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Abstract

In this paper, we introduce spectral data for finite order complex Jacobi
matrices and investigate the inverse problem of determining the matrix
from its spectral data. Necessary and sufficient conditions for the solv-
ability of the inverse problem are established. An explicit procedure of
reconstruction of the matrix from the spectral data is given.
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1. Introduction

Inverse spectral problems for Jacobi matrices play an important role in the study
of nonlinear discrete dynamical systems such as Toda lattices [4, 14, 16, 17]. Also,
Jacobi matrices are known to be a very useful tool in the study of the moment problem,
orthogonal polynomials, Padé approximation, and Jacobi continued fractions [1, 3, 7, 15,
18].

Consider a general N ×N complex, symmetric, tri-diagonal matrix – a Jacobi matrix:

(1.1) J =




b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2

0 0 0 · · · 0 aN−2 bN−1




,

where for each n, an and bn are arbitrary complex numbers such that an is different from
zero:

(1.2) an, bn ∈ C, an 6= 0.
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Such a matrix can be viewed in relation to a boundary value problem for a symmetric,
second order, linear difference equation. The general inverse spectral problem is to re-
construct the matrix (or equivalently, the coefficients in the related second order linear
difference equation) given some of its spectral characteristics (spectral data).

In the real case

(1.3) an, bn ∈ R, an 6= 0,

the matrix J is selfadjoint and in this case many versions of the inverse spectral prob-
lem for J have been investigated in the literature, see [8] and references given therein.
In connection with the inverse spectral problems for selfadjoint Jacobi operators with
matrix-valued coefficients, see [3, 5, 11, 12]. In the complex case (1.2), the matrix J is in
general non-selfadjoint and recently the author [10] introduced the concept of generalized
spectral function for matrices J of the form (1.1) with the entries satisfying (1.2), and
solved the inverse problem consisting in the recovering the matrix from its generalized
spectral function.

In the case of the infinite complex Jacobi matrix

J∞ =




b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 · · ·
0 0 a2 b3 · · ·
...

...
...

...
. . .




, an, bn ∈ C, an 6= 0, (n = 0, 1, 2, . . .),

the Favard theorem (see [1, 2, 7, 9, 13, 18]) states that there is a unique linear functional
Ω : C[λ] → C on the linear space C[λ] of all polynomials in λ with complex coefficients
such that

〈Ω, PmPn〉 = δmn, m, n ∈ {0, 1, 2, . . .},

where 〈Ω, G〉 denotes the value of Ω on the element (polynomial) G(λ), δmn is the Kro-
necker delta, and {Pn(λ)}∞n=0 is the unique solution of the recursion relation

b0y0 + a0y1 = λy0,

an−1yn−1 + bnyn + anyn+1 = λyn (n = 1, 2, 3, . . .),

satisfying the initial condition y0 = 1. The functional Ω is also called an orthogonality
functional for the polynomials Pn(λ), n = 0, 1, 2, . . ., or a generalized spectral function
(see [9]) for the matrix J .

It is substantial to note that in the case of the finite complex Jacobi matrix (1.1)
our definition of a generalized spectral function (orthogonality functional) given below
contains, besides (2.5), an extra condition of the form (2.6). This circumstance implies,
in contrast to infinite complex Jacobi matrices, the extra condition (iii) in Theorem 2.3
and the extra condition DN = 0 in Theorem 2.4.

In general, very little is known about the structure of generalized spectral functions.
For the structure of generalized spectral functions for some classes of infinite Jacobi
matrices see [6] and references given therein. In the present paper, we describe explicitly
the structure of the generalized spectral function for an arbitrary finite complex Jacobi
matrix and in this way we define the concept of spectral data for matrices (1.1). Following
this, the inverse problem with respect to the spectral data for the matrix J is completely
explored.
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2. Generalized spectral function and the inverse problem

Given a matrix J of the form (1.1) with entries satisfying (1.2), consider the eigenvalue

problem Jy = λy for a column vector y = {yn}
N−1
n=0 , that is equivalent to the second order

linear difference equation

(2.1) an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ {0, 1, . . . , N − 1}, a−1 = aN−1 = 1,

for {yn}
N
n=−1, with the boundary conditions

(2.2) y−1 = yN = 0.

Denote by {Pn(λ)}N
n=−1 the solution of equation (2.1) satisfying the initial conditions

(2.3) y−1 = 0, y0 = 1.

Using (2.3), we can find recurrently from equation (2.1) the quantities Pn(λ) for n =
1, 2, . . . , N ; Pn(λ) is a polynomial in λ of degree n. It turns out that the equality

(2.4) det (J − λI) = (−1)Na0a1 · · · aN−2PN(λ)

holds, so that the eigenvalues of the matrix J coincide with the zeros of the polynomial
PN(λ).

For any nonnegative integer m, denote by Cm[λ] the ring of all polynomials in λ of
degree ≤ m with complex coefficients. A mapping Ω : Cm[λ] → C is called a linear
functional if for any G(λ), H(λ) ∈ Cm[λ] and α ∈ C, we have

〈Ω, G + H〉 = 〈Ω, G〉 + 〈Ω, H〉 and 〈Ω, αG〉 = α 〈Ω, G〉 ,

where 〈Ω, G〉 denotes the value of Ω on the element (polynomial) G(λ).

In [10], the following theorem is proved.

2.1. Theorem. There exists a unique linear functional Ω : C2N [λ] → C such that the
relations

〈Ω, PmPn〉 = δmn, m, n ∈ {0, 1, . . . , N − 1},(2.5)

〈Ω, PmPN 〉 = 0, m ∈ {0, 1, . . . , N},(2.6)

hold, where δmn is the Kronecker delta.

2.2. Definition. The linear functional Ω defined in Theorem 2.1 we call the generalized
spectral function of the matrix J given in (1.1).

The inverse problem is stated as follows:

(1) To see if it is possible to reconstruct the matrix J , given its generalized spectral
function Ω. If it is possible, to describe the reconstruction procedure.

(2) To find necessary and sufficient conditions for a given linear functional Ω on
C2N [λ] to be the generalized spectral function for some matrix J of the form
(1.1) with entries belonging to the class (1.2).

This problem was solved by the author in [10] and the following results established.

2.3. Theorem. In order for a given linear functional Ω defined on C2N [λ] to be the
generalized spectral function for some Jacobi matrix J of the form (1.1) with entries
belonging to the class (1.2), it is necessary and sufficient that the following conditions be
satisfied:

(i) 〈Ω, 1〉 = 1 (normalization condition);
(ii) If, for some polynomial G(λ), deg G(λ) ≤ N − 1,

〈Ω, GH〉 = 0

for all polynomials H(λ), deg H(λ) = deg G(λ), then G(λ) ≡ 0;
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(iii) There exists a polynomial T (λ) of degree N such that

〈Ω, GT )〉 = 0

for all polynomials G(λ) with deg G(λ) ≤ N .

Let us set

(2.7) sl =
〈
Ω, λl〉, l = 0, 1, . . . , 2N,

(the “power moments” of the functional Ω), and introduce the determinants

(2.8) Dn =

∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn

s1 s2 · · · sn+1

...
...

. . .
...

sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣

, n = 0, 1, . . . , N.

If we express the conditions (ii) and (iii) of Theorem 2.3 in terms of the coefficients of
the polynomials G(λ), H(λ) and T (λ), then we get that Theorem 2.3 is equivalent to the
following theorem.

2.4. Theorem. In order for a given linear functional Ω defined on C2N [λ] to be the
generalized spectral function for some Jacobi matrix J of the form (1.1), with entries
belonging to the class (1.2), it is necessary and sufficient that

(2.9) D0 = 1, Dn 6= 0 (n = 1, 2, . . . , N − 1), and DN = 0,

where Dn is defined by (2.8) and (2.7).

If the conditions of Theorem 2.3 or, equivalently, the conditions of Theorem 2.4 are
satisfied, then the entries an, bn of the matrix J for which Ω is the generalized spectral
function, are recovered by the formulas

an = ± (Dn−1Dn+1)
1/2 D−1

n , n ∈ {0, 1, . . . , N − 2}, D−1 = 1,(2.10)

bn = ∆nD−1
n − ∆n−1D

−1
n−1, n ∈ {0, 1, . . . , N − 1}, ∆−1 = 0, ∆0 = s1,(2.11)

where Dn is defined by (2.8) and (2.7), and ∆n is the determinant obtained from the
determinant Dn by replacing in Dn the last column by the column with the components
sn+1, sn+2, . . . , s2n+1.

2.5. Remark. It follows from the above solution of the inverse problem that the matrix
(1.1) is not uniquely restored from the generalized spectral function. This is linked with
the fact that the an are determined from (2.10) uniquely up to a sign. To ensure that
the inverse problem is uniquely solvable, we have to specify additionally a sequence of
signs + and −. Namely, let {σ1, σ2, . . . , σN−1} be a given finite sequence, where for each
n ∈ {1, 2, . . . , N − 1} the σn is + or −. We have 2N−1 such different sequences. Now
to determine an uniquely from (2.10) for n ∈ {0, 1, . . . , N − 2} we can choose the sign
σn when extracting the square root. In this way we get precisely 2N−1 distinct Jacobi
matrices possessing the same generalized spectral function. The inverse problem is solved
uniquely from the data consisting of Ω and a sequence {σ1, σ2, . . . , σN−1} of signs + and
−.

3. Structure of the generalized spectral function, spectral data

Given a Jacobi matrix J of the form (1.1) with entries (1.2), consider the second order
linear difference equation

(3.1) an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ {0, 1, . . . , N − 1}, a−1 = aN−1 = 1,
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where {yn}
N
n=−1 is a desired solution. Denote by {Pn(λ)}N

n=−1 and {Qn(λ)}N
n=−1 the

solutions of this equation satisfying the initial conditions

P−1(λ) = 0, P0(λ) = 1;(3.2)

Q−1(λ) = −1, Q0(λ) = 0.(3.3)

For each n ≥ 0, Pn(λ) is a polynomial of degree n and is called a polynomial of first
kind (note that Pn(λ) is the same polynomial as above in Section 2), and Qn(λ) is a
polynomial of degree n − 1 and is known as a polynomial of second kind.

Let us set

(3.4) M(λ) = −
QN(λ)

PN(λ)
.

3.1. Lemma. The entries Rnm(λ) of the matrix R(λ) = (J −λI)−1 (resolvent of J) are
of the form

(3.5) Rnm(λ) =

{
Pn(λ)[Qm(λ) + M(λ)Pm(λ)], 0 ≤ n ≤ m ≤ N − 1,
Pm(λ)[Qn(λ) + M(λ)Pn(λ)], 0 ≤ m ≤ n ≤ N − 1.

Proof. It is straightforward to check that the quantities Rnm = Rnm(λ) defined by (3.5)
satisfy the equations

b0R0m + a0R1m − λR0m = δ0m,

an−1Rn−1,m + bnRnm + anRn+1,m − λRnm = δnm, n = 1, 2, . . . , N − 2,

aN−2RN−2,m + bN−1RN−1,m − λRN−1,m = δN−1,m,

m = 0, 1, . . . , N − 1,

where δmn is the Kronecker delta. Hence it follows that the column vector y = {yn}
N−1
n=0

defined by the formula

yn =

N−1∑

m=0

Rnm(λ)fm

for any given column vector f = {fn}
N−1
n=0 , satisfies the equation

Jy = λy + f.

This completes the proof. �

3.2. Lemma. For any vector f = {fn}
N−1
n=0 ∈ C

N and any n ∈ {0, 1, . . . , N − 1}, the
representation

(3.6)
N−1∑

n=0

Rnm(λ)fm = −
fn

λ
+ rn(λ)

holds and there exist sufficiently large positive constants Λ and C such that

(3.7) |rn(λ)| ≤
C

|λ|2

for all n ∈ {0, 1, . . . , N − 1} and all λ ∈ C with |λ| ≥ Λ.

Proof. Let us supply the space C
N with the norm

‖f‖ = max
0≤n≤N−1

|fn| ,

and let ‖J‖ denote the matrix norm of J corresponding to that vector norm. Since

J − λI = −λ

(
I −

1

λ
J

)
,
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we have

(J − λI)−1 = −
1

λ

(
I −

J

λ

)−1

= −
1

λ

∞∑

k=0

(
J

λ

)k

= −
I

λ
+ K(λ),

where

K(λ) = −
∞∑

k=1

Jk

λk+1
,

and hence, for |λ| ≥ ‖J‖ + 1,

‖K(λ)‖ ≤
∞∑

k=1

‖J‖k

|λ|k+1

=
‖J‖

|λ|2

∞∑

k=0

‖J‖k

|λ|k

≤
‖J‖

|λ|2

∞∑

k=0

‖J‖k

(‖J‖ + 1)k

=
1

|λ|2
‖J‖ (‖J‖ + 1).

Now taking in the equality

(J − λI)−1f = −
f

λ
+ K(λ)f

the n th component of both sides, we get

N−1∑

m=0

Rnm(λ)fm = −
fn

λ
+ [K(λ)f ]n

while, for the n th component [K(λ)f ]n of the vector K(λ)f we have

|[K(λ)f ]n| ≤ ‖K(λ)f‖ ≤ ‖K(λ)‖ ‖f‖ ≤
1

|λ|2
‖J‖ (‖J‖ + 1) ‖f‖ .

Thus, the lemma is true with the constants Λ = ‖J‖+ 1 and C = ‖J‖ (‖J‖+ 1) ‖f‖. �

Let Ω be the generalized spectral function of the matrix J, defined above in Section
2. The following theorem describes the structure of Ω.

3.3. Theorem. Let λ1, . . . , λp be all the distinct eigenvalues of the matrix J and m1, . . . , mp

their multiplicities, respectively, as roots of the characteristic polynomial (2.4). There ex-
ist complex numbers βkj , (j = 1, . . . , mk, k = 1, . . . , p) uniquely determined by the matrix
J such that for any polynomial G(λ) ∈ C2N [λ] the formula

(3.8) 〈Ω, G〉 =

p∑

k=1

mk∑

j=1

βkj

(j − 1)!
G(j−1)(λk),

holds, where G(n)(λ) denotes the n th order derivative of G(λ) with respect to λ.

Proof. Let f be an arbitrary element (column vector) of C
N , with components f0, f1, . . . , fN−1.

Writing (3.6) for this vector f and then integrating both sides, we obtain for each
n ∈ {0, 1, . . . , N − 1},

(3.9) fn = −
1

2πi

∮

Γr

{
N−1∑

m=0

Rnm(λ)fm

}
dλ +

1

2πi

∮

Γr

rn(λ)dλ,
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where r is a sufficiently large positive number and Γr is the circle in the λ-plane of radius
r centered at the origin.

Denote by λ1, . . . , λp all the distinct roots of the polynomial PN(λ) (which coincides
by (2.4) with the characteristic polynomial of the matrix J up to a constant factor) and
by m1, . . . , mp their multiplicities, respectively:

(3.10) PN (λ) = c(λ − λ1)
m1 · · · (λ − λp)

mp ,

where c is a constant. We have 1 ≤ p ≤ N and m1 + · · · + mp = N . By (3.10), we can
rewrite the rational function QN (λ)/PN(λ) as the sum of partial fractions:

(3.11)
QN (λ)

PN (λ)
=

p∑

k=1

mk∑

j=1

βkj

(λ − λk)j
,

where βkj are some uniquely determined complex numbers depending on the matrix
J . Substituting (3.5) in (3.9) and taking into account (3.4), (3.11), and (3.7), we get,
applying the residue theorem and passing then to the limit as r → ∞,

(3.12) fn =

p∑

k=1

mk∑

j=1

βkj

(j − 1)!

{
dj−1

dλj−1
[F (λ)Pn(λ)]

}

λ=λk

, n ∈ {0, 1, . . . , N − 1},

where

(3.13) F (λ) =

N−1∑

m=0

fmPm(λ).

Now define on C2N [λ] the functional Ω by the formula

(3.14) 〈Ω, G〉 =

p∑

k=1

mk∑

j=1

βkj

(j − 1)!
G(j−1)(λk), G(λ) ∈ C2N [λ].

Then formula (3.12) can be written in the form

(3.15) fn = 〈Ω, FPn〉 , n ∈ {0, 1, . . . , N − 1}.

From here by (3.13) and the arbitrariness of {fm}N−1
m=0 it follows that the “orthogonality”

relation

(3.16) 〈Ω, PmPn〉 = δmn, m, n ∈ {0, 1, . . . , N − 1},

holds. Further, in virtue of (3.10) and (3.14) we have also

(3.17) 〈Ω, PmPN 〉 = 0, m ∈ {0, 1, . . . , N}.

These mean, by Theorem 2.1, that the generalized spectral function of the matrix J has
the form (3.14). �

3.4. Definition. The collection of quantities

{λk, βkj (j = 1, . . . , mk, k = 1, . . . , p)},

determining the structure of the generalized spectral function of the matrix J according
to Theorem 3.3, we call the spectral data of the matrix J . For each k ∈ {1, . . . , p} the
sequence

{βk1, . . . , βkmk
}

we call the normalizing chain (of the matrix J) associated with the eigenvalue λk.
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If we delete the first row and the first column of the matrix J given in (1.1), then we
get the new matrix

J(1) =




b
(1)
0 a

(1)
0 0 · · · 0 0 0

a
(1)
0 b

(1)
1 a

(1)
1 · · · 0 0 0

0 a
(1)
1 b

(1)
2 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . b
(1)
N−4 a

(1)
N−4 0

0 0 0 · · · a
(1)
N−4 b

(1)
N−3 a

(1)
N−3

0 0 0 · · · 0 a
(1)
N−3 b

(1)
N−2




,

where

a(1)
n = an+1, n ∈ {0, 1, . . . , N − 3},

b(1)
n = bn+1, n ∈ {0, 1, . . . , N − 2}.

The matrix J(1) is called the first truncated matrix (with respect to the matrix J).

3.5. Theorem. The normalizing numbers βkj of the matrix J can be calculated by de-
composing the rational function

−
det(J(1) − λI)

det(J − λI)

into partial fractions.

Proof. Let us denote the polynomials of the first and the second kinds, corresponding to

the matrix J(1), by P
(1)
n (λ) and Q

(1)
n (λ), respectively. It is easily seen that

P (1)
n (λ) = a0Qn+1(λ), n ∈ {0, 1, . . . , N − 1},(3.18)

Q(1)
n (λ) =

1

a0
{(λ − b0)Qn+1(λ) − Pn+1(λ)}, n ∈ {0, 1, . . . , N − 1}.(3.19)

Indeed, both sides of each of these equalities are solutions of the same difference equation

a
(1)
n−1yn−1 + b(1)

n yn + a(1)
n yn+1 = λyn, n ∈ {0, 1, . . . , N − 2}, a

(1)
N−2 = 1,

and the sides coincide for n = −1 and n = 0. Therefore the equalities hold by the
uniqueness theorem for solutions.

Consequently, taking into account (2.4) and using (3.18), we have

det(J(1) − λI) = (−1)N−1a
(1)
0 a

(1)
1 · · · a

(1)
N−3P

(1)
N−1(λ)

= (−1)N−1a1 · · · aN−2a0QN(λ).

Comparing this with (2.4), we get

QN (λ)

PN (λ)
= −

det(J(1) − λI)

det(J − λI)
,

so that the statement of the theorem follows from (3.11). �
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4. Inverse problem for the spectral data

By the inverse spectral problem is meant the problem of recovering the matrix J , i.e.
its entries an and bn, from the spectral data.

4.1. Theorem. Let an arbitrary collection of complex numbers

(4.1) {λk, βkj (j = 1, . . . , mk, k = 1, . . . , p)}

be given, where λ1, λ2, . . . , λp, (1 ≤ p ≤ N), are distinct, 1 ≤ mk ≤ N and m1+. . .+mp =
N. In order for this collection to be the spectral data for some Jacobi matrix J of the
form (1.1) with entries belonging to the class (1.2), it is necessary and sufficient that the
following two conditions be satisfied:

(i)
∑p

k=1 βk1 = 1;
(ii) Dn 6= 0, for n ∈ {1, 2, . . . , N − 1} and DN = 0, where Dn is defined by (2.8) in

which

(4.2) sl =

p∑

k=1

nkl∑

j=1

(
l

j−1

)
βkjλ

l−j+1
k ,

nkl = min{mk, l + 1} and
(

l
j−1

)
is a binomial coefficient.

Proof. The necessity of conditions of the theorem follows from Theorem 2.4, because the
generalized spectral function of the matrix J is defined by the spectral data according to
formula (3.8) and therefore the quantity (4.2) coincides with

〈
Ω, λl

〉
. Besides,

p∑

k=1

βk1 = 〈Ω, 1〉 = s0 = D0.

Note that the condition (iii) of Theorem 2.3 holds with

(4.3) T (λ) = (λ − λ1)
m1 · · · (λ − λp)

mp .

Let us prove the sufficiency. Assume that we have a collection of quantities (4.1) satisfying
the conditions of the theorem. Using these data we construct the functional Ω on C2N [λ]
by formula (3.8). Then this functional Ω satisfies the conditions of Theorem 2.4 and
therefore there exists a matrix J of the form (1.1), (1.2) for which Ω is the generalized
spectral function. Now we have to prove that the collection (4.1) is the spectral data for
the recovered matrix J .

For this purpose we define the polynomials P−1(λ), P0(λ), . . . , PN (λ) as the solution
of equation (3.1), constructed by means of the matrix J , under the initial conditions
(3.2). Then the relations (2.5), (2.6) and the equalities

an = 〈Ω, λPnPn+1〉 , n ∈ {0, 1, . . . , N − 2},(4.4)

bn =
〈
Ω, λP 2

n

〉
, n ∈ {0, 1, . . . , N − 1}(4.5)

hold. We show that (3.8) holds, which will mean, in particular, that λ1, . . . , λp are
eigenvalues of the matrix J with multiplicities m1, . . . , mp, respectively.

Let T (λ) be defined by (4.3). Let us show that there exists a constant c such that

(4.6) aN−2PN−2(λ) + bN−1PN−1(λ) + cT (λ) = λPN−1(λ)

for all λ ∈ C. If we prove this, then from here and (3.1) with yk = Pk(λ) and n = N − 1,
we get that PN (λ) = cT (λ).
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Since deg Pn(λ) = n, (0 ≤ n ≤ N − 1) and deg T (λ) = m1 + · · · + mp = N , the
polynomials P0(λ), . . . , PN−1(λ), T (λ) form a basis of the linear space of all polynomials
of degree ≤ N . Therefore we have the decomposition

(4.7) λPN−1(λ) = cT (λ) +

N−1∑

n=0

cnPn(λ),

where c, c0, c1, . . . , cN−1 are some constants. By (4.3) and (3.8) it follows that

〈Ω, TPn〉 = 0, n ∈ {0, 1, . . . , N}.

Hence, taking into account the relations (2.5), (2.6) and (4.4), (4.5), we find from (4.7)
that

cn = 0 (0 ≤ n ≤ N − 3), cN−2 = aN−2, cN−1 = bN−1.

So (4.6) is shown.

It remains to show that for each k ∈ {1, . . . , p}, the sequence {βk1, . . . , βkmk
} is

the normalizing chain of the matrix J associated with the eigenvalue λk. Since we have
already shown that λk is an eigenvalue of the matrix J of multiplicity mk, the normalizing

chain of J associated with the eigenvalue λk has the form {β̃k1, . . . , β̃kmk
}. Therefore for

〈Ω, G〉 we have an equality of the form (3.8) in which βkj is replaced by β̃kj . Subtracting
these two equalities for 〈Ω, G〉 term by term we get that

p∑

k=1

mk∑

j=1

βkj − β̃kj

(j − 1)!
G(j−1)(λk) = 0 for all G(λ) ∈ C2N [λ].

Since the values G(j−1)(λk) can be arbitrary numbers (by virtue of the Hermite general

interpolation problem), we get that βkj = β̃kj for all k and j. �

Under the conditions of Theorem 4.1, the entries an and bn of the matrix J for which
the collection (4.1) is spectral data, are recovered from the formulas (2.10), (2.11).
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