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Abstract

The iterative Stein-rule estimator and the usual estimator of the error
variance are compared under the Pitman Nearness Criterion. An exact
expression of Pitman’s Nearness probability is derived and numerically
evaluated.
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1. Introduction

The mean squared error (MSE) has often been used to measure the performance
of estimators. However, the justification for MSE as a criterion has often be argued.
Therefore Pitman [8] introduced a measure of the closeness of an estimator compared to
the true parameter value, and defined Pitman nearness (PN) criteria. PN and MSE were
investigated by Rao [9] in order to compare these two criteria and he claims that PN
is a more intrinsic criterion than the MSE. His examples show that estimators with the
minimum MSE property can have very poor performance in terms of PN. Peddada [7]
characterized PN in terms of MSE to overcome the complexity of the PN computation.
The least squares estimator and the James-Stein estimator of the vector-valued parameter
in a multiple linear regression model are compared in the sense of PN by Keating and
Czitrom [2]. The reader who wishes to find more out about PN may consult Keating,
Mason and Sen [4]. The Stein-rule (SR) and ordinary least squares (OLS) were compared
for regression error variance under the PN criterion when variables are omitted by Ohtani
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and Wan [6]. On the other hand, Ohtani [5] defined a new estimator of the disturbance
variance, called the iterative Stein-rule estimator (ISRE) and showed the dominance of
ISRE with respect to the PN criteria. Unal [10] compared this estimator with the OLS
estimator with respect to the MSE criterion in a regression model with proxy variables.

The aim of this paper is to use the PN criterion to compare the ISRE of the disturbance
variance to the usual estimator of the disturbance variance theoretically. In Section (2),
the model and the estimators will be given. The exact formula of the PN probability for
the comparison of the ISRE and the usual estimators of the disturbance variance will be
obtained. In Section (3), the PN probabilities for a range of parameter values will be
computed.

2. The model and the estimators

Let us first consider the classical linear regression model
(21) y=XPB+e e~ N(0,0°1,),

where y is the n x 1 observation vector of a dependent variable, X the n X k matrix
of observations of non-stochastic independent variables with column rank, 3 the k x 1
vector of parameters and € the n x 1 vector of normal disturbance terms. The usual
estimator for the parameter vector 3 is

b=(X'X)"'X"y,
and the SR estimator for the parameter vector (3 is

5 ae’e

S

s [ VX'Xb
where e = y — Xb and a is a constant in 0 < a < 2(k —2)/(n — k+2) (e.g. [1, 2]). The
usual estimator of the disturbance variance is

(y— Xb)'(y—Xb) _ ele
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(22) s = m— =
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Using B instead of b in the formula for the usual estimator of the disturbance variance,
the ISRE of the disturbance variance [5]

(2.3) 6‘? — (y_Xg)i(lyﬁ_XB)

is obtained.

lei;)(b and us = 6/—26, the ISRE of the disturbance variance can be
written in the form (e.g. [5, 3]),

azuzz}

Ui

Setting u; =

(24) 62= ~ i k02 {uQ +
B'X'Xp

where u1 ~ x%(k,\) with non-centrality parameter A = 3 and ug ~ X?nfk)'
o
Also, u1 and ug are independent.

If the squared error loss is considered as the loss function, then the PN to compare
&2 and s? is defined as the following probability,

PC(82,5%) :Pr({&g —UT - {52 —UZD

(2.5) o o?
= pr(E243 (2- 2 4+ 22) <o),
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where v = n —k, a1 = (12/1/27 as = 2v and as = a®. The estimator &Z dominates s>
whenever PC(&E, 82) > 0.5, and vice versa.

The probability given in (2.5) can be written as
/ f1(u1) fo(u2)durdus,
R
where R is the region {(u1,u2) : a1uz/ui > 0, 2+ azuz/u1 — az/uz < 0},

3 )\/2 k/2+1 1 7u1/2
-2

(2.7)  fi(wm) = Z ] 2k/2+zl“( +1)
and

v/2=1 —uy/2
u e

2. e R —
(2.8)  fo(u2) 2721 (%)

Using (2.7) and (2.8) in (2.6) we obtain

// S Kok 2 exp [ (us + u2) /2] dus dus,
R =0

where
()\/2)1 efk/Z
Ki="—5 hr) 2+ E L AT
it 2 (3 +9r(5)
Making the change of variables t; = alﬁ and to = agﬁ _ & we obtain,
U1 U1 u2

ak+v/2+2z+1 (k+u)/2+z
Z / / t2 a3t2 — altltz)k/zJ” 1(a3t1 — altz)"/2+2
2 10
araz(ay + t1)

X ex —_—
P 2(ast? — artits)

dto dty,

4 2
—aja araz(a t
where J = 2# Again, making the change of variables, z = M7
tl(a3t1 — a1t2)3 2(a3t1 — altltz)
we obtain

oo ajag(ag+ty) k /244 v ; . i v/2—1
(211) Y K / /zmsﬂﬂalt” ay/ P gkt i (M 2 exp (—2) £/ dz dt.
i=0

(a1 + t1) (B9 /2+

Making the change of variable z = ﬁ7 equation (2.11) becomes

Z Ki2(k+u)/2+i
(2.12)  =°

az(1—x)

1 . 2((as —2)z2+22) i
[ g [ O 2 e () d da
o Jo

Using the incomplete gamma function

P(a,z) = ﬁ ./Oz t* ' exp (—t) dt,

one obtains

oo
3 Kt/ (—k ; Yy z)

(2.13) =0 )
v/2—1,y _  \k/2icip( K+U as(l — )
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Finally using K; in equation (2.13), it becomes,

2 e M2())2)! Y21 k/2ti-ip( k+v az(1 — =)

I'(z)I'(y)
I'(z+vy)

where B(z,y) = is the complete Beta function.

3. Numerical Analysis

The equation given in (2.14) is too complex to give an idea of its magnitude, so
it requires a numerical evaluation. This equation has been evaluated for k£ = 3,5, 8,
n = 20, 40, and various values of X. For the evaluation of the integral in (2.14), Simpon’s
3/8 rule with 200 subdivisions was used as in [6]. The numerical evaluations were executed
on a personal computer using Mathematica code. The infinite series in (2.14) converged
rapidly with a convergence tolerance level set to 107'2. Some original results appear in
the tables.

Table 1

n A PC n A PC n A PC

10 | 0.5 | 0.118692 10 | 0.5 | 0.099454 10 | 0.5 | 0.128703
10 | 1 0.211751 10 | 1 0.178262 10 | 1 0.229644
10 | 5 0.504243 10 | 5 0.441461 10 | 5 0.550588
10 | 6 0.524083 10 | 6 0.463092 10 | 6 0.573933
10 | 7 0.536780 10 | 7 0.478466 10 | 7 0.589743
10 | 8 0.545034 10 | 8 0.489793 10 | 8 0.600878
10 | 9 0.550506 10 | 9 0.498450 10 | 9 0.609082
10 | 10 | 0.554221 10 | 10 | 0.505302 10 | 10 | 0.615423
10 | 20 | 0.563637 10 | 20 | 0.537072 10 | 20 | 0.646846
10 | 23 | 0.561180 10 | 23 | 0.538735 10 | 23 | 0.649073
10 | 24 | 0.559099 10 | 24 | 0.537869 10 | 24 | 0.648192

10 | 25 | 0.556080
10 | 30 | 0.519650
10 | 40 | 0.317237
10 | 50 | 0.105303

10 | 25 | 0.535999
10 | 30 | 0.504638
10 | 40 | 0.310383
10 | 50 | 0.103327

10 | 25 | 0.646129
10 | 30 | 0.609391
10 | 40 | 0.375891
10 | 50 | 0.125325

20 | 0.5 | 0.113769 20 | 0.5 | 0.090102 20 | 0.5 | 0.057034
20 |1 0.202957 20 | 1 0.161834 20 |1 0.102882
20 | 5 0.483013 20 | 5 0.406633 20 | 5 0.270397
20 | 6 0.501935 20 | 6 0.427752 20 | 6 0.288112
20 | 7 0.514013 20 | 7 0.443034 20 | 7 0.302280
20 | 8 0.521837 20 | 8 0.454480 20 | 8 0.314078
20 | 9 0.527001 20 | 9 0.463350 20 | 9 0.324239

20 | 10 | 0.530487
20 | 20 | 0.539056
20 | 23 | 0.536637
20 | 24 | 0.534629
20 | 25 | 0.531723
20 | 30 | 0.496828
20 | 40 | 0.303269

20 | 50 | 0.100662

20 | 10 | 0.470445
20 | 20 | 0.503555
20 | 23 | 0.505475
20 | 24 | 0.504751
20 | 25 | 0.503074
20 | 30 | 0.473883
20 | 40 | 0.291581
20 | 50 | 0.097079

20 | 10 | 0.333223
20 | 20 | 0.392352
20 | 23 | 0.401815
20 | 24 | 0.403611
20 | 25 | 0.404492
20 | 30 | 0.389547
20 | 40 | 0.245413
20 | 50 | 0.082501
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Table 2

k | n A PC k | n A pPC k | n A pPC

3|40 | 0.5 | 0.111936 5 | 40 | 0.5 | 0.090938 9 | 40 | 0.5 | 0.054679
3140 |1 0.199589 5140 | 1 0.163222 9 |40 |1 0.098874
3140 |5 0.473349 5140 | 5 0.407494 9 |40 | 5 0.264533
3140 | 6 0.491550 5140 | 6 0.427956 9 |40 | 6 0.282854
3140 | 7 0.503066 5140 | 7 0.442541 9 |40 | 7 0.297673
3140 | 8 0.510445 5140 | 8 0.453287 9 | 40 | 8 0.310104
314019 0.515251 5140 |9 0.461470 9 |40 | 9 0.320845
3|40 | 10 0.518443 5140 | 10 0.467905 9 | 40 | 10 0.330344
3|40 | 20 0.525681 5140 | 20 0.496240 9 | 40 | 20 0.391331
3] 40 | 23 0.523170 5 1 40 | 23 0.497304 9 | 40 | 23 0.400646
3140 | 24 0.521170 5 | 40 | 24 0.496358 9 | 40 | 24 0.402364
3|40 | 25 0.518302 51 40 | 25 0.494492 9 | 40 | 25 0.403161
3140 | 30 0.484159 5 1 40 | 30 0.465009 9 | 40 | 30 0.387821
3 | 40 | 40 0.295461 5 | 40 | 40 0.285629 9 | 40 | 40 0.243892
3 | 40 | 50 0.098061 5 | 40 | 50 0.095034 9 | 40 | 50 0.081916
3160 | 0.5 | 0.111434 5 ] 60 | 0.5 | 0.092835 9 | 60 | 0.5 | 0.057982
3160 |1 0.198630 5160 |1 0.166471 9 160 |1 0.104780
3160 |5 0.470003 5160 |5 0.412540 9160 |5 0.278513
3160 |6 0.487858 5160 |6 0.432535 9 60| 6 0.297256
3160 |7 0.499092 5160 | 7 0.446588 9 |60 |7 0.312250
3160 |8 0.506240 5160 | 8 0.456783 9 60| 8 0.324692
31609 0.510854 5160 |9 0.464428 9 160 |9 0.335333
3160 | 10 0.513888 5 1 60 | 10 0.470351 9 | 60 | 10 0.344653
3160 |20 0.520387 || 5 | 60 | 20 0.495276 9 | 60 | 20 0.402512
3160 | 23 0.517814 5 1 60 | 23 0.495767 9 | 60 | 23 0.410819
3160 | 24 0.515811 5160 | 24 0.494664 9| 60 | 24 0.412203
3|60 | 25 0.512951 51 60 | 25 0.492660 9 | 60 | 25 0.412664
3160 | 30 0.479087 5 1 60 | 30 0.462763 9 | 60 | 30 0.395588
3|60 | 40 0.292324 5 1 60 | 40 0.283934 9 | 60 | 40 0.247849
3] 60 | 50 0.097015 5 1 60 | 50 0.094430 9 | 60 | 50 0.083117

4. Conclusion

The ISRE of the disturbance variance is not better than s2, except for some particular
A values. For example for k = 3 and for n = 10, n = 20, n = 40 and for n = 60 the ISRE
of the disturbance variance is superior (i.e. PC ([762., 32) > 0.5) to the usual estimator of
the disturbance variance just for 5 < A < 30,6 < A <25, 7< A <25 and for 8 < \ < 25,
respectively. Here, as n increases, the intervals for the dominance of 62 decreases.

When the non-centrality parameter \ is small the regression is not significant unless
the sample size is very large. Conversely, if A\ is large the regression is significant and
the error variance is quite small. The results will be of greatest practical importance for
intermediate values of A\. So, especially in such cases, the researcher is concerned with
which estimator is better. And here, from the tables, it can be seen that the strength of
the ISRE of the disturbance variance over the usual estimator of the disturbance variance
increases for the intermediate values of .



356 D. Unal, G. Yiiksel

For k = 5, these intervals for A are getting narrower. For example for n = 10 and
n = 20, PC’(&E, 52) > 0.5 for 10 < X <30 and 20 < A < 25, respectively.

For k =9 and n = 10, PC’(&E7 32) > 0.5 for 5 < X\ < 30, much as for £k = 3 and n = 10.
But here the probabilities are greater than the probabilities for £ = 3 and n = 10.

For k£ > 9 there is no situation that makes PC(&§752) > 0.5. This means that the
usual estimator of the disturbance variance is superior to the ISRE of the disturbance
variance for all values of £ > 9.

Although Ohtani [5] showed that s? is superior to the ISRE of the disturbance variance
for £k > 5 using the MSE criterion, we have found the same result for £k > 9 using the
PN criterion. So it can be said that this result is compatible with Ohtani’s result [5],
which compared the ISRE of the disturbance with the usual estimator of the disturbance
variance using the MSE criterion.

Acknowledgement We thank the referee and Prof. Dr. Olcay Arslan for providing
constructive comments that have helped improve the contents of this paper.

References

[1] James, W. and Stein, C. Estimation with quadratic loss, Proceedings of the Fourth Berkeley
Symposium in Mathematical Statistics and Probability, 361-379, 1961.

[2] Keating, J.P. and Czitrom, V. A comparison of James-Stein regression with least squares
in the Pitman nearness sense, Journal of Statistical Computation and Simulation 34, 1-9,
1989.

(3] Keating, J.P. and Mason,R.L. Closeness comparison of classical and inverse regression
estimators, Computational Statistics and Data Analysis 12, 4-11, 1991.

[4] Keating, J.P., Mason, R. L. and Sen, P. K. Pitman’s measure of closeness: a comparison of
statistical estimators (Society for Industrial and Applied Mathematics, Philadelphia, 1993).

(5] Ohtani, K. Inadmisibility of the Iterative Stein-rule estimator of the disturbance variance
in a linear regression. Economics Letters 24, 51-55, 1987.

[6] Ohtani, K. and Wan, T.K.A. Comparison of the Stein and the usual estimators for the
regression error variance under the Pitman nearness Criterion when variables are omitted.
Statistical Papers, 10.1007/s00362-007-0047-6, 2007.

[7] Peddada, S.D. A short note on Pitman’s measure of nearness, The American Statistician
39 (4), 298-299, 1985.

[8] Pitman, E.J.G. The closest estimates of statistical parameters, Proceedings of the Cam-
bridge Philosophical Society 33, 212—-222, 1937.

[9] Rao, C.R. Some comments on the minimum mean square error as a criterion of estimation.
In: Csorge M, Dawson, D. A., Rao, J. N. K. and Saleh, A. K. MdE (eds) Statistics and related
topics (North Holland, Amsterdam, 1981), 123-143.

[10] Unal, D. The effects of the prozy information on the iterative Stein-rule estimator of the
disturbance variance, Statistical Papers, 10.1007/s00362-009-0220-1, 2009



