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Abstract

In this paper, some additional concepts relating to subtraction alge-
bras, the so called subalgebra, bounded subtraction algebra and unions
of subtraction algebras, are introduced, and some properties are inves-
tigated.
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1. Introduction

B. M. Schein [7] considered systems of the form (®;o0,\), where ® is a set of functions
closed under the composition ”o” of functions (and hence (®; o) is a function semigroup),
and set theoretic subtraction “\” (and hence (®; ) is a subtraction algebra in the sense of
[1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka [8] discussed a problem proposed by B. M. Schein con-
cerning the structure of multiplication in a subtraction semigroup. He solved the problem
for subtraction algebras of a special type, called atomic subtraction algebras. Y.B. Jun,
H.S. Kim and E. H. Roh [2] introduced the notion of ideals in subtraction algebras and
discussed characterization of ideals. In [3], Y.B. Jun and H.S. Kim established the ideal
generated by a set, and discussed related results. In [4], Y.B. Jun, Y.H. Kim and K. A.
Oh introduced the notion of complicated subtraction algebras and investigated some re-
lated properties. In [6], K.J. Lee, Y.B. Jun, and Y.H. Kim introduced the notion of
weak subtraction algebras and provided a method to make a weak subtraction algebra
from a quasi-ordered set.

In this paper, some additional concepts concerning subtraction algebras, so called
subalgebras, bounded subtraction algebras and unions of subtraction algebras, are intro-
duced, and some properties are investigated.
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2. Preliminaries

An algebra (X;—) with a single binary operation “—” is called a subtraction algebra

if for all z,y, 2 € X the following conditions hold:

(S1) = —(y — ) = =,

(52) 2 —(z—y)=y—(y — =),

(83) (z—y)—2z=(r—2) -y
The subtraction determines an order relation on X: a < b <= a —b = 0, where
0 =a — a is an element that does not depend on the choice of a € X.

The ordered set (X;<) is a semi-Boolean algebra in the sense of [1], that is, it is
a meet semilattice with zero 0 in which every interval [0,a] is a Boolean algebra with
respect to the induced order. Here a Ab = a — (a — b) and the complement of an element
be[0,a] isa—b.

In a subtraction algebra, the following are true [2, 5]:

(al) (z—y)—y=z—y,

(a2) x—0=zand 0 —x =0,

(a3) (z—y) -z =0,

(ad) = —(z —y) <,

(a5) (z—y)—(y—a)=z—y,

(a6) z —(z —(z —y)) =z —y,

@7 (z—y -(z-y <z—2z

(a8) z <y if and only if z = y — w for some w € X,
(a9) x <y impliesz —z2<y—zand z—y < z—z for all z € X,
(al0) z,y < z implies z —y =z A (2 — y),

(all) (xAy)—(xzAz)<zA(y—=2),

(al2) (z—y)—z=(z-2) - (y - 2).
2.1. Definition. [2] A nonempty subset A of a subtraction algebra X is called an ideal
of X if it satisfies
(1) 0€ A4,
(2) VzeX)VyeA)(z—ye A = xz€A).
2.2. Lemma. [5] An ideal A of a subtraction algebra X has the following property:
VzeX)Vye A)(z <y = z € A).

2.3. Definition. [4] Let X be a subtraction algebra. For any a,b € X, let G(a,b) =
{z € X : x —a <b}. Then X is said to be complicated if for any a,b € X the set G(a,b)
has a greatest element.

Note that 0,a,b € G(a,b). The greatest element of G(a,b) is denoted by a + b.

3. Results

3.1. Proposition. Let X be a subtraction algebra and I a subset of X. Then I is an
ideal of X if and only if G(x,y) C I for all xz,y € I.

Proof. =>. Let I be an ideal and z,y any elements of I. For any z € G(z,y), we have
z —x <vy. Hence z — z € I from Lemma 2.2. Then we obtain z € I since I is an ideal.

—. If G(z,y) C I, for all z,y € I we have 0 € I since 0 € G(z,y). For any b € T
and a € X, let a —b € I. Then G(a — b,b) C I. Hence, since a — (a —b) < b from (ad),
we obtain a € G(a — b,b) C I. Hence, a € I. O
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3.2. Definition. Let X be a subtraction algebra and Y a nonempty subset of X. Then
Y is called a subalgebra of X if x —y € Y whenever z,y € Y.

3.3. Theorem. Let X be a subtraction algebra and Y a subalgebra of X. Then the
following conditions hold:
(a) 0€Y,
(b) Y is a subtraction algebra,
(c) {0} is a subalgebra of X,
(d) X is a subalgebra of X,
(e) For any z,y in X, G(x,y) is a subalgebra of X.
)

(f) Any ideal I of X is a subtraction algebra.
Proof. (a)-(d) follow easily from the definition.

(e) For a,b € G(x,y), we have a —z < y and b — z < y. Then, from (al2) and (al0)
and the fact that u Av =v Au < u,v, we obtain

(a=b)—z=(a—z)— (b—2x)
=@-2)A(y—(b-x)

<y—(b—x)
<y.
Hence a — b € G(z,v).
(f) For any z,y € I, from (a3) we have (zx —y) —x=0¢€ I, thenz —y € I. O

3.4. Definition. Let X be a subtraction algebra and x € X. Then, the set A(z) =
{y € X : y < z} is called the initial section of z.

3.5. Theorem. In a subtraction algebra X, A(z) N A(y) = A(z Ay) for all z,y € X.
Proof. Let z € A(z) N A(y). Then we have z < z and z < y. From (a9) we obtain
B1) z-(@-y<z—(r—y)

and since z —y <z — 2z,

32) z—(z—2)<z—(z—y).

From (3.1), (3.2) and (S1),weget z=z—(z—2)<z—(z—y)<z—(x—y) =z Ay.
Hence z € A(z A y).

Now let z € A(z ANy). We have z <z — (x — y) < y from (ad), and we get z € A(y).
Using (S2) and (ad), we obtain z <z — (x —y) =y — (y —z) < z. Hence z € A(y). So
z € A(z) N A(y). O

3.6. Definition. Let X be a subtraction algebra. If there is an element 1 of X satisfying
x <1 for all z in X, then X is called a bounded subtraction algebra.

In a bounded subtraction algebra X, we denote 1 — x by «’

3.7. Example. [4] Let X = {0, a, b, c} be a subtraction algebra with the following Cayley
table:

—|Oa b ¢
010 0 0 O
ala 0 a 0
b|b b 0 O
cle b a 0

Then for all z € X we have z — ¢ = 0. Hence X is a bounded subtraction algebra.
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3.8. Theorem. In a bounded subtraction algebra, the following properties hold:

)

)

) x <y implies y <
v) ¥—y =y -z,

yr—a =z, ¥—x =01

) xANZ’=0,

)

(iii) From (a7) and (S3), we have
0=(-y) -y -—(@-2)=((z-y) - (z-2) - (z—y).
Hence we have ((z—y) — (z—2)) < (z—y). So, we obtain 2'—y'= (1—z)— (1—y) < y—2.
iv) If 7 < y then, with (a9), we get 1 —y < 1 — a.
v)a-y=(1-2)-y=(1-y)—z=y-a, (from (83)).

(
(
(vijz—2=z—(1-2)=z,and '~ 2= (1 —2) —z =1 -2 = (from (S1)).
(vii) s AT =2~ (z—2) =2 — 2 =0.

(

vill)) ((2))y=1-(1-(1—2)) =1—2 =2, (from (ab)). O

3.9. Proposition. If X is a bounded subtraction algebra, then for allxz € X the following
hold:

zr+1l=1+z=1andz+2'=1.

Proof. Since x4+ 1 € X and X is bounded, we have x + 1 < 1. Also, for all y € X, since
y—x <1 we have y < z+ 1. Then, we obtain 1 < x4+ 1. Hence x + 1 = 1. Furthermore,
sincey<l,wegety—x<l—zx=c,or y<z+zforal ye€ X. Sowehave 1 <z 4]
and therefore x + "= 1. O

Let S(X) = {x € X : ('Y= z}, where X is a bounded subtraction algebra. Since
(I'Y=0=1and (0))=1=0, we have 0,1 € S(X).

3.10. Theorem. If X is a bounded subtraction algebra, then
=y —a
for all z,y € S(X).

Proof. Using Theorem 3.3 (v), we have z — = (&) —y = (y)—a’'=y — 2" O

3.11. Theorem. If X is a bounded subtraction algebra, then S(X) is a bounded sub-
algebra of X.
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Proof. We know that 1 € S(X). Let z,y € S(X). We need to show that z —y € S(X),
that is, ((z —y))'= = —y. From Theorem 3.8 (ii), we have ((z —y)) <  —y. Also we get

(z—y) = ((z—y))=(z—((z —y))) —y, (using (53))

(x —y)—a) —y, (from Theorem 3.10)
(z —y)—y) — @, (using (S3))

y— (x—y)) — 2, (from Theorem 3.8 (v))
Y —a) = (z—y), (using (S3))

Y —vy)— (x —y), (from Theorem 3.10)
z—y)— (z—y), (since z € S(X))

Then we obtain z — y € S(X), and hence S(X) is a bounded subalgebra of X. O

3.12. Theorem. Suppose X is a bounded complicated subtraction algebra. Then S(X)
is a complicated subalgebra.

Proof. For all a,b € S(X), it suffices to show that a +b € S(X). We know from [4,
Proposition 3.4] that a,b < a +b. From Theorem 3.8 (vi), we have (a + b) < d, b.
Hence a = (a’) < ((a + b)) and b = (') < ((a + b)’). Then from [4, Proposition 3.4 and
Proposition 3.5], and the property = + x = z, we obtain

a< ((a+b)y=a+b< ((a+b))+b< ((a+b))+ ((a+b))= ((a+b)) < a+b.
Then it follows that a + b = ((a + b)’); and so we have a + b € S(X). a

3.13. Theorem. Let (X1;—1) and (X2;—2) be two subtraction algebras and X1 N X2 =
{0}. We define the operation — on X = X1 U X2 as follows

r—1Y, if$7y€X17
rT—y=qx—y, ifzr,ye X,
x, if © and y belong to different algebras.

Then, X 1is a subtraction algebra.
Proof. 1t is easy to verify the axioms (S1)-(S3), and the proof is omitted. a

3.14. Definition. Let X; and X2 be two subtraction algebras and X1 NXs2 = {0} If the
set X = X1 U X3 is the subtraction algebra with the operation defined in Theorem 3.12;
then X is called the union of X1 and X2, and is denoted by X = X1 & Xo.

Note that in X = X; & Xa, if x and y do not belong to same algebra, then x and y
are not comparable. Furthermore X; and X, are subalgebras of X.

Similarly, if X; are subtraction algebras for all ¢ € I and X; N X; = {0} for ¢,j € I,
i # j, where I is an index set, the union algebra X = @ X; can be defined in a similar
way. i€l
3.15. Example. Let X; = {0,a,b,¢,d} and X2 = {0, ¢, f, g} be two subtraction algebras
with Cayley tables as follows:

—1|Oabcd —2|Oefg
00 0O O O O 00 0O O O
a |la 0 a a a e e 0 e O
b (b b 0 b b’ f1f f 00
c |lc ¢ ¢ 0 ¢ glg f e 0
d|d d d d 0
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Then X = {0,a,b,c,d,e, f, g} is the union subtraction algebra with the following Cayley
table:

—1]10 a b ¢ d e f g
0Oo|l0 0O O O 0 O 0 O
a |la 0 a a a a a a
b|b b 0 b b b b b
c|lec ¢ ¢ 0 ¢ ¢ ¢ c.
d|d d d d 0 d d d
e le e e e e 0 e 0
r\f rfr fr f f 00
919 9 9 g g f e 0

3.16. Theorem. Let (X1;—1) and (X2;—2) be two subtraction algebras which have at
least two elements. Then the union X = X1® Xs is not a complicated subtraction algebra.

Proof. Suppose z,y are non-zero elements in X and z € X1,y € Xz. Then z,y € G(z,vy),
but there is no non-zero ¢ such that < ¢ and y < ¢. This means that G(z,y) does not
have a greatest element. So X is not a complicated subtraction algebra. O

3.17. Lemma. Let x,y be any elements of a subtraction algebra X. If A(x Ay) = {0}
thenx —y=x andy —x = y.

Proof. By (a4), since x Ay <y and x Ay <z, we have z Ay € A(x) and z Ay € A(y).
Since A(z Ay) = {0} we have x Ay =2 — (z—y) =0 or z < z Ay. We also know that by
(a3), (x—y)—xz=0o0rz—y <z Then x —y = x is valid. Similarly it can be proved
that y —z =y. (]

3.18. Theorem. Let X be a subtraction algebra, {X; : i € I} a family of subsets of X.
If the conditions
a) X = UXi,
i€l
b) Xin X; ={0}, i # 7,
c) z € X; implies A(z) C X; for any i€ I,
are satisfied, then all the X; are subalgebras of X and X is the union of the X;.

Proof. For any z,y € X;, from (a3) since (z —y) —z = 0, we have x —y < z or
x —y € A(x). Hence by (¢), z —y € X; and so X; is a subalgebra of X. Now let z € X;
and y € Xj, ¢ # j. By using the hypothesis and Lemma 3.17, we have x — y = x and
y —x =y. So we obtain X is the union of all the X;. d
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