζ, (0 ≦ δ < 1),

where the multiplicity of (z − ζ)δ is removed by requiring that log(z − ζ) is real for
z − ζ > 0.

Using the above Definition 3.1 and its known extensions involving fractional derivatives
and fractional integrals, Owa and Srivastava [5] introduced the operator Ωδ : A → A

defined by

(Ωδf)(z) = Γ(2 − δ)zδDδ
zf(z), (δ 6= 2, 3, 4, · · · ).

We define the class Mδ
α, λ(φ) in the following way:

Mδ
α, λ(φ) := {f ∈ A and Ωδf ∈ Mα, λ(φ)}

where Mα, λ(φ) is given by Defintion 1.1. Note that Mδ
α, λ(φ) is the special case of the

class Mg
α, λ(φ) when

g(z) = z +
∞

∑

n=2

Γ(n + 1)Γ(2 − δ)

Γ(n + 1 − δ)
zn.

Let

g(z) = z +

∞
∑

n=2

gnzn, (gn > 0).

Since

f(z) = z +
∞

∑

n=2

anzn ∈ Mg
α, λ(φ) ⇐⇒ (f ∗ g) = z +

∞
∑

n=2

gnanzn ∈ Mα,β,λ(φ),

we obtain the coefficient estimate for functions in the class Mg
α, λ(φ), from the corre-

sponding estimate for functions in the class Mα, λ(φ). Applying Theorem 2.1 for the
function (f ∗ g)(z) = z + g2a2z

2 + g3a3z
3 + · · · , we get the following Theorem 3.2 after

an obvious change of the parameter µ.

3.2. Theorem. Let 0 ≦ µ ≦ 1, α ≧ 0 and λ ≧ 0. Further, let

φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · ,

where the Bn’s are real with B1 > 0, B2 ≧ 0, gn > 0. If f(z) given by (1.1) belongs to

Mg
α, λ(φ), then

|a3 − µa2

2| ≦































1

2g3ξ

(

2B2 −
B2

1γ

2τ 2

)

, if µ ≦ σ1,

B1

g3ξ
, if σ1 ≦ µ ≦ σ2,

[1.8ex]
1

2g3ξ

(

−2B2 +
B2

1γ

2τ 2

)

, if µ ≧ σ2,
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where, for convenience,

σ1 :=
g3

g2

2

2τ 2(B2 − B1) + ((α + 3)λ − ρ)B2

1

2ξB2

1

,

σ2 :=
g3

g2

2

2τ 2(B2 + B1) + ((α + 3)λ − ρ)B2

1

2ξB2

1

,

γ2 := ρ − (α + 3)λ + 2µ
g3

g2

2

ξ,

and ρ, ξ, τ are as defined in (2.2), (2.3) and (2.4). These results are sharp.

Since, (Ωδf)(z) = z +
∞

∑

n=2

Γ(n + 1)Γ(2 − δ)

Γ(n + 1 − δ)
anzn, we have

(3.1) g2 :=
Γ(3)Γ(2 − δ)

Γ(3 − δ)
=

2

2 − δ

and

(3.2) g3 :=
Γ(4)Γ(2 − δ)

Γ(4 − δ)
=

6

(2 − δ)(3 − δ)
.

For g2 and g3 given by (3.1) and (3.2), Theorem 3.2 reduces to the following.

3.3. Theorem. Let 0 ≦ µ ≦ 1, α ≧ 0 and λ ≧ 0. Further, let

φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · ,

where the Bn’s are real with B1 > 0, B2 ≧ 0 andgn > 0. If f(z) given by (1.1) belongs to

Mg
α, λ(φ), then

|a3 − µa2

2| ≦



































(2 − δ)(3 − δ)

12ξ

(

2B2 −
B2

1γ

2τ 2

)

, if µ ≦ σ1,

(2 − δ)(3 − δ)B1

6ξ
, if σ1 ≦ µ ≦ σ2,

(2 − δ)(3 − δ)

12ξ

(

−2B2 +
B2

1γ

2τ 2

)

, if µ ≧ σ2,

where, for convenience,

σ1 :=
2(3 − δ)

3(2 − δ)

2τ 2(B2 − B1) + ((α + 3)λ − ρ)B2

1

2ξB2

1

,

σ2 :=
2(3 − δ)

3(2 − δ)

2τ 2(B2 + B1) + ((α + 3)λ − ρ)B2

1

2ξB2

1

,

γ3 := ρ − (α + 3)λ + 2µ
2(3 − δ)

3(2 − δ)
ξ,

and ρ, ξ, τ are as defined in (2.2), (2.3) and (2.4). These results are sharp.

For the choices α = 0, λ = 0, B1 =
8

π2
and B2 =

16

3π2
, Theorem 3.3 coincides with

the following result obtained in [9] for which Ωλf(z) is a parabolic starlike function [1, 8].

3.4. Theorem. [9] Let 0 ≦ µ ≦ 1. Let

σ1 :=
(3 − δ)

(2 − δ)

(

1

3
+

5π2

72

)

and σ2 :=
(3 − δ)

(2 − δ)

(

1

3
−

π2

72

)

.
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If f(z) given by (1.1) belongs to Mδ
0, 0(φ), then

|a3 − µa2

2| ≦































4

3π2
(3 − δ)(2 − δ)

(

12(2 − δ)µ

(3 − δ)π2
−

4

π2
−

1

3

)

, if µ ≦ σ1,

2

3π2
(3 − δ)(2 − δ), if σ1 ≦ µ ≦ σ2,

4

3π2
(3 − δ)(2 − δ)

(

1

3
+

4

π2
−

12(2 − δ)µ

(3 − δ)π2

)

, if µ ≧ σ2.

These results are sharp.

3.5. Remark. For the choices α = 0, λ = 0, δ = 1, B1 =
8

π2
and B2 =

16

3π2
, Theorem 3.3

coincides with the result obtained in [4].
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