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Abstract

The iterative Stein-rule estimator and the usual estimator of the error
variance are compared under the Pitman Nearness Criterion. An exact
expression of Pitman’s Nearness probability is derived and numerically
evaluated.

Keywords: Iterative Stein-rule estimator, Pitman Nearness Criterion, Stein-rule esti-
mator.

2000 AMS Classification: 62 J 05, 62F 10, 62 H12.

1. Introduction

The mean squared error (MSE) has often been used to measure the performance
of estimators. However, the justification for MSE as a criterion has often be argued.
Therefore Pitman [8] introduced a measure of the closeness of an estimator compared to
the true parameter value, and defined Pitman nearness (PN) criteria. PN and MSE were
investigated by Rao [9] in order to compare these two criteria and he claims that PN
is a more intrinsic criterion than the MSE. His examples show that estimators with the
minimum MSE property can have very poor performance in terms of PN. Peddada [7]
characterized PN in terms of MSE to overcome the complexity of the PN computation.
The least squares estimator and the James-Stein estimator of the vector-valued parameter
in a multiple linear regression model are compared in the sense of PN by Keating and
Czitrom [2]. The reader who wishes to find more out about PN may consult Keating,
Mason and Sen [4]. The Stein-rule (SR) and ordinary least squares (OLS) were compared
for regression error variance under the PN criterion when variables are omitted by Ohtani
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and Wan [6]. On the other hand, Ohtani [5] defined a new estimator of the disturbance
variance, called the iterative Stein-rule estimator (ISRE) and showed the dominance of
ISRE with respect to the PN criteria. Unal [10] compared this estimator with the OLS
estimator with respect to the MSE criterion in a regression model with proxy variables.

The aim of this paper is to use the PN criterion to compare the ISRE of the disturbance
variance to the usual estimator of the disturbance variance theoretically. In Section (2),
the model and the estimators will be given. The exact formula of the PN probability for
the comparison of the ISRE and the usual estimators of the disturbance variance will be
obtained. In Section (3), the PN probabilities for a range of parameter values will be
computed.

2. The model and the estimators

Let us first consider the classical linear regression model

(2.1) y = Xβ + ǫ, ǫ ∼ N(0, σ2In),

where y is the n × 1 observation vector of a dependent variable, X the n × k matrix
of observations of non-stochastic independent variables with column rank, β the k × 1
vector of parameters and ǫ the n × 1 vector of normal disturbance terms. The usual
estimator for the parameter vector β is

b = (X ′

X)−1
X

′

y,

and the SR estimator for the parameter vector β is

β̂ =
[

1 −
ae′e

b′X ′Xb

]

b,

where e = y − Xb and a is a constant in 0 ≤ a ≤ 2(k − 2)/(n − k + 2) (e.g. [1, 2]). The
usual estimator of the disturbance variance is

(2.2) s2 =
(y − Xb)′(y − Xb)

n − k
=

e′e

n − k
.

Using β̂ instead of b in the formula for the usual estimator of the disturbance variance,
the ISRE of the disturbance variance [5]

(2.3) σ̂2
s =

(y − Xβ̂)′(y − Xβ̂)

n − k

is obtained.

Setting u1 =
b′X ′Xb

σ2
and u2 =

e′e

σ2
, the ISRE of the disturbance variance can be

written in the form (e.g. [5, 3]),

(2.4) σ̂2
s =

1

n − k
σ2

[

u2 +
a2u2

2

u1

]

,

where u1 ∼ χ2(k, λ) with non-centrality parameter λ =
β′X ′Xβ

σ2
and u2 ∼ χ2

(n−k).

Also, u1 and u2 are independent.

If the squared error loss is considered as the loss function, then the PN to compare
σ̂2

s and s2 is defined as the following probability,

(2.5)
PC

(

σ̂2
s , s2

)

= Pr

([

σ̂2
s − σ2

σ2

]2

<

[

s2 − σ2

σ2

]2)

= Pr
(a1u2

u1
u2

2

(

2 −
a2

u2
+

a3u2

u1

)

< 0
)

,
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where ν = n − k, a1 = a2/ν2, a2 = 2ν and a3 = a2. The estimator σ̂2
s dominates s2

whenever PC
(

σ̂2
s , s2

)

> 0.5, and vice versa.

The probability given in (2.5) can be written as

(2.6)

∫∫

R

f1(u1)f2(u2)du1du2,

where R is the region {(u1, u2) : a1u2/u1 > 0, 2 + a3u2/u1 − a2/u2 < 0},

(2.7) f1(u1) = e−λ/2
∞

∑

i=0

(λ/2)i

i!

u
k/2+i−1
1 e−u1/2

2k/2+iΓ( k
2

+ i)

and

(2.8) f2(u2) =
u

ν/2−1
2 e−u2/2

2ν/2Γ( ν
2
)

.

Using (2.7) and (2.8) in (2.6) we obtain

(2.9)

∫∫

R

∞
∑

i=0

Kiu
k/2+i−1
1 u

ν/2−1
2 exp [−(u1 + u2)/2] du1 du2,

where

Ki =
(λ/2)i

i!

e−λ/2

2(k+ν)/2+iΓ( k
2

+ i)Γ( ν
2
)

Making the change of variables t1 = a1
u2

u1
and t2 = a3

u2

u1
−

a2

u2
we obtain,

(2.10)

∞
∑

i=0

∫

∞

0

∫

−2

−∞

Ki
a

k+v/2+2i+1
1 a

(k+ν)/2+i
2

t21(a3t21 − a1t1t2)k/2+i−1(a3t1 − a1t2)ν/2+2

× exp

[

−
a1a2(a1 + t1)

2(a3t21 − a1t1t2)

]

dt2 dt1,

where J =
−a4

1a
2
2

t21(a3t1 − a1t2)3
. Again, making the change of variables, z =

a1a2(a1 + t1)

2(a3t21 − a1t1t2)
,

we obtain

(2.11)

∞
∑

i=0

Ki

∫

∞

0

∫

a1a2(a1+t1)

2(a3t
2
1+2a1t1)

0

a
k/2+i
1 2(k+ν)/2+iz(k+ν)/2+i−1 exp (−z) t

ν/2−1
1

(a1 + t1)(k+ν)/2+i
dz dt1.

Making the change of variable x = t1
a1+t1

, equation (2.11) becomes

(2.12)

∞
∑

i=0

Ki2
(k+ν)/2+i

×

∫ 1

0

xv/2−1(1 − x)k/2+i−1

∫

a2(1−x)

2((a3−2)x2+2x)

0

z(k+ν)/2+i−1 exp (−z) dz dx.

Using the incomplete gamma function

P (a, x) =
1

Γ(a)

∫ x

0

ta−1 exp (−t) dt,

one obtains

(2.13)

∞
∑

i=0

Ki2
(k+ν)/2+iΓ

(

k + v

2
+ i

)

×

∫ 1

0

xv/2−1(1 − x)k/2+i−1P

(

k + v

2
+ i,

a2(1 − x)

2((a3 − 2)x2 + 2x)

)

dx.
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Finally using Ki in equation (2.13), it becomes,

(2.14)
∞

∑

i=0

e−λ/2(λ/2)i

i! B(v/2, k/2 + i)

∫ 1

0

xv/2−1(1−x)k/2+i−1P

(

k + v

2
+i,

a2(1 − x)

2[(a3 − 2)x2 + 2x]

)

dx

where B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
is the complete Beta function.

3. Numerical Analysis

The equation given in (2.14) is too complex to give an idea of its magnitude, so
it requires a numerical evaluation. This equation has been evaluated for k = 3, 5, 8,
n = 20, 40, and various values of λ. For the evaluation of the integral in (2.14), Simpon’s
3/8 rule with 200 subdivisions was used as in [6]. The numerical evaluations were executed
on a personal computer using Mathematica code. The infinite series in (2.14) converged
rapidly with a convergence tolerance level set to 10−12. Some original results appear in
the tables.

Table 1

k n λ PC k n λ PC k n λ PC

3 10 0.5 0.118692 5 10 0.5 0.099454 9 10 0.5 0.128703

3 10 1 0.211751 5 10 1 0.178262 9 10 1 0.229644

3 10 5 0.504243 5 10 5 0.441461 9 10 5 0.550588

3 10 6 0.524083 5 10 6 0.463092 9 10 6 0.573933

3 10 7 0.536780 5 10 7 0.478466 9 10 7 0.589743

3 10 8 0.545034 5 10 8 0.489793 9 10 8 0.600878

3 10 9 0.550506 5 10 9 0.498450 9 10 9 0.609082

3 10 10 0.554221 5 10 10 0.505302 9 10 10 0.615423

3 10 20 0.563637 5 10 20 0.537072 9 10 20 0.646846

3 10 23 0.561180 5 10 23 0.538735 9 10 23 0.649073

3 10 24 0.559099 5 10 24 0.537869 9 10 24 0.648192

3 10 25 0.556080 5 10 25 0.535999 9 10 25 0.646129

3 10 30 0.519650 5 10 30 0.504638 9 10 30 0.609391

3 10 40 0.317237 5 10 40 0.310383 9 10 40 0.375891

3 10 50 0.105303 5 10 50 0.103327 9 10 50 0.125325

3 20 0.5 0.113769 5 20 0.5 0.090102 9 20 0.5 0.057034

3 20 1 0.202957 5 20 1 0.161834 9 20 1 0.102882

3 20 5 0.483013 5 20 5 0.406633 9 20 5 0.270397

3 20 6 0.501935 5 20 6 0.427752 9 20 6 0.288112

3 20 7 0.514013 5 20 7 0.443034 9 20 7 0.302280

3 20 8 0.521837 5 20 8 0.454480 9 20 8 0.314078

3 20 9 0.527001 5 20 9 0.463350 9 20 9 0.324239

3 20 10 0.530487 5 20 10 0.470445 9 20 10 0.333223

3 20 20 0.539056 5 20 20 0.503555 9 20 20 0.392352

3 20 23 0.536637 5 20 23 0.505475 9 20 23 0.401815

3 20 24 0.534629 5 20 24 0.504751 9 20 24 0.403611

3 20 25 0.531723 5 20 25 0.503074 9 20 25 0.404492

3 20 30 0.496828 5 20 30 0.473883 9 20 30 0.389547

3 20 40 0.303269 5 20 40 0.291581 9 20 40 0.245413

3 20 50 0.100662 5 20 50 0.097079 9 20 50 0.082501
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Table 2

k n λ PC k n λ PC k n λ PC

3 40 0.5 0.111936 5 40 0.5 0.090938 9 40 0.5 0.054679

3 40 1 0.199589 5 40 1 0.163222 9 40 1 0.098874

3 40 5 0.473349 5 40 5 0.407494 9 40 5 0.264533

3 40 6 0.491550 5 40 6 0.427956 9 40 6 0.282854

3 40 7 0.503066 5 40 7 0.442541 9 40 7 0.297673

3 40 8 0.510445 5 40 8 0.453287 9 40 8 0.310104

3 40 9 0.515251 5 40 9 0.461470 9 40 9 0.320845

3 40 10 0.518443 5 40 10 0.467905 9 40 10 0.330344

3 40 20 0.525681 5 40 20 0.496240 9 40 20 0.391331

3 40 23 0.523170 5 40 23 0.497304 9 40 23 0.400646

3 40 24 0.521170 5 40 24 0.496358 9 40 24 0.402364

3 40 25 0.518302 5 40 25 0.494492 9 40 25 0.403161

3 40 30 0.484159 5 40 30 0.465009 9 40 30 0.387821

3 40 40 0.295461 5 40 40 0.285629 9 40 40 0.243892

3 40 50 0.098061 5 40 50 0.095034 9 40 50 0.081916

3 60 0.5 0.111434 5 60 0.5 0.092835 9 60 0.5 0.057982

3 60 1 0.198630 5 60 1 0.166471 9 60 1 0.104780

3 60 5 0.470003 5 60 5 0.412540 9 60 5 0.278513

3 60 6 0.487858 5 60 6 0.432535 9 60 6 0.297256

3 60 7 0.499092 5 60 7 0.446588 9 60 7 0.312250

3 60 8 0.506240 5 60 8 0.456783 9 60 8 0.324692

3 60 9 0.510854 5 60 9 0.464428 9 60 9 0.335333

3 60 10 0.513888 5 60 10 0.470351 9 60 10 0.344653

3 60 20 0.520387 5 60 20 0.495276 9 60 20 0.402512

3 60 23 0.517814 5 60 23 0.495767 9 60 23 0.410819

3 60 24 0.515811 5 60 24 0.494664 9 60 24 0.412203

3 60 25 0.512951 5 60 25 0.492660 9 60 25 0.412664

3 60 30 0.479087 5 60 30 0.462763 9 60 30 0.395588

3 60 40 0.292324 5 60 40 0.283934 9 60 40 0.247849

3 60 50 0.097015 5 60 50 0.094430 9 60 50 0.083117

4. Conclusion

The ISRE of the disturbance variance is not better than s2, except for some particular
λ values. For example for k = 3 and for n = 10, n = 20, n = 40 and for n = 60 the ISRE
of the disturbance variance is superior (i.e. PC

(

σ̂2
s , s2

)

≥ 0.5) to the usual estimator of
the disturbance variance just for 5 ≤ λ ≤ 30, 6 ≤ λ ≤ 25, 7 ≤ λ ≤ 25 and for 8 ≤ λ ≤ 25,
respectively. Here, as n increases, the intervals for the dominance of σ̂2

s decreases.

When the non-centrality parameter λ is small the regression is not significant unless
the sample size is very large. Conversely, if λ is large the regression is significant and
the error variance is quite small. The results will be of greatest practical importance for
intermediate values of λ. So, especially in such cases, the researcher is concerned with
which estimator is better. And here, from the tables, it can be seen that the strength of
the ISRE of the disturbance variance over the usual estimator of the disturbance variance
increases for the intermediate values of λ.
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For k = 5, these intervals for λ are getting narrower. For example for n = 10 and
n = 20, PC

(

σ̂2
s , s2

)

≥ 0.5 for 10 ≤ λ ≤ 30 and 20 ≤ λ ≤ 25, respectively.

For k = 9 and n = 10, PC
(

σ̂2
s , s2

)

≥ 0.5 for 5 ≤ λ ≤ 30, much as for k = 3 and n = 10.
But here the probabilities are greater than the probabilities for k = 3 and n = 10.

For k > 9 there is no situation that makes PC
(

σ̂2
s , s2

)

≥ 0.5. This means that the
usual estimator of the disturbance variance is superior to the ISRE of the disturbance
variance for all values of k > 9.

Although Ohtani [5] showed that s2 is superior to the ISRE of the disturbance variance
for k > 5 using the MSE criterion, we have found the same result for k > 9 using the
PN criterion. So it can be said that this result is compatible with Ohtani’s result [5],
which compared the ISRE of the disturbance with the usual estimator of the disturbance
variance using the MSE criterion.
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