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Abstract

In this paper we extend and generalize a theorem of M. R. Singh, L. S.
Singh and P.P. Murthy (Common fixed points of set valued mappings,
Int. J. Math. Sci., 25 (6), 411–415, 2001) in a 2-metric space with a
Gregus̆ type condition, and give some common fixed point theorems of
set-valued maps in 2-metric spaces.
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1. Introduction

The concept of 2-metric spaces was introduced and studied initially by Gahler [7, 8, 9].
After Gahler there was a flood of new results obtained by many authors in these spaces
[3, 11, 12, 13, 15]. Military applications of fixed point theory in 2-metric spaces can be
found, as well as applications in Medicine and Economics [1, 2, 18].

Dhage [4] introduced the concept of D-metric space as follows:

Let X be a non-empty set and R
+ the set of non-negative real numbers. If the real-

valued mapping D : X × X × X → R
+ satisfies the following properties:

(D1) D(x1, x2, x3) ≥ 0 for every x1, x2, x3 ∈ X and D(x1, x2, x3) = 0 if and only if
x1 = x2 = x3;

(D2) D(x1, x2, x3) = D(x1, x3, x2) = D(x3, x2, x1) = D(x2, x1, x3) = D(x3, x1, x2) =
D(x2, x3, x1) (symmetric) for all x1, x2, x3 ∈ X;
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(D3) D(x1, x2, x3) ≤ d(x1, x2, u) + d(x1, u, x3) + d(u, x2, x3) for all x1, x2, x3, u ∈ X

(rectangle inequality),

then the pair (X, D) is called a D-metric space.
Gahler defined a 2-metric space as follows:

A 2-metric on a set X with at least three points is a non-negative real-valued mapping
d: X × X × X → R

+ satisfying the following properties:

(G1) To each pair of points a, b with a 6= b in X there is a point c ∈ X such that
d(a, b, c) 6= 0;

(G2) d(a, b, c) = 0, if at least two of the points are equal;
(G3) d(a, b, c) = d(b, c, a) = d(a, c, b);
(G4) d(a, b, c) ≤ d(a, b, u) + d(a, u, c) + d(u, b, c) for all a, b, c, u ∈ X.

The pair (X, d) is then called a 2-metric space.

Geometrically the value of a 2-metric d(x, y, c) represents the area of a triangle with
vertices x, y and c, whereas, the value of a D-metric D(x, y, c) represents the perimeter
of the triangle with vertices x, y and c.

Throughout this note (X, D) stands for a D-metric space, (X, d) is a 2-metric space
and B(X) the class of all non-empty bounded subsets of X.

Let A, B, C be non-empty sets in B(X). We define

δ(A,B, C) = sup{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

D(A, B, C) = inf{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

If A is a singleton set, then δ(A, B, C) = δ(a, B, C). In case B and C are also singleton
sets, then

δ(A, B, C) = D(A, B, C) = d(a, b, c)

for every A = {a}, B = {b}, C = {c}. From the definition of δ we can say that,

δ(A, B, C) = δ(A, C, B) = δ(C,A, B) = δ(B, C, A) = δ(C, B,A) = δ(B, A, C) ≥ 0.

Also,

δ(A, B, C) ≤ δ(A, B, E) = δ(A,E, C) = δ(E, B, C);

for all A, B, C, E ∈ B(X). Let us note that δ(A, B, C) = 0 if at least two of A,B and C

are equal singleton sets.

We need the following definitions and lemmas for our main theorems:

1.1. Definition. A sequence {An}
∞

n=1 of subsets of X is said to be convergent to a
subset A of X if;

i. Given a ∈ A, there is a sequence {an} of X such that an ∈ An for n = 1, 2, 3, . . .

and limn→∞ d(an, a, c) = 0.
ii. Given ǫ > 0, there exists a positive integer n0 such that An ⊆ Aǫ for every

n > n0, where Aǫ is the union of all open spheres with centers in A and radius
ǫ.

1.2. Definition. [1] Let G : X → X and F : X → B(X). Then the pair {G, F} is said
to be weakly commuting if GFx ∈ B(X) and

δ(FGx, GFx,C) ≤ max{δ(Gx, Fx, C), δ(GFx, GFx,C)}

for every x ∈ X and C ∈ B(X).
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1.3. Definition. [1] Let G : X → X and F : X → B(X). Then the pair {G, F} is said
to be R-weakly commuting if

δ(FGx, GFx,C) ≤ R · max{δ(Gx, Fx, C), δ(GFx,GFx, C)}

for every x ∈ X, C ∈ B(X) and R > 0.

1.4. Remark. If F is a single valued function, then Definitions 1.2 and 1.3 reduce to
the following:

δ(FGx, GFx,C) = d(FGx, GFx,C) ≤ d(Gx, Fx,C) = δ(Gx,Fx, C))

and

δ(FGx, GFx,C) = d(FGx, GFx,C) ≤ R.d(Gx, Fx,C) = R · δ(Gx,Fx, C),

respectively.

In recent years, common fixed points of Gregus̆ [10] type have been proved by Divic-
caro, Fisher and Sessa [5], Fisher and Sessa [6], Mukherjee and Verma [14], Murthy, Cho
and Fisher [16], M. R. Singh, L. S. Singh and P.P. Murthy [19] under weaker conditions.

In this paper, we have extended and generalized a theorem of M.R. Singh, L. S. Singh
and P.P. Murthy [19] in a 2-metric space.

2. Main results

Let S and T be mappings of 2-metric space (X, d) into itself and A, B : X → B(X)
are two set valued mappings satisfying the following conditions:

⋃

A(X) ⊂ T (X) and
⋃

B(X) ⊂ S(X);(2.1)

For every x, y ∈ X, C ∈ B(X) and p > 0,(2.2)

δ
p(Ax,By, C) ≤ ϕ(a · δp(Sx,Ty,C) + (1 − a) max{δp(Ax,Sx, C), δp(By,Ty, C),

b · Dp(Sx, By,C) + c · Dp(Ty,Ax,C)})

where a ∈ (0, 1) and ϕ : [0,∞) → [0,∞) is

(i) non-increasing;
(ii) upper-semi continuous,
(iii) satisfies ϕ(t) < t for every t > 0.

Let x0 be an arbitrary point of X. Since
⋃

A(X) ⊂ T (X), then there exists a point
x1 ∈ X such that Tx1 ∈ Ax0 = y0. Again, since

⋃

B(X) ⊂ S(X), for the point x1 ∈ X

we can find a point x2 ∈ X such that Sx1 ∈ Bx0 = y1, and so on. Inductively, we can
define a sequence {xn} in X such that

(2.3)

{

Txn+1 ∈ Axn = yn, when n is even

Sxn+1 ∈ Bxn = yn, when n is odd

Now we are ready to prove the following lemma for our theorem:

2.1. Lemma. Let (X, d) be a 2-metric space. Let S, T be self maps of X and A, B :
X → B(X) satisfying the conditions (2.1) and (2.2). Then for every n ∈ N we have

lim
n→∞

δ(yn, yn+1, yn+2) = 0.
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Proof. Since

δ(y2n+2, y2n+1, y2n) = δ(Ax2n+2, Bx2n+1, y2n)

we have

(2.4)

δ(y2n+2, y2n+1, y2n)

≤ [ϕ(a · δp(Sx2n+2, Tx2n+1, y2n)

+ (1 − a) · max{δp(Sx2n+2, Ax2n+2, y2n), δp(Tx2n+2, Bx2n+1, y2n),

b · Dp(Sx2n+2, Bx2n+1, y2n) + c.D
p(Tx2n+1, Ax2n+2, y2n)})]

1

p ,

≤ [ϕ(a · δp(y2n+1, y2n, y2n) + (1 − a) · max{δp(y2n+1, y2n+2, y2n),

δ
p(y2n+1, y2n+1, y2n), b · δp(y2n+1, y2n+1, y2n)

+ c · δp(y2n, y2n+2, y2n)})]
1

p ,

= [ϕ((1 − a) · max{δp(y2n+1, y2n+2, y2n)})]
1

p

< [ϕ(δp(y2n+1, y2n+2, y2n))]
1

p , if [ϕ(δp(y2n+1, y2n+2, y2n))]
1

p 6= 0.

Again we consider,

δ(y2n+3, y2n+2, y2n+1)

= δ(Bx2n+3, Ax2n+2, y2n+1)

≤ [ ϕ(a · δp(Sx2n+2, Tx2n+3, y2n+1)

+ (1 − a) · max{δp(Sx2n+2, Ax2n+3, y2n+1), δ
p(Tx2n+3, Bx2n+3, y2n+1),

b · Dp(Sx2n+2, Bx2n+1, y2n) + c · Dp(Tx2n+1, Ax2n+2, y2n)})]
1

p ,

≤ [ ϕ(a · δp(y2n+1, y2n+2, y2n+1) + (1 − a) · max{δp(y2n+1, y2n+2, y2n+1),

δ
p(y2n+2, y2n+3, y2n+1), b · D

p(y2n+1, y2n+2, y2n+1)

+ c · Dp(y2n+2, y2n+3, y2n+1)})]
1

p

≤ [ϕ((1 − a) · max{δp(y2n+2, y2n+3, y2n+1), c · D
p(y2n+2, y2n+3, y2n+1)})]

1

p

= [ϕ((1 − a)(δp(y2n+2, y2n+3, y2n+1)))]
1

p

≤ [ϕ(δp(y2n+2, y2n+3, y2n+1))]
1

p ,

(since 0 < a < 1). By the definition of ϕ, this implies

δ(y2n+1, y2n+2, y2n) → 0.

Hence we conclude that

(2.5) lim
n→∞

δ(yn, yn+1, yn+2) = 0.

�

2.2. Lemma. [1] If {An} and {Bn} are sequences in B(X) converging to A and B in
B(X) respectively, then the sequence {δ(An, Bn, C)} converges to {δ(A, B, C)}.

2.3. Theorem. Let S and T be mappings of a 2-metric space (X, d) into itself, and
A,B : X → B(X) two set-valued mappings satisfying the conditions (2.1), (2.2), (2.3),
and the following:

S(X) or T (X) is a complete subspace of X;(2.6)

The pairs {A, S} and {B, T} are R-weakly commuting,(2.7)

then A, B, S and T have a unique common fixed point in X.
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Proof. From Lemma 2.1, the sequence {yn} is a Cauchy sequence. Assume T (X) is a
complete subspace of X. Since the sequence {xn} defined by (2.3) is a subsequence,
then {Tx2n+1} is Cauchy and converges to a point z in T (X). Since T (X) is a complete
subspace of X, for some u ∈ X, Tx2n+1 → z = T (u). By using (2.2), we have

δ(Sx2n+2, Tx2n+1, C) ≤ δ(y2n+1, y2n, C).

Letting n → ∞,

lim
n→∞

δ(Sx2n+2, Tx2n+1, C) ≤ lim
n→∞

δ(y2n+1, y2n, C) = 0.

The above implies

lim
n→∞

δ(Sx2n+2, Tx2n+1, C) = 0.

Therefore, we get

lim
n→∞

Sx2n+2 = lim
n→∞

Tx2n+1 = z.

We can also show that

lim
n→∞

δ(Ax2n+2, z, C) = 0.

Now, we shall show that u is a coincidence point of B and T .

For n = 0, 1, 2, . . . and using (2.2) we have

δ
p(Ax2n, Bu, C) ≤ ϕ(a · δp(Sx2n, Tu, C) + (1 − a)max{δp(Sx2n, Ax2n, C),

δ
p(Tu, Bu, C), b · Dp(Sx2n, Tu, C) + c · Dp(Tu,Ax2n, C)}).

Now letting n → ∞, the above inequality implies that

lim
n→∞

δ
p(Ax2n, Bu, C) ≤ ϕ((1 − a)max{δp(Sx2n, Ax2n, C),

δ
p(Tu, Bu, C), b.Dp(z, Bu, C)})

and so

lim
n→∞

δ
p(Ax2n, Bu, C) ≤ ϕ(δp(Tu, Bu, C)) < δ

p(z, Bu, C),

which is a contradiction. Thus {z} = Bu = {Tu}.

Since
⋃

B(X) ⊂ S(X), for some v ∈ X we have {Sv} = Bu = {Tu}.

If Av 6= Bu, then we have from (2.2),

δ
p(Av, Bu, C) ≤ ϕ(a · δp(Sv, Tu, C) + (1 − a)max{δp(Av, Sv, C), δp(Bu, Tu, C),

b · Dp(Sv, Bu, C) + c · Dp(Tu,Av, C)}),

which implies

δ
p(Av, Bu, C) ≤ ϕ(a · δp(Sv, Tu, C) + (1 − a)max{δp(Av, Sv, C), δp(Bu, Tu, C),

b · δp(Sv, Bu, C) + c · δp(Tu, Av, C)}),

or equivalently

δ
p(Av, Bu, C) ≤ ϕ((1 − a)max{δp(Av, Sv, C), c · δp(Tu, Av,C)}).

Since 0 ≤ b + c ≤ 1

2
, 0 < α < 1, b, c ≥ 0, we have

δ
p(Av, Bu, C) < ϕ((1 − a) · δp(Av,Sv, C)),

and

δ
p(Av, Bu, C) < δ

p(Av,Sv, C))

which implies {Sv} = Av. Therefore, Av = {Sv} = {z} = {Tu} = Bu.
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Since Av = {Sv} = {z} and {A, S} are R-weakly commuting maps, then

δ(ASv, SAv, C) < R · max{d(Av, Sv, C), δ(SAv, SAv, C)),

which implies that

ASv = SAv =⇒ Az = {Sz}.

Again, using (2.2),

δ
p(Az, z, C) ≤ δ

p(Az, Bu, C)

≤ ϕ(a · δp(Sz, Tu,C) + (1 − a) max{δp(Az, Sz, C), δp(Bu, Tu, C),

b · Dp(Sz, Bu, C) + c · Dp(Tu, Az,C)}),

or equivalently

δ
p(Az, z, C) ≤ ϕ(a · δp(Sz, Tu,C) + (1 − a) max{δp(Az, Sz, C), δp(Bu, Tu, C),

b · Dp(Sz, Bu, C) + c · Dp(Tu, Az,C)})

or equivalently

δ
p(Az, z, C) ≤ ϕ(a · δp(Az, z, C) + (1 − a)max{0, 0, b · δp(Az, z, C)

+ c · δp(z, Az, C)})

≤ ϕ(δp(Az, z, C))

≤ δ
p(Az, z, C),

which is a contradiction. Thus Az = {Sz} = {z}, and z is a common fixed point of A

and S.

Similarly, we can show that {z} is a common fixed point of B and T by assuming
{B, T} is a pair of R-weakly commuting maps. Hence, Az = Bz = {z} = {Sz} = {Tz}.

Now we shall prove that {z} is a unique fixed point of A, B, S, T .

Let z∗ be a second fixed point of A, B, S and T . Then from (2.2) we have,

d
p(z, z

∗

, C) ≤ δ
p(Az,Bz

∗

, C)

≤ ϕ(a · δp(Sz, T z
∗

, C) + (1 − a) max{δp(Az, Sz, C)),

δ
p(Bz

∗

, T z
∗

, C), b · Dp(Sz, Bz
∗

, C) + c · Dp(Tz
∗

, Az,C)})

≤ ϕ(a · δp(Sz, T z
∗

, C) + (1 − a) · max{δp(Az,Sz, C),

δ
p(Bz

∗

, T z
∗

, C), b · δp(Sz, Bz
∗

, C) + c · δp(Tz
∗

, Az, C)})

≤ ϕ(a · δp(z, z
∗

, C) + (1 − a) · δp(z, z
∗

, C))

≤ ϕ(δp(z, z
∗

, C))

< d
p(z, z

∗

, C),

which is a contradiction. Hence we get z = z∗.

That means that z is a unique common fixed point of A, B, S and T in X, which
completes the proof. �
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