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Abstract

In this paper we define new sequence spaces Vσ(θ) and V ∞
σ (θ) which

are related to the concept of σ-mean and lacunary sequence θ = (kr),
and characterize the matrix classes (l1, V

∞
σ (θ)) and (l∞, V ∞

σ (θ)).
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1. Introduction and preliminaries

We shall write w for the set of all complex sequences x = (xk)∞k=0. Let ϕ, l∞, c and
c0 denote the sets of all finite, bounded, convergent and null sequences respectively. We
write lp := {x ∈ w :

∑∞
k=0 |xk|

p < ∞} for 1 ≤ p < ∞. By e and e(n) (n ∈ N), we denote

the sequences such that ek = 1 for k = 0, 1, . . ., e
(n)
n = 1 and e

(n)
k = 0 (k 6= n). For any

sequence x = (xk)∞k=0, let x[n] =
∑n

k=0 xke(k) be its n-section.

Note that c0, c, and l∞ are Banach spaces with the sup-norm ‖x‖∞= supk |xk|, and

lp (1 ≤ p < ∞) are Banach spaces with the norm ‖x ‖p= (
∑

|xk|
p)1/p while ϕ is not a

Banach space with respect to any norm.

A sequence (b(n))∞n=0 in a linear metric space X is called a Schauder basis if for

every x ∈ X there is a unique sequence (βn)∞n=0 of scalars such that x =
∑∞

n=0 βnb(n). A
sequence space X with a linear topology is called a K-space if each of the maps pi : X → C

defined by pi(x) = xi is continuous for all i ∈ N. A K-space is called an FK-space if X
is a complete linear metric space, and a BK-space is a normed FK-space. An FK-space
X ⊃ ϕ is said to have AK if every sequence x = (xk)∞k=0 ∈ X has a unique representation

x =
∑∞

k=0 xke(k), that is, x = limn→∞ x[n]. We use here standard notations as in [7].

∗Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
E-mail: mursaleenm@gmail.com



260 Mursaleen

Let σ be a one-to-one mapping from the set N of natural numbers into itself. A
continuous linear functional φ on the space l∞ is said to be an invariant mean or a
σ-mean if and only if

(i) φ(x) ≥ 0, when the sequence x = (xk) has xk ≥ 0 for all k,
(ii) φ(e) = 1, where e = (1, 1, 1, . . .), and
(iii) φ(x) = φ((xσ(k))) for all x ∈ ℓ∞.

Throughout this paper we assume the mapping σ has no finite orbits, that is, σp(k) 6= k
for all integers k ≥ 0 and p ≥ 1, where σp(k) denotes the pth iterate of σ at k. Note that,
a σ-mean extends the limit functional on the space c in the sense that φ(x) = lim x for all
x ∈ c, (cf. [6]). Consequently c ⊂ Vσ, the set of bounded sequences all of whose σ-means
are equal. We say that a sequence x = (xk) is σ-convergent if and only if x ∈ Vσ, where

Vσ := {x ∈ l∞ : lim
p→∞

tpn(x) = L uniformly in n; L = σ- lim x}, where

tpn(x) =
1

p + 1

p
∑

m=0

xσm(n).

Using this concept, Schaefer [8] defined and characterized the σ-conservative, σ-regular
and σ-coercive matrices. If σ is translation then the σ-mean is often called a Banach
limit [2] and the set Vσ reduces to the set f of almost convergent sequences studied by
Lorentz [5].

By a lacunary sequence we mean an increasing sequence θ = (kr) of integers such
that k0 = 0 and hr := kr − kr−1 → ∞ as r → ∞. Throughout this paper the intervals
determined by θ will be denoted by Ir := (kr−1, kr], and the ratio kr/kr−1 will be
abbreviated by qr (see Fredman et al [4]). Recently, Aydin [1] defined the concept of
almost lacunary convergence as follows: A bounded sequence x = (xk) is said to be
almost lacunary convergent to the number l if and only if

lim
r

1

hr

∑

j∈Ir

xj+n = l, uniformly in n.

Quite recently, this idea has been studied for double sequences by Çakan et al [3]. In
this paper, we define new sequence spaces Vσ(θ) and V ∞

σ (θ), which are related to the
concept of σ-mean and the lacunary sequence θ = (kr), and characterize the matrix
classes (l1, V

∞
σ (θ)) and (l∞, V ∞

σ (θ)).

2. σ-lacunary convergent sequences

We define the following:

2.1. Definition. A bounded sequence x = (xk) is said to be σ-lacunary convergent to
the number l if and only if lim

r

1
hr

∑

j∈Ir

xσj(n) = l, uniformly in n, and we let Vσ(θ) denote

the set of all such sequences, i.e.

Vσ(θ) := {x ∈ l∞ : lim
r

1

hr

∑

j∈Ir

xσj(n) = l, uniformly in n}.

Note that for σ(n) = n + 1, σ-lacunary convergence is reduced to almost lacunary
convergence. Results similar to that of Aydin [1] can easily be proved for the space
Vσ(θ).

2.2. Definition. A bounded sequence x = (xk) is said to be σ-lacunary bounded if and
only if supr,n | 1

hr

∑

j∈Ir

xσj(n)| < ∞, and we let V ∞
σ (θ) denote the set of all such sequences,
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i.e.

V ∞
σ (θ) := {x ∈ l∞ : sup

r,n
|τrn(x)| < ∞},

where

τrn(x) =:
1

hr

∑

j∈Ir

xσj(n).

Note that c ⊂ Vσ(θ) ⊂ V ∞
σ (θ) ⊂ l∞.

2.3. Theorem. The spaces Vσ(θ) and V ∞
σ (θ) are both BK spaces with the norm

(2.1) ‖x‖= sup
r,n

|τrn(x)|.

Proof. We consider the space Vσ(θ). The case V ∞
σ (θ) can be proved similarly. Let

(x(i)) = ((x
(i)
k )∞k=0) be a Cauchy sequence in Vσ(θ), i.e. for ε > 0, there is an N > 0 such

that ‖x(i) − x(m) ‖= supr,n |τrn(x(i) − x(m))| < ε for all i, m ≥ N . Since |x
(i)
k | ≤‖x(i) ‖

for each i, and Vσ(θ) ⊂ l∞, we have |x(i) − x(m)| < ε for all i, m ≥ N . So (x(i)) is
a Cauchy sequence in R, and hence convergent in R (since R is complete). That is,

for each k, x
(i)
k → xk, say, as i → ∞. Let x = (xk)∞k=0. Then by the definition of

Vσ(θ), we have ‖x(i) − x ‖= supm,n |τmn(x(i) − x)| → 0, (i → ∞), since x
(i)
n → xn and

τrn(x(i) − x) = 1
hr

∑

j∈Ir
T j(x

(i)
n − xn) → 0, where T jxn means xσj(n).

Now, we have to show that x ∈ Vσ(θ). Since (x(i)) is a Cauchy sequence in Vσ(θ), we
have that for a given ε > 0 there is a positive integer N depending upon ε such that, for
all i, m ≥ N ,

‖x(i) − x(m) ‖< ε.

Hence by (2.1) we have

sup
r,n

|τrn(x(i) − x(m))| < ε.

This implies that

(2.2) |τrn(x(i) − x(m))| < ε, for each r, n;

or

(2.3) |L(i) − L(m)| < ε,

where L(i) = σ- lim x(i). Let L = limm→∞ L(m). Then the σ-mean of x is φ(x) =

limi φ(x(i)) (since x = limi x(i) and φ is continuous and linear). Further limi φ(x(i)) =

limi L(i) = L (since φ(x(i)) means σ- lim x(i)). Now letting m → ∞ in (2.2) and (2.3),
we get

(2.4) |τrn(x(i) − x)| < ε, for each r, n; (since x = lim
m

x(m))

and

(2.5) |L(i) − L| < ε, (since lim
m

L(m) = L)

for i > N . Now fix i in the above inequalities. Since x(i) ∈ Vσ(θ) for fixed i, we obtain

lim
r

τrn(x(i)) = L(i), uniformly in n

(since L(i) = σ- lim x(i) = limr τrn(x(i)) uniformly in n). Hence, for a given ε, there exists
a positive integer r0 (depending upon i and ε but not on n) such that

(2.6) |τrn(x(i)) − L(i)| < ε, (since x = lim
m

x(m))
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for r ≥ r0 and for all n. Now by (2.4), (2.5) and (2.6), we get

|τrn(x) − L| ≤ |τrn(x) − τrn(x(i)) + τrn(x(i)) − L(i) + L(i) − L|

≤ |τrn(x) − τrn(x(i))| + |τrn(x(i)) − L(i)| + |L(i) − L|

< ε + ε + ε = 3ε,

for r ≥ r0 and for all n. Then x ∈ Vσ(θ), which proves the completeness of Vσ(θ).

Now, let ‖x(m) −x‖→ 0 as m → ∞. Then, for given ε > 0, there is m0 ∈ N such that

‖x(m) − x‖< ε for all m ≥ m0,

which implies

sup
r,n

|τrn(x(m) − x)| < ε for all m ≥ m0,

and so that

|L(m) − L| < ε for all m ≥ m0, as above in (2.5).

Hence we easily get

|x
(m)
k − xk| < ε for all m ≥ m0, and for all k,

that is |x
(m)
k − xk| → 0 as m → ∞, and this proves the continuity of the coordinate

projection. Hence Vσ(θ) is a BK space.

This completes the proof of the theorem. �

3. Matrix transformations into V∞
σ

(θ)

Let X and Y be two sequence spaces and A = (ank)∞n;k=1 an infinite matrix of real or
complex numbers. We write Ax = (An(x)), An(x) =

∑

k ankxk provided that the series
on the right converges for each n. If x = (xk) ∈ X implies that Ax ∈ Y , then we say
that A defines a matrix transformation from X into Y and we denote the class of such
matrices by (X, Y ).

In this section, we characterize the matrix classes (l1, V
∞

σ (θ)) and (l∞, V ∞
σ (θ)).

Let Ax be defined. Then, for all r, n, we write

τrn(Ax) =

∞
∑

k=1

t(n, k, r)xk,

where

t(n, k, r) =
1

hr

∑

j∈Ir

a(σj(n), k),

and a(n, k) denotes the element ank of the matrix A.

3.1. Theorem. A ∈ (l1, V
∞

σ (θ)) if and only if

(3.1) sup
n,k,r

|t(n, k, r)| < ∞.

Proof. Sufficiency. Suppose that x = (xk) ∈ l1. We have

|τrn(Ax)| ≤
∑

k

|t(n, k, r)xk|

≤ (sup
k

|t(n, k, r)|)
(

∑

k

|xk|
)

.

Taking the supremum over n, r on both sides and using (3.1), we get Ax ∈ V ∞
σ (θ) for

x ∈ l1.
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Necessity. Let us define a continuous linear functional Qrn on l1 by

Qrn(x) = τrn(Ax) =
∑

k

t(n, k, r)xk.

Now

(3.2) |Qrn(x)| ≤ sup
k

|t(n, k, r)|||x||1,

‖Qrn ‖= sup
||x||1=1

|Qrn(x)|

||x||1

and hence

(3.3) ‖Qrn ‖≤ sup
k

|t(n, k, r)|,

by (3.2). For any fixed r and n ∈ N, define x = (xi) by

(3.4) xi =

{

sgn t(n, k, r); for i = k

0; for i 6= k;

Then ‖x‖1= 1, and

|Qrn(x)| = |t(n, k, r)xk|

= |t(n, k, r)|.

Further,

‖Qrn ‖ = sup
|||x||1=1

||Qrn(x)||

||x||1

=‖Qrn(x)‖, since ‖x‖1= 1

= sup
r,n

|Qrn(x)| ≥ |Qrn(x)|

=
∣

∣

∣

∑

i

t(n, i, r)xi

∣

∣

∣

= |t(n, k, r)|,

for xi as defined in (3.4), hence

(3.5) ‖Qrn ‖≥ sup
k

|t(n, k, r)|.

Now, by (3.3) and (3.5),

‖Qrn ‖= sup
k

|t(n, k, r)|.

Therefore, by the Banach-Steinhauss Theorem

sup
r,n

‖Qrn ‖= sup
r,n,k

|t(n, k, r)| < ∞,

since A ∈ (l1, V
∞

σ (θ)) gives

sup
r,n

|Qrn(x)| = sup
r,n

∣

∣

∣

∑

k

t(n, k, r)xk

∣

∣

∣
< ∞.

This completes the proof of the theorem. �

3.2. Theorem. A ∈ (l∞, V ∞
σ (θ)) if and only if

(3.6) sup
n,r

∑

k

|t(n, k, r)| < ∞.
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Proof. Sufficiency. Suppose that (3.6) holds and x = (xk) ∈ l∞. We have

|τrn(Ax)| ≤
∑

k

∣

∣

∣
t(n, k, r)xk

∣

∣

∣

≤

(

∑

k

|t(n, k, r)|

)

(sup
k

|xk|).

Taking the supremum over n, r on both sides and using (3.6), we get Ax ∈ V ∞
σ (θ) for

x ∈ l∞.

Necessity. Let A ∈ (l∞, V ∞
σ (θ)). Write qn(x) = supr |τrn(Ax)|. It is easy to see that

qn is a continuous seminorm on l∞, since for x ∈ l∞

|qn(x)| ≤ M ‖x‖, M > 0.

Suppose (3.6) is not true. Then there exists x ∈ l∞ with supn qn(x) = ∞. By the
principle of condensation of singularities (cf. [9]), the set {x ∈ l∞ : supn qn(x) = ∞}
is of the second category in l∞, and hence non-empty, that is, there is x ∈ l∞ with
supn qn(x) = ∞. But this contradicts the fact that qn is pointwise bounded on l∞. Now
by the Banach-Steinhauss Theorem, there is a constant M such that

(3.7) qn(x) ≤ M ‖x‖1 .

Now define x = (xk) by

xk =

{

sgn t(n, k, r); for each r, n (1 ≤ k ≤ k0),

0; for k > k0.

Then x ∈ l∞. Applying this sequence to (3.7), we get (3.6).

This completes the proof of the theorem. �

Acknowledgment: The present research was supported by the Department of Science
and Technology, New Delhi, under grant number SR S4 MS:505 07.

References

[1] Aydin, B. Lacunary almost summability in certain linear topological spaces, Bull. Malays.
Math. Sci. Soc. (2), 217–223, 2004.
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