SOME MATRIX TRANSFORMATIONS ON SEQUENCE SPACES OF INVARIANT MEANS

Mursaleen*

Received $30: 01: 2009$: Accepted $05: 08: 2009$

Abstract

In this paper we define new sequence spaces $V_{\sigma}(\theta)$ and $V_{\sigma}^{\infty}(\theta)$ which are related to the concept of σ-mean and lacunary sequence $\theta=\left(k_{r}\right)$, and characterize the matrix classes $\left(l_{1}, V_{\sigma}^{\infty}(\theta)\right)$ and $\left(l_{\infty}, V_{\sigma}^{\infty}(\theta)\right)$.

Keywords: Lacunary sequence, Matrix transformation, Invariant mean, Almost lacunary convergence.
2000 AMS Classification: $40 \mathrm{C} 05,40 \mathrm{H} 05,46 \mathrm{~A} 45$.

1. Introduction and preliminaries

We shall write w for the set of all complex sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$. Let φ, l_{∞}, c and c_{0} denote the sets of all finite, bounded, convergent and null sequences respectively. We write $l_{p}:=\left\{x \in w: \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}<\infty\right\}$ for $1 \leq p<\infty$. By e and $e^{(n)}(n \in \mathbb{N})$, we denote the sequences such that $e_{k}=1$ for $k=0,1, \ldots, e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq n)$. For any sequence $x=\left(x_{k}\right)_{k=0}^{\infty}$, let $x^{[n]}=\sum_{k=0}^{n} x_{k} e^{(k)}$ be its n-section.

Note that c_{0}, c, and l_{∞} are Banach spaces with the sup-norm $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$, and $l^{p}(1 \leq p<\infty)$ are Banach spaces with the norm $\|x\|_{p}=\left(\sum\left|x_{k}\right|^{p}\right)^{1 / p}$ while φ is not a Banach space with respect to any norm.

A sequence $\left(b^{(n)}\right)_{n=0}^{\infty}$ in a linear metric space X is called a Schauder basis if for every $x \in X$ there is a unique sequence $\left(\beta_{n}\right)_{n=0}^{\infty}$ of scalars such that $x=\sum_{n=0}^{\infty} \beta_{n} b^{(n)}$. A sequence space X with a linear topology is called a K-space if each of the maps $p_{i}: X \rightarrow \mathbb{C}$ defined by $p_{i}(x)=x_{i}$ is continuous for all $i \in \mathbb{N}$. A K-space is called an $F K$-space if X is a complete linear metric space, and a $B K$-space is a normed $F K$-space. An $F K$-space $X \supset \varphi$ is said to have $A K$ if every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in X$ has a unique representation $x=\sum_{k=0}^{\infty} x_{k} e^{(k)}$, that is, $x=\lim _{n \rightarrow \infty} x^{[n]}$. We use here standard notations as in [7].

[^0]Let σ be a one-to-one mapping from the set \mathbb{N} of natural numbers into itself. A continuous linear functional ϕ on the space l_{∞} is said to be an invariant mean or a σ-mean if and only if
(i) $\phi(x) \geq 0$, when the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq 0$ for all k,
(ii) $\phi(e)=1$, where $e=(1,1,1, \ldots)$, and
(iii) $\phi(x)=\phi\left(\left(x_{\sigma(k)}\right)\right)$ for all $x \in \ell_{\infty}$.

Throughout this paper we assume the mapping σ has no finite orbits, that is, $\sigma^{p}(k) \neq k$ for all integers $k \geq 0$ and $p \geq 1$, where $\sigma^{p}(k)$ denotes the $p^{\text {th }}$ iterate of σ at k. Note that, a σ-mean extends the limit functional on the space c in the sense that $\phi(x)=\lim x$ for all $x \in c$, (cf. [6]). Consequently $c \subset V_{\sigma}$, the set of bounded sequences all of whose σ-means are equal. We say that a sequence $x=\left(x_{k}\right)$ is σ-convergent if and only if $x \in V_{\sigma}$, where

$$
\begin{aligned}
& V_{\sigma}:=\left\{x \in l_{\infty}: \lim _{p \rightarrow \infty} t_{p n}(x)=L \text { uniformly in } n ; L=\sigma-\lim x\right\}, \text { where } \\
& t_{p n}(x)=\frac{1}{p+1} \sum_{m=0}^{p} x_{\sigma^{m}(n)} .
\end{aligned}
$$

Using this concept, Schaefer [8] defined and characterized the σ-conservative, σ-regular and σ-coercive matrices. If σ is translation then the σ-mean is often called a Banach limit [2] and the set V_{σ} reduces to the set f of almost convergent sequences studied by Lorentz [5].

By a lacunary sequence we mean an increasing sequence $\theta=\left(k_{r}\right)$ of integers such that $k_{0}=0$ and $h_{r}:=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_{r}:=\left(k_{r-1}, k_{r}\right]$, and the ratio k_{r} / k_{r-1} will be abbreviated by q_{r} (see Fredman et al [4]). Recently, Aydin [1] defined the concept of almost lacunary convergence as follows: A bounded sequence $x=\left(x_{k}\right)$ is said to be almost lacunary convergent to the number l if and only if

$$
\lim _{r} \frac{1}{h_{r}} \sum_{j \in I_{r}} x_{j+n}=l, \text { uniformly in } n .
$$

Quite recently, this idea has been studied for double sequences by Çakan et al [3]. In this paper, we define new sequence spaces $V_{\sigma}(\theta)$ and $V_{\sigma}^{\infty}(\theta)$, which are related to the concept of σ-mean and the lacunary sequence $\theta=\left(k_{r}\right)$, and characterize the matrix classes $\left(l_{1}, V_{\sigma}^{\infty}(\theta)\right)$ and $\left(l_{\infty}, V_{\sigma}^{\infty}(\theta)\right)$.

2. σ-lacunary convergent sequences

We define the following:
2.1. Definition. A bounded sequence $x=\left(x_{k}\right)$ is said to be σ-lacunary convergent to the number l if and only if $\lim _{r} \frac{1}{h_{r}} \sum_{j \in I_{r}} x_{\sigma^{j}(n)}=l$, uniformly in n, and we let $V_{\sigma}(\theta)$ denote the set of all such sequences, i.e.

$$
V_{\sigma}(\theta):=\left\{x \in l_{\infty}: \lim _{r} \frac{1}{h_{r}} \sum_{j \in I_{r}} x_{\sigma^{j}(n)}=l, \text { uniformly in } n\right\} .
$$

Note that for $\sigma(n)=n+1, \sigma$-lacunary convergence is reduced to almost lacunary convergence. Results similar to that of Aydin [1] can easily be proved for the space $V_{\sigma}(\theta)$.
2.2. Definition. A bounded sequence $x=\left(x_{k}\right)$ is said to be σ-lacunary bounded if and only if $\sup _{r, n}\left|\frac{1}{h_{r}} \sum_{j \in I_{r}} x_{\sigma^{j}(n)}\right|<\infty$, and we let $V_{\sigma}^{\infty}(\theta)$ denote the set of all such sequences,
i.e.

$$
V_{\sigma}^{\infty}(\theta):=\left\{x \in l_{\infty}: \sup _{r, n}\left|\tau_{r n}(x)\right|<\infty\right\}
$$

where

$$
\tau_{r n}(x)=: \frac{1}{h_{r}} \sum_{j \in I_{r}} x_{\sigma^{j}(n)} .
$$

Note that $c \subset V_{\sigma}(\theta) \subset V_{\sigma}^{\infty}(\theta) \subset l_{\infty}$.
2.3. Theorem. The spaces $V_{\sigma}(\theta)$ and $V_{\sigma}^{\infty}(\theta)$ are both $B K$ spaces with the norm

$$
\begin{equation*}
\|x\|=\sup _{r, n}\left|\tau_{r n}(x)\right| . \tag{2.1}
\end{equation*}
$$

Proof. We consider the space $V_{\sigma}(\theta)$. The case $V_{\sigma}^{\infty}(\theta)$ can be proved similarly. Let $\left(x^{(i)}\right)=\left(\left(x_{k}^{(i)}\right)_{k=0}^{\infty}\right)$ be a Cauchy sequence in $V_{\sigma}(\theta)$, i.e. for $\varepsilon>0$, there is an $N>0$ such that $\left\|x^{(i)}-x^{(m)}\right\|=\sup _{r, n}\left|\tau_{r n}\left(x^{(i)}-x^{(m)}\right)\right|<\varepsilon$ for all $i, m \geq N$. Since $\left|x_{k}^{(i)}\right| \leq\left\|x^{(i)}\right\|$ for each i, and $V_{\sigma}(\theta) \subset l_{\infty}$, we have $\left|x^{(i)}-x^{(m)}\right|<\varepsilon$ for all $i, m \geq N$. So $\left(x^{(i)}\right)$ is a Cauchy sequence in \mathbb{R}, and hence convergent in \mathbb{R} (since \mathbb{R} is complete). That is, for each $k, x_{k}^{(i)} \rightarrow x_{k}$, say, as $i \rightarrow \infty$. Let $x=\left(x_{k}\right)_{k=0}^{\infty}$. Then by the definition of $V_{\sigma}(\theta)$, we have $\left\|x^{(i)}-x\right\|=\sup _{m, n}\left|\tau_{m n}\left(x^{(i)}-x\right)\right| \rightarrow 0,(i \rightarrow \infty)$, since $x_{n}^{(i)} \rightarrow x_{n}$ and $\tau_{r n}\left(x^{(i)}-x\right)=\frac{1}{h_{r}} \sum_{j \in I_{r}} T^{j}\left(x_{n}^{(i)}-x_{n}\right) \rightarrow 0$, where $T^{j} x_{n}$ means $x_{\sigma^{j}(n)}$.

Now, we have to show that $x \in V_{\sigma}(\theta)$. Since $\left(x^{(i)}\right)$ is a Cauchy sequence in $V_{\sigma}(\theta)$, we have that for a given $\varepsilon>0$ there is a positive integer N depending upon ε such that, for all $i, m \geq N$,

$$
\left\|x^{(i)}-x^{(m)}\right\|<\varepsilon .
$$

Hence by (2.1) we have

$$
\sup _{r, n}\left|\tau_{r n}\left(x^{(i)}-x^{(m)}\right)\right|<\varepsilon .
$$

This implies that

$$
\begin{equation*}
\left|\tau_{r n}\left(x^{(i)}-x^{(m)}\right)\right|<\varepsilon, \text { for each } r, n ; \tag{2.2}
\end{equation*}
$$

or
(2.3) $\left|L^{(i)}-L^{(m)}\right|<\varepsilon$,
where $L^{(i)}=\sigma-\lim x^{(i)}$. Let $L=\lim _{m \rightarrow \infty} L^{(m)}$. Then the σ-mean of x is $\phi(x)=$ $\lim _{i} \phi\left(x^{(i)}\right.$) (since $x=\lim _{i} x^{(i)}$ and ϕ is continuous and linear). Further $\lim _{i} \phi\left(x^{(i)}\right)=$ $\lim _{i} L^{(i)}=L\left(\right.$ since $\phi\left(x^{(i)}\right)$ means σ - $\left.\lim x^{(i)}\right)$. Now letting $m \rightarrow \infty$ in (2.2) and (2.3), we get

$$
\begin{equation*}
\left|\tau_{r n}\left(x^{(i)}-x\right)\right|<\varepsilon, \text { for each } r, n ; \quad\left(\text { since } x=\lim _{m} x^{(m)}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|L^{(i)}-L\right|<\varepsilon,\left(\text { since } \lim _{m} L^{(m)}=L\right) \tag{2.5}
\end{equation*}
$$

for $i>N$. Now fix i in the above inequalities. Since $x^{(i)} \in V_{\sigma}(\theta)$ for fixed i, we obtain

$$
\lim _{r} \tau_{r n}\left(x^{(i)}\right)=L^{(i)}, \text { uniformly in } n
$$

(since $L^{(i)}=\sigma$ - $\lim x^{(i)}=\lim _{r} \tau_{r n}\left(x^{(i)}\right)$ uniformly in n). Hence, for a given ε, there exists a positive integer r_{0} (depending upon i and ε but not on n) such that

$$
\begin{equation*}
\left|\tau_{r n}\left(x^{(i)}\right)-L^{(i)}\right|<\varepsilon,\left(\text { since } x=\lim _{m} x^{(m)}\right) \tag{2.6}
\end{equation*}
$$

for $r \geq r_{0}$ and for all n. Now by (2.4), (2.5) and (2.6), we get

$$
\begin{aligned}
\left|\tau_{r n}(x)-L\right| & \leq\left|\tau_{r n}(x)-\tau_{r n}\left(x^{(i)}\right)+\tau_{r n}\left(x^{(i)}\right)-L^{(i)}+L^{(i)}-L\right| \\
& \leq\left|\tau_{r n}(x)-\tau_{r n}\left(x^{(i)}\right)\right|+\left|\tau_{r n}\left(x^{(i)}\right)-L^{(i)}\right|+\left|L^{(i)}-L\right| \\
& <\varepsilon+\varepsilon+\varepsilon=3 \varepsilon,
\end{aligned}
$$

for $r \geq r_{0}$ and for all n. Then $x \in V_{\sigma}(\theta)$, which proves the completeness of $V_{\sigma}(\theta)$.
Now, let $\left\|x^{(m)}-x\right\| \rightarrow 0$ as $m \rightarrow \infty$. Then, for given $\varepsilon>0$, there is $m_{0} \in \mathbb{N}$ such that

$$
\left\|x^{(m)}-x\right\|<\varepsilon \text { for all } m \geq m_{0}
$$

which implies

$$
\sup _{r, n}\left|\tau_{r n}\left(x^{(m)}-x\right)\right|<\varepsilon \text { for all } m \geq m_{0}
$$

and so that

$$
\left|L^{(m)}-L\right|<\varepsilon \text { for all } m \geq m_{0}, \text { as above in (2.5). }
$$

Hence we easily get

$$
\left|x_{k}^{(m)}-x_{k}\right|<\varepsilon \text { for all } m \geq m_{0}, \text { and for all } k,
$$

that is $\left|x_{k}^{(m)}-x_{k}\right| \rightarrow 0$ as $m \rightarrow \infty$, and this proves the continuity of the coordinate projection. Hence $V_{\sigma}(\theta)$ is a $B K$ space.

This completes the proof of the theorem.

3. Matrix transformations into $V_{\sigma}^{\infty}(\theta)$

Let X and Y be two sequence spaces and $A=\left(a_{n k}\right)_{n ; k=1}^{\infty}$ an infinite matrix of real or complex numbers. We write $A x=\left(A_{n}(x)\right), A_{n}(x)=\sum_{k} a_{n k} x_{k}$ provided that the series on the right converges for each n. If $x=\left(x_{k}\right) \in X$ implies that $A x \in Y$, then we say that A defines a matrix transformation from X into Y and we denote the class of such matrices by (X, Y).

In this section, we characterize the matrix classes $\left(l_{1}, V_{\sigma}^{\infty}(\theta)\right)$ and $\left(l_{\infty}, V_{\sigma}^{\infty}(\theta)\right)$.
Let $A x$ be defined. Then, for all r, n, we write

$$
\tau_{r n}(A x)=\sum_{k=1}^{\infty} t(n, k, r) x_{k},
$$

where

$$
t(n, k, r)=\frac{1}{h_{r}} \sum_{j \in I_{r}} a\left(\sigma^{j}(n), k\right)
$$

and $a(n, k)$ denotes the element $a_{n k}$ of the matrix A.
3.1. Theorem. $A \in\left(l_{1}, V_{\sigma}^{\infty}(\theta)\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k, r}|t(n, k, r)|<\infty \tag{3.1}
\end{equation*}
$$

Proof. Sufficiency. Suppose that $x=\left(x_{k}\right) \in l_{1}$. We have

$$
\begin{aligned}
\left|\tau_{r n}(A x)\right| & \leq \sum_{k}\left|t(n, k, r) x_{k}\right| \\
& \leq\left(\sup _{k}|t(n, k, r)|\right)\left(\sum_{k}\left|x_{k}\right|\right) .
\end{aligned}
$$

Taking the supremum over n, r on both sides and using (3.1), we get $A x \in V_{\sigma}^{\infty}(\theta)$ for $x \in l_{1}$.

Necessity. Let us define a continuous linear functional $Q_{r n}$ on l_{1} by

$$
Q_{r n}(x)=\tau_{r n}(A x)=\sum_{k} t(n, k, r) x_{k} .
$$

Now

$$
\begin{align*}
& \left|Q_{r n}(x)\right| \leq \sup _{k}\left|t(n, k, r)\|\mid x\|_{1},\right. \tag{3.2}\\
& \left\|Q_{r n}\right\|=\sup _{\|x\|_{1}=1} \frac{\left|Q_{r n}(x)\right|}{\|x\|_{1}}
\end{align*}
$$

and hence
(3.3) $\quad\left\|Q_{r n}\right\| \leq \sup _{k}|t(n, k, r)|$,
by (3.2). For any fixed r and $n \in \mathbb{N}$, define $x=\left(x_{i}\right)$ by

$$
x_{i}= \begin{cases}\operatorname{sgn} t(n, k, r) ; & \text { for } i=k \tag{3.4}\\ 0 ; & \text { for } i \neq k ;\end{cases}
$$

Then $\|x\|_{1}=1$, and

$$
\begin{aligned}
\left|Q_{r n}(x)\right| & =\left|t(n, k, r) x_{k}\right| \\
& =|t(n, k, r)| .
\end{aligned}
$$

Further,

$$
\begin{aligned}
\left\|Q_{r n}\right\| & =\sup _{\|x\|_{1}=1} \frac{\left\|Q_{r n}(x)\right\|}{\|x\|_{1}} \\
& =\left\|Q_{r n}(x)\right\|, \text { since }\|x\|_{1}=1 \\
& =\sup _{r, n}\left|Q_{r n}(x)\right| \geq\left|Q_{r n}(x)\right| \\
& =\left|\sum_{i} t(n, i, r) x_{i}\right| \\
& =|t(n, k, r)|,
\end{aligned}
$$

for x_{i} as defined in (3.4), hence
(3.5) $\quad\left\|Q_{r n}\right\| \geq \sup _{k}|t(n, k, r)|$.

Now, by (3.3) and (3.5),

$$
\left\|Q_{r n}\right\|=\sup _{k}|t(n, k, r)| .
$$

Therefore, by the Banach-Steinhauss Theorem

$$
\sup _{r, n}\left\|Q_{r n}\right\|=\sup _{r, n, k}|t(n, k, r)|<\infty
$$

since $A \in\left(l_{1}, V_{\sigma}^{\infty}(\theta)\right)$ gives

$$
\sup _{r, n}\left|Q_{r n}(x)\right|=\sup _{r, n}\left|\sum_{k} t(n, k, r) x_{k}\right|<\infty .
$$

This completes the proof of the theorem.
3.2. Theorem. $A \in\left(l_{\infty}, V_{\sigma}^{\infty}(\theta)\right)$ if and only if

$$
\begin{equation*}
\sup _{n, r} \sum_{k}|t(n, k, r)|<\infty . \tag{3.6}
\end{equation*}
$$

Proof. Sufficiency. Suppose that (3.6) holds and $x=\left(x_{k}\right) \in l_{\infty}$. We have

$$
\begin{aligned}
\left|\tau_{r n}(A x)\right| & \leq \sum_{k}\left|t(n, k, r) x_{k}\right| \\
& \leq\left(\sum_{k}|t(n, k, r)|\right)\left(\sup _{k}\left|x_{k}\right|\right) .
\end{aligned}
$$

Taking the supremum over n, r on both sides and using (3.6), we get $A x \in V_{\sigma}^{\infty}(\theta)$ for $x \in l_{\infty}$.

Necessity. Let $A \in\left(l_{\infty}, V_{\sigma}^{\infty}(\theta)\right)$. Write $q_{n}(x)=\sup _{r}\left|\tau_{r n}(A x)\right|$. It is easy to see that q_{n} is a continuous seminorm on l_{∞}, since for $x \in l_{\infty}$

$$
\left|q_{n}(x)\right| \leq M\|x\|, M>0
$$

Suppose (3.6) is not true. Then there exists $x \in l_{\infty}$ with $\sup _{n} q_{n}(x)=\infty$. By the principle of condensation of singularities (cf. [9]), the set $\left\{x \in l_{\infty}: \sup _{n} q_{n}(x)=\infty\right\}$ is of the second category in l_{∞}, and hence non-empty, that is, there is $x \in l_{\infty}$ with $\sup _{n} q_{n}(x)=\infty$. But this contradicts the fact that q_{n} is pointwise bounded on l_{∞}. Now by the Banach-Steinhauss Theorem, there is a constant M such that
(3.7) $\quad q_{n}(x) \leq M\|x\|_{1}$.

Now define $x=\left(x_{k}\right)$ by

$$
x_{k}= \begin{cases}\operatorname{sgn} t(n, k, r) ; & \text { for each } r, n\left(1 \leq k \leq k_{0}\right) \\ 0 ; & \text { for } k>k_{0}\end{cases}
$$

Then $x \in l_{\infty}$. Applying this sequence to (3.7), we get (3.6).
This completes the proof of the theorem.
Acknowledgment: The present research was supported by the Department of Science and Technology, New Delhi, under grant number SR S4 MS:505 07.

References

[1] Aydin, B. Lacunary almost summability in certain linear topological spaces, Bull. Malays. Math. Sci. Soc. (2), 217-223, 2004.
[2] Banach, S. Théorie des operations linéaires (Warsaw, 1932).
[3] Çakan, C., Altay, B. and Çoşkun, H. Double lacunary density and lacunary statistical convergence of double sequences, Studia Sci. Math. Hung. DOI:10.1556/SScMath.2009.1110.
[4] Freedman, A. R., Sember, J. J. and Raphael, M. Some Cesàro type summability spaces, Proc. London Math. Soc. 37, 508-520, 1978.
[5] Lorentz, G. G. A contribution to the theory of divergent sequences, Acta Math. 80,167-190, 1948.
[6] Mursaleen, Some new invariant matrix methods of summability, Quart. J. Math. Oxford $34(2), 77-86,1983$.
[7] Mursaleen, Elements of Metric Spaces (Anamaya Publ., New Delhi, 2005).
[8] Schaefer, P. Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36, 104- -110.
[9] Yosida, Y. Functional Analysis (Springer-Verlag, Berlin Heidelberg, New York, 1966).

[^0]: *Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India E-mail: mursaleenm@gmail.com

