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Abstract

In this study, bootstrap percentile confidence intervals for the actual
error rate have been obtained with respect to the bootstrap estimated
values of the estimators D, DS, L, LS, O, OS and M . Estimated
values for these estimators have been obtained by a simulation study for
two multivariate normal populations with different mean vectors and a
common variance-covariance matrix. Moreover, traditional confidence
intervals for the actual error rate were obtained based on the analytic
form of the estimator M . In general, bootstrap percentile intervals are
narrower than the traditional intervals obtained with respect to the
analytic form of the estimator M . Narrower intervals are desired which
will be relatively consistent with the parameter. It is shown that some
statistical properties of the estimators can be obtained by the bootstrap
method.

Keywords: Discriminant analysis, Error rate, Bootstrap, Percentile intervals.

2000 AMS Classification: 62 F 40, 62 H30, 65 C60.

1. Introduction

Discriminant analysis is a statistical technique in which an experimenter makes a
number of measurements on an individual and wishes to classify this individual into one of
several known populations or categories on the basis of these measurements. It is assumed
that the individual can come from a finite number of populations. Each population
is characterized by the probability distribution of a random vector X associated with
the measurements. When the probability distributions are completely known, then the
problem is reduced to identifying the allocation rule. If the type of the distribution with
unknown parameters is given, then the problem is to identify the allocation rule with
respect to the estimation of the parameters which are estimated from related samples.
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The main goal of discriminant analysis is to obtain an allocation procedure with minimum
error. According to this optimization criterion, it is important to know the probability
of the misclassification or error rate for the evaluation of the allocation rules. The
probability of misclassification is calculated based on whether the parameters of the
distribution are known or not, the sample size and the allocation rule. Useful references
for these kind of problems are [1, 13, 14, 15, 21, 24, 29, 31], among many others.

Let Π1 and Π2 be two different populations, and X = (X1, X2, . . . , Xp)′ a p dimen-
sional random vector with observed value x ∈ R

p. If X is drawn from Πi, then the
probability density function of X is fi(x, θi); where θi, i = 1, 2, is a vector of parameters.
The classification problem is to determine a partition of the sample space into two regions
R1 and R2 with R1 ∪ R2 = R

p and R1 ∩ R2 = ∅. If an observed value x lies in R1, then
the item with measurement x is allocated to Π1, otherwise it is allocated to Π2.

When an item is allocated, an error will occur if the item is allocated to a popu-
lation other than its real population. It is expected that the best allocation rule will
allocate items with a minimum error. In general three error rates have been discussed in
discriminant analysis; Optimal, Actual and Expected Actual error rates.

In the literature there are many parametric and nonparametric error rate estimators
for the actual error rate. In general, the analytic form of the distributions of some of these
estimators are not available and thus statistical inferences for these parameters are not
possible. Therefore we cannot make some statistical inferences for parameters of these
distributions. However, an analytical expression is available for the estimator M [22, 23,
24]. Various techniques, such as the Bootstrap, Jackknife and Cross Validation can be
used to obtain the values of the parameters [4, 6, 9]. Bootstrap is a resampling method
depending on data and in the literature it has been used to get confidence intervals, too
[7, 8, 17, 18, 24, 30, 34].

In this study, bootstrap percentile confidence intervals for the actual error rate have
been obtained by using the bootstrap method with respect to the error rate estimators
D, DS, L, LS, O, OS and M [1, 13, 15, 20, 21, 24, 29, 31]. These are well known
parametric error rate estimators in the literature. Moreover, confidence intervals for the
actual error rate have been obtained based on the analytic form of the estimator M . The
bootstrap estimates and the estimates obtained from the analytical expression based on
the estimator M are compared using a simulation.

Section 2 and 3 introduce the concept of allocation rules and error rates. In Section 4,
some error rate estimators are discussed and Section 5 gives an equality for confidence
intervals of the actual error rate with respect to the estimator M . Finally, in Section 6,
the procedure for estimating bootstrap percentile confidence intervals for the actual error
rate is described. The paper concludes with a simulation.

2. Allocation (classification) rules

Allocation rules are constructed using a Linear Discriminant Function (LDF) which
was obtained by the likelihood ratio criteria given in [33]. Let Π1 and Π2 be two multi-
variate normal populations with known mean vectors µ

1
, µ

2
, and a common covariance

matrix Σ. The rule, known as the optimal classification rule, which minimizes the total
probability of misclassification, is given by

(2.1) ξ :

{
U(x) > k classify x into Π1

otherwise classify x into Π2
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where

(2.2) U(x) =

[
x − 1

2
(µ

1
+ µ

2
)

]′

Σ−1(µ
1
− µ

2
)

is the population LDF obtained from the ratio of two multivariate normal joint probability
density functions f1(x; (µ

1
, Σ)), f2(x; (µ

2
, Σ)) and k = ln(q2/q1) where the qi’s are the

prior probabilities of whether the i th observation belongs to the population Πi or not
(i = 1, 2).

When the parameters µ
1
, µ

2
and Σ are unknown, the optimal classification rule eval-

uated by using the sample LDF ξ̂ given by

(2.3) ξ̂ :

{
W (x) > k classify x into Π1

otherwise classify x into Π2

where

(2.4) W (x) =

[
x − 1

2
(x1 + x2)

]′

s−1(x1 − x2)

is the sample LDF which is obtained by the plugging the estimated values x1, x2 and s
into the population LDF. They are calculated based on the sizes n1 and n2 of the training
samples from the populations Π1 and Π2, respectively [1, 20]. Note that x1, x2 and s

refer to realizations of the random vectors X1, X2 and the random matrix S. Here, the
prior probabilities are taken to be equal, which will trivially give k = 0.

3. Error rates

In the allocation procedure, if an individual is misclassified then an error is made.
The purpose of discriminant analysis is to allocate individuals with a minimum error.

Error rates have been obtained with respect to the distribution of the discriminant
function [28]. There are several different types of error rate associated with the allocation
rules given in Section 2. These are the optimal, actual (or conditional) and expected
actual (or unconditional) error rates.

The optimal error rate is obtained for the rule given in equation (2.1). This is the error
rate that would occur when the parameters are known. The actual error rate is given
by the rule in (2.3) which is conditional on the estimated parameters. If the expected
value operator is defined with respect to all possible training samples, then the expected
actual error rate is the expectation of the actual error rate. Useful references are [1, 15,
20, 21, 22, 23, 24, 26, 29].

When the parameters of the multivariate normal distributions are known, then the
distribution of U(X) is, for (i = 1, 2), univariate normal with means (−1)i(−∆2/2) and
common variance ∆2, where ∆2 is the Mahalanobis square distance between the two
populations, and is given by

(3.1) ∆2 = (µ
1
− µ

2
)′Σ−1(µ

1
− µ

2
).

The distribution of W (X) is derived under some conditions given in [1, 15, 23, 25, 27,
32], but is very complicated to implement. Consequently, most of the work associated
with the error rates has assumed that the sample estimates x1, x2 and s are fixed. The
conditional distribution of W (X) with respect to the these values can be obtained by
plugging the estimated values in place of the estimators in the expression for W (X).
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When X ∼ Np(µ
i
, Σ), the conditional distributions of W (X) are univariate normals with

means
[
µ

i
− 1

2
(x1 + x2)

]′

s−1(x1 − x2)

and the common variance

(x1 − x2)
′s−1Σ s−1(x1 − x2)

[20]. If a random observation from Π1 is misclassified to Π2, the optimal error rate
according to the ξ rule given in (2.1) is

(3.2)
τ1(ξ) = P (U(X) ≤ 0/X ∈ Π1)

= Φ(−∆/2).

Similarly, the actual error rate according to the rule ξ̂ given in (2.3) is

(3.3)

τ1(ξ̂) = P (W (X) ≤ 0/X ∈ Π1, x1, x2, s)

= Φ

(
−

[
µ

1
− 1

2
(x1 + x2)

]′
s−1(x1 − x2

[(x1 − x2)
′s−1Σs−1(x1 − x2)]

1/2

)
,

and the expected actual error rate which is the expectation of the actual error rate with
respect to all possible samples taken from the populations is given by

(3.4) E(τ1(ξ̂)) = E [P (W (X) ≤ 0/X ∈ Π1)] ,

where Φ( . ) is the cumulative distribution function of the standard normal distribution
[16, 22, 24, 26]. If the observation are taken from Π2 and allocated to Π1, the expres-
sions will be similar. When the prior probabilities are assumed to be equal for the two
populations, the total probability of misclassification for optimal and actual error rates
are given by

(3.5) τ (ξ) =
1

2
(τ1(ξ) + τ2(ξ))

and

(3.6) τ (ξ̂) =
1

2
(τ1(ξ̂) + τ2(ξ̂)),

respectively.

Note the hierarchy associated with these error rates: the optimal error rate is a func-
tion only of the distributions of X for the two populations, the actual error rate is a
function of the distributions of X and the particular training samples selected and the
expected actual error rate is a function of the distributions of X and the training sample
sizes [29].

4. Some error rate estimators

Error rates are calculated based on the distributions of the discriminant functions, but
the distribution of the sample LDF based on unknown parameters is quite complicated
and thus an analytical expressions for the error rates becomes difficult. Under some
conditions, the distribution of the sample LDF is available and it is not very practical to
use [1, 15, 23, 25, 27, 29, 32]. Therefore the values of the error rates have been estimated
by different error rate estimators, which will be explained below. Each of the methods
of error rate estimation described in this section is given a symbol to identify it. The
estimators are referred to by τ̂ with that symbol as a superscript.

Here the widely used error rate estimators D, DS, L, LS, O, OS and M , defined in
literature, will be considered. These are known as the parametric error rate estimators
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and mainly depend on the assumption of normality for a given data set. Under normality,
the actual error rate is a known function of the unknown population parameters. If the
random observation is taken from Π1 and allocated to Π2, analytical expressions for these
error rate estimators are given as follows. Similar expressions can also be given when
the observation is taken from Π2 and allocated to Π1. For more details about error rate
estimators, one can look at in [1, 21, 24].

The Error Rate Estimator D.

This estimator was first proposed by Fisher [11] and was obtained by plugging the
estimators of the unknown parameters in the actual error rate given in (3.3). Therefore,
it is also known as a plug-in estimator and is given by

(4.1) τ̂D

1 = Φ

{

−
[
X1 − 1

2
(X1 + X2)

]′
S−1(X1 − X2)

[
(X1 − X2)

′S−1SS−1(X1 − X2)
]1/2

}

= Φ

{
−D

2

}
,

where D2 is the estimator of the Mahalanobis square distance, as mentioned in (3.1).

The Error Rate Estimator DS.

The estimator D2 is biased for ∆2 and therefore an unbiased estimator (DS)2 = c1D
2

is used [21]. This error rate estimator is obtained from the estimator D by setting

(4.2) τ̂DS

1 = Φ

{
−√

c1
D

2

}
,

where c1 =
n1 + n2 − p − 3

n1 + n2 − 2
.

The Error Rate Estimator L.

In [19], Lachenburch gives approximate expressions for the actual error rate. In these
expressions, replacing the unknown parameter ∆2 by D2 gives the L type error rate
estimator as follows:

(4.3) τ̂L

1 = Φ




−
c2
2

(D2 − p(n2−n1)
n1n2√

c3(D2 + p(n1+n2)
n1n2

)




 ,

where c2 =
n1 + n2 − 2

n1 + n2 − p − 3
and c3 =

(n1 + n2 − 3)(n1 + n2 − 2)2

(n1 + n2 − p − 2)(n1 + n2 − p − 3)(n1 + n2 − p − 5)
.

The Error Rate Estimator LS.

In the expression given for the error rate estimator L, use (DS)2 instead of D2 to get
the estimator LS as follows:

(4.4) τ̂LS

1 = Φ




−
1
2
(D2 − c2

p(n2−n1)
n1n2√

c3
c2

(D2 + p(n1+n2)
n1n2

)




 ,

where c2 and c3 are given in (4.3) [19].

The Error Rate Estimator O.

In [25], Okamoto gives an asymptotic expansion for the actual error rate. Then,
Anderson [1] uses the estimator D2 for the unknown parameter ∆2 as follows:

(4.5) τ̂O

1 = Φ

{
−D

2

}
+ ϕ

{
−D

2

}
{E1 + E2 + E3} ,
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where ϕ{·} is the probability density function of the standard normal distribution and

E1 =

[
D
16

+ 3(p−1)
4D

]

n1
, E2 =

[
D
16

− (p−1)
4D

]

n2
, and E3 =

[
D(p − 1)

4(n1 + n2 − 2)

]
.

The Error Rate Estimator OS.

Replacing D2 by (DS)2 in the O estimator gives the OS estimator [1] as

(4.6) τ̂OS

1 = Φ

{
−√

c1
D

2

}
+ ϕ

{
−√

c1
D

2

}
{F1 + F2 + F3} ,

where F1 =

[√
c1D

16
+ 3(p−1)

4
√

c1D

]

n1
, F2 =

[√
c1D

16
− (p−1)

4
√

c1D

]

n2
, and F3 =

[ √
c1D(p − 1)

4(n1 + n2 − 2)

]
.

The Error Rate Estimator M .

Mclachlan [22] considered an asymptotically unbiased error rate estimator for the
actual error rate as follows:

(4.7)

τ̂M

1 = Φ

{
−D

2

}
+ ϕ

{
D

2

}
[(p − 1) /Dn1

+ D
{
4 (4p − 1) − D2

}
/ (32 (n1 + n2 − 2))

+ {(p − 1) (p − 2)} /
(
4Dn2

1

)

+
(p − 1)

(64n1 (n1 + n2 − 2))

{
−D3 + 8(2p + 1)D +

(
16

D

)}

+
(D/12288)

(n1 + n2 − 2)2
{
3D6 − 4 (24p + 7) D4

+ 16
(
48p2 − 48p − 53

)
D2 + 192 (−8p + 15)}].

5. Confidence intervals for the actual error rate depending on the
estimator M

Analytical expressions for statistical properties of the error rate estimator M are
available in the literature [22, 24]. McLachlan [23] considers an approximated 100(1 −
α)% confidence interval estimation of the actual error rate depending on the estimator
M for samples taken from two multivariate normal distributions under the equality of
prior probabilities and variance-covariance matrices. This approximated 100(1 − α)%
confidence interval has the following form

(5.1) τ1(ξ̂) : τ̂M

1 ±
{√

v1(DS)
}

Φ−1 (1 − α/2) ,

where DS is defined in (4.2) and Φ−1 (1 − α/2) is the 100 (1 − α/2) % percentile of the
standard normal distribution function. The interval is based on the result that for suffi-
ciently large separate samples sizes n1 and n2, the distribution of τ̂M

1 − τ1(ξ̂) is approxi-
mately normal with zero mean and variance v1(∆) given by

(5.2)

v1(∆) =
{
φ

(
∆
2

)}2
[

1
n1

+
(∆2/8)
n1+n2

+

{
∆2+4(3p−4)(p2−4p+5)(16/∆2)

(4n1)2

}

+

{
(∆2−2p)/8

n1n2

}
+

{
∆4+2(11p−16)∆2+8(5p−4)

64n1(n1+n2−2)

}

+
{

2∆6+16(2p−5)∆4−32(4p−13)∆2

32(n1+n2−2)2

} ]
.
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If the observation is taken from Π2 and allocated to Π1 a similar confidence interval for
τ2(ξ̂) is obtained just by interchanging n1 with n2 in τ1(ξ̂).

Here, we take equal sample sizes, (n1 = n2). In this case, v1(DS) = v2(DS) = v(DS)

and then the 100(1 − α)% approximated confidence interval estimation of τ (ξ̂) is given
by

(5.3) τ (ξ̂) : τ̂M ±
{√

v(DS)
}

Φ−1 (1 − α/2) ,

where τ (ξ̂) is given in (3.6). We will called this type of interval a traditional confidence

interval.

6. Bootstrap percentile intervals

The bootstrap is a computer intensive method of approximating the unknown sam-
pling distribution on any estimator, and it involves repeated resampling of the observed
data [2, 4, 10]. Timmerman and Ter Braak [30] indicate that the method is an alter-
native to analytically derived results because it does not need complicated derivations,
and it usually relies on much weaker assumptions. The bootstrap method can be im-
plemented nonparametrically by using the empirical distribution function constructed
from the original data, or parametrically by using the bootstrap cumulative distribution
function constructed from the familiar parametric distributions [5,7].

Since the distribution of the error rate estimators is not known, we attempted to
use the nonparametric bootstrap procedure. There are many studies on the bootstrap
computations such as [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 24, 30], among many others.

Bootstrapping has been applied widely in statistics when analytical derivations of the
distribution of an estimator are intractable, and it can be found to generate distributions
close to the underlying true distributions. If analytical expressions for some parameter
estimators or statistical properties of these estimators are not available, estimated values
of these estimators can be obtained by bootstrapping.

In general, Timmerman and Ter Braak [30] point out that the bootstrap procedure is
carried out in three steps: First, resampling from the sample data is used to imitate the
sampling process from the population. Secondly, the resampling reveals the bootstrap
distribution of the statistic of interest and finally, the bootstrap distribution is used to
estimate inferential information, like confidence intervals.

The bootstrap method is also a useful procedure in forming confidence intervals. Dif-
ferent approaches have been proposed to estimate confidence intervals. The first main
class of bootstrap confidence intervals is based on the bootstrap standard error which is
the standard deviation of the bootstrap distribution and includes the normal, pivotal and
the studentized pivotal intervals. On the other hand, the bootstrap confidence intervals
are based on a percentile of the bootstrap distribution, which includes the percentile and
adjusted percentile intervals. Here, we only consider percentile type confidence intervals
because they are both range preserving and transformation respecting. Range preserv-
ing would mean that the confidence intervals produced are within the allowable range of
the statistics, and transformation respecting would imply that the estimated confidence
intervals of a monotonically transformed statistic would match the estimated ones of the
untransformed statistic [2, 8, 10, 24, 30 ,34].

The bootstrap technique can be used in discriminant analysis to get the bootstrap
type estimated confidence intervals of the actual error rate with respect to different error
rate estimators given in Section 4.

We take two samples with sizes n1 and n2 from populations Π1 and Π2, respectively.
For each of these samples, the number B of new replications with the same number n1 and
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n2 of observations have been taken randomly by replacement. These B observed samples
are called the bootstrap samples for each population. From the bootstrap samples, the
new observed samples of size B for any error rate estimator of the actual error rate is
τ̂ 1, τ̂ 2, . . . , τ̂B, where τ̂ b is a b th, (b = 1, 2, . . . , B), estimated value of the error rate
estimators given in Section 4. Ordering the error rates as

τ̂ (1) ≤ τ̂ (2) ≤ · · · ≤ τ̂ (B),

a 100(1−α)% level bootstrap percentile interval from these ordered observations for the
actual error rate is obtained with respect to the error rate estimator of interest. Thus,
the observed error rate values are assumed to be (α/2) and (1 − α/2) percentiles levels
according to the ordered observations for the lower and upper bounds of the percentile
interval.

7. A simulation study and discussion

In this section, a simulation study have been carried out to evaluate the bootstrap

percentile confidence intervals for the actual error rate, τ (ξ̂), by using the bootstrap es-
timated values of the estimators based on D, DS, L, LS, O, OS and M . Traditional
confidence intervals are also obtained with respect to the analytic expression given based
on the estimator M . A simulation study with 10000 replicates was used from two multi-
variate normal populations with different mean vectors and common variance-covariance
matrix. Simulations were performed for the values p = 2, 3, 5, n1 = n2 = 50, 100, 250
and ∆ = 1, 2, 3. For each dataset, bootstrap samples were obtained with B = 1000
(Efron [8] generally recommends a B of 1000 or more for accurate confidence intervals).

In order to obtain the traditional confidence intervals of the actual error rate, τ (ξ̂),
with respect to the estimator M , the confidence level was set as (1 − α) = 0.95. The
Simulation results are given in Tables 1-9.

As can be seen from the tables, when the size of the samples is increased the estimated
values of all estimators approximate to a real value of the actual error rate, and thus
the estimators are consistent. For all cases, the estimated values of the actual error
rate obtained by bootstrapping are both less than the direct estimates of the error rate
estimators, and also less than the real value of the actual error rate. Thus we observe that
bootstrapping is underestimating the actual error rate. Also, the Bootstrap percentile
intervals are narrower than the traditional confidence intervals obtained with respect to
the estimator M in all cases. This does not mean that the bootstrap percentile intervals
are better than the traditional confidence intervals. However, if traditional confidence
intervals cannot be obtained analytically, then the bootstrap percentile intervals can be
preferred. Values of the confidence bounds for the traditional intervals are given in the
Tables.

When the sample sizes increase, the intervals become narrower for both cases. Thus
the bootstrap percentile intervals and the traditional confidence intervals obtained based
on the estimator M are consistent with each other. That is, the interval bounds for both
cases are close to each other. In other words, confidence bounds obtained based on the
bootstrapping technique become close to the traditional bounds when the sample size
increases. For small samples, the results seems to be inconsistent and therefore these
simulation results are not given in the tables.

If the population means are well separated from each other (∆ large), the value of
the error rate decreases and therefore the confidence bound for the error rate becomes
narrower. On the other hand, the dimension has no effect on the confidence bounds.
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Finally, when statistical properties of the error rate estimators given Section 4 are
not available, statistical inferences for the estimators could possibly be obtained by the
bootstrap technique.

Table 1. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 1, p = 2)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.3037 0.2971 (0.0367) 0.2256 0.3683

DS 0.3064 0.2999 (0.0363) 0.2290 0.3702

L 0.3131 0.3064 (0.0378) 0.2230 0.3804

50 0.3140 LS 0.3157 0.3091 (0.0374) 0.2364 0.3822

O 0.3090 0.3025 (0.0375) 0.2299 0.3758

OS 0.3062 0.2996 (0.0379) 0.2263 0.3738

M 0.3139 0.3074 (0.0385) 0.2334 0.3832

Traditional interval based on the estimator M : (0.2126, 0.4153)

D 0.3064 0.3031 (0.0261) 0.2522 0.3542

DS 0.3077 0.3045 (0.0259) 0.2538 0.3553

L 0.3112 0.3079 (0.0266) 0.2562 0.3601

100 0.3112 LS 0.3125 0.3093 (0.0264) 0.2578 0.3611

O 0.3091 0.3058 (0.0263) 0.2545 0.3575

OS 0.3077 0.3044 (0.0265) 0.2528 0.3564

M 0.3115 0.3082 (0.0266) 0.2564 0.3606

Traditional interval based on the estimator M : (0.2401, 0.3829)

D 0.3077 0.3064 (0.0164) 0.2740 0.3389

DS 0.3082 0.3069 (0.0164) 0.2746 0.3393

L 0.3096 0.3083 (0.0165) 0.2757 0.3411

250 0.3096 LS 0.3101 0.3088 (0.0165) 0.2763 0.3415

O 0.3087 0.3074 (0.0165) 0.2749 0.3401

OS 0.3082 0.3069 (0.0165) 0.2743 0.3396

M 0.3097 0.3084 (0.0165) 0.2758 0.3448

Traditional interval based on the estimator M : (0.2646, 0.3548)

Table 2. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 2, p = 2)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.1561 0.1514 (0.0289) 0.0974 0.2083

DS 0.1589 0.1550 (0.0289) 0.1008 0.2119

L 0.1622 0.1574 (0.0295) 0.1022 0.2190

50 0.1623 LS 0.1659 0.1610 (0.0295) 0.1057 0.2125

O 0.1597 0.1549 (0.0292) 0.1002 0.2088

OS 0.1559 0.1512 (0.0292) 0.0968 0.2157

M 0.1621 0.1573 (0.0297) 0.1017 0.2372

Traditional interval based on the estimator M : (0.0870, 0.2372 )
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Table 2. Continued

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.1572 0.1548 (0.0207) 0.1156 0.1956

DS 0.1590 0.1566 (0.0207) 0.1174 0.1974

L 0.1602 0.1578 (0.0209) 0.1182 0.1991

100 0.1605 LS 0.1620 0.1596 (0.0209) 0.1200 0.2008

O 0.1590 0.1566 (0.0208) 0.1172 0.1975

OS 0.1571 0.1547 (0.0208) 0.1154 0.1956

M 0.1602 0.1578 (0.0210) 0.1180 0.1991

Traditional interval based on the estimator M : (0.1072, 0.2132 )

D 0.1583 0.1573 (0.0132) 0.1320 0.1833

DS 0.1590 0.1580 (0.0132) 0.1328 0.1840

L 0.1595 0.1585 (0.0133) 0.1331 0.1846

250 0.1594 LS 0.1602 0.1593 (0.0133) 0.1339 0.1853

O 0.1590 0.1580 (0.0133) 0.1327 0.1841

OS 0.1583 0.1573 (0.0133) 0.1320 0.1833

M 0.1595 0.1585 (0.0133) 0.1331 0.1846

Traditional interval based on the estimator M : (0.1259, 0.1931)

Table 3. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 3, p = 2)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.0661 0.0635 (0.0180) 0.0322 0.1006

DS 0.0690 0.0663 (0.0184) 0.0342 0.1040

L 0.0700 0.0672 (0.0186) 0.0347 0.1055

50 0.0693 LS 0.0730 0.0702 (0.0190) 0.0368 0.1090

O 0.0684 0.0657 (0.0184) 0.0337 0.1035

OS 0.0654 0.0629 (0.0180) 0.0316 0.1000

M 0.0692 0.0654 (0.0188 0.0337 0.1050

Traditional interval based on the estimator M : (0.0240, 0.1145)

D 0.0666 0.0653 (0.0131) 0.0417 0.0919

DS 0.0681 0.0667 (0.0132) 0.0428 0.0936

L 0.0685 0.0671 (0.0133) 0.0431 0.0942

100 0.0680 LS 0.0700 0.0686 (0.0134) 0.0443 0.0959

O 0.0678 0.0686 (0.0132) 0.0426 0.0933

OS 0.0663 0.0650 (0.0131) 0.0414 0.0917

M 0.0682 0.0668 (0.0134) 0.0457 0.0940

Traditional interval based on the estimator M : (0.0363, 0.0873)
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Table 3. Continued

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.0666 0.0660 (0.0083) 0.0505 0.0828

DS 0.0671 0.0666 (0.0084) 0.0510 0.0835

L 0.0673 0.0668 (0.0084) 0.0511 0.0837

250 0.0673 LS 0.0679 0.0673 (0.0084) 0.0516 0.0843

O 0.0670 0.0665 (0.0084) 0.0509 0.0834

OS 0.0664 0.059 (0.0083) 0.0503 0.0827

M 0.0672 0.0666 (0.0084) 0.0510 0.08536

Traditional interval based on the estimator M : (0.0471, 0.0873)

Table 4. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 1, p = 3)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.2987 0.2879 (0.0355) 0.2168 0.3580

DS 0.3024 0.2917 (0.0350) 0.2215 0.3608

L 0.3118 0.3007 (0.0369) 0.2271 0.3741

50 0.3182 LS 0.3153 0.3043 (0.0369) 0.2317 0.3766

O 0.3083 0.2974 (0.0369) 0.2241 0.3713

OS 0.3044 0.2933 (0.0374) 0.2193 0.3682

M 0.3176 0.3064 (0.0385) 0.2307 0.3844

Traditional interval based on the estimator M : (0.2150, 0.4201)

D 0.3042 0.2988 (0.0257) 0.2480 0.3494

DS 0.3060 0.3006 (0.0256) 0.2502 0.3509

L 0.3110 0.3055 (0.0264) 0.2537 0.3577

100 0.3133 LS 0.3128 0.3073 (0.0262) 0.2558 0.3591

O 0.3091 0.3036 (0.0263) 0.2520 0.3555

OS 0.3072 0.3017 (0.0264) 0.2498 0.3540

M 0.3137 0.3082 (0.0268) 0.2556 0.3614

Traditional interval based on the estimatorM : (0.2418, 0.3855)

D 0.3069 0.3047 (0.0166) 0.2724 0.3371

DS 0.3076 0.3054 (0.0166) 0.2732 0.3377

L 0.3096 0.3075 (0.0168) 0.2748 0.3403

250 0.3105 LS 0.3103 0.3082 (0.0168) 0.2756 0.3409

O 0.3088 0.3066 (0.0168) 0.2741 0.3393

OS 0.3081 0.3059 (0.0168) 0.2733 0.3387

M 0.3106 0.3084 (0.0169) 0.2757 0.3415

Traditional interval based on the estimator M : (0.2655, 0.3558)
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Table 5. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 2, p = 3)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.1538 0.1468 (0.0285) 0.0934 0.2031

DS 0.1588 0.1517 (0.0286) 0.0979 0.2079

L 0.1624 0.1551 (0.0294) 0.0999 0.2130

50 0.1648 LS 0.1673 0.1600 (0.0294) 0.1045 0.2177

O 0.1598 0.1526 (0.0291) 0.0979 0.2101

OS 0.1548 0.1477 (0.0291) 0.0933 0.2052

M 0.1648 0.1574 (0.0299) 0.1012 0.2163

Traditional interval based on the estimator M : (0.0893, 0.2404)

D 0.1559 0.1524 (0.0205) 0.1134 0.1930

DS 0.1584 0.1548 (0.0205) 0.1158 0.1954

L 0.1602 0.1566 (0.0208) 0.1170 0.1978

100 0.1617 LS 0.1626 0.1590 (0.0208) 0.1194 0.2001

O 0.1589 0.1553 (0.0207) 0.1160 0.1964

OS 0.1565 0.1529 (0.0207) 0.1136 0.1939

M 0.1614 0.1577 (0.0210) 0.1178 0.1993

Traditional interval based on the estimator M : (0.1082, 0.2146)

D 0.1577 0.1563 (0.0133) 0.1311 0.1822

DS 0.1588 0.1572 (0.0133) 0.1320 0.1832

L 0.1594 0.1580 (0.0133) 0.1326 0.1841

250 0.1599 LS 0.1604 0.1589 (0.0133) 0.1335 0.1850

O 0.1589 0.1575 (0.0133) 0.1321 0.1835

OS 0.1580 0.1565 (0.0133) 0.1312 0.1825

M 0.1599 0.1584 (0.0134) 0.1330 0.1846

Traditional interval based on the estimator M : (0.1263, 0.1935)

Table 6. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 3, p = 3)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.0648 0.0610 (0.0177) 0.0303 0.0972

DS 0.0688 0.0647 (0.0182) 0.0330 0.1018

L 0.0701 0.0660 (0.0186) 0.0336 0.1039

50 0.0707 LS 0.0742 0.0699 (0.0191) 0.0364 0.1086

O 0.0685 0.0645 (0.0183) 0.0326 0.1019

OS 0.0645 0.0607 (0.0178) 0.0299 0.0973

M 0.0708 0.0666 (0.0190) 0.0335 0.1053

Traditional interval based on the estimator M : (0.0254, 0.1163)
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Table 6. Continued

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.0657 0.0638 (0.0128) 0.0404 0.0901

DS 0.0677 0.0657 (0.0130) 0.0420 0.0923

L 0.0684 0.0663 (0.0131) 0.0424 0.0933

100 0.0687 LS 0.0704 0.0683 (0.0133) 0.0440 0.0995

O 0.0676 0.0656 (0.0130) 0.0418 0.0924

OS 0.0656 0.0637 (0.0128) 0.0403 0.0901

M 0.0687 0.0667 (0.0132) 0.0425 0.0939

Traditional interval based on the estimator M : (0.0368, 0.1007)

D 0.0663 0.0655 (0.0082) 0.0500 0.0823

DS 0.0671 0.0663 (0.0083) 0.0507 0.0832

L 0.0674 0.0666 (0.0083) 0.0509 0.0835

250 0.0676 LS 0.0682 0.0673 (0.0084) 0.0516 0.0843

O 0.0671 0.0663 (0.0083) 0.0506 0.0832

OS 0.0663 0.0655 (0.0082) 0.0500 0.0823

M 0.0675 0.0667 (0.0083) 0.0510 0.0837

Traditional interval based on the estimator M : (0.0474, 0.0876)

Table 7. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 1, p = 5)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.2907 0.2790 (0.0335) 0.2012 0.3408

DS 0.2965 0.2781 (0.0329) 0.2085 0.3455

L 0.3105 0.290 8(0.0353) 0.2166 0.3637

50 0.3263 LS 0.3159 0.2966 (0.0345) 0.2238 0.3678

O 0.3083 0.2886 (0.0359) 0.2139 0.3636

OS 0.3020 0.2820 (0.0364) 0.2062 0.3583

M 0.3263 0.3055 (0.0384) 0.2265 0.3870

Traditional interval based on the estimator M : (0.2169, 0.4358)

D 0.3000 0.2904 (0.0252) 0.2399 0.3404

DS 0.3028 0.2932 (0.0249) 0.2432 0.3427

L 0.3106 0.3007 (0.0261) 0.2486 0.3529

100 0.3177 LS 0.3133 0.3034 (0.0258) 0.2419 0.3550

O 0.3090 0.2992 (0.0262) 0.2471 0.3515

OS 0.3061 0.2962 (0.0264) 0.2437 0.3491

M 0.3180 0.3079 (0.0272) 0.2541 0.3627

Traditional interval based on the estimator M : (0.2434, 0.3926)
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Table 7. Continued

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.3048 0.3009 (0.0163) 0.2687 0.3332

DS 0.3059 0.3020 (0.0162) 0.2699 0.3341

L 0.3092 0.3053 (0.0166) 0.2725 0.3382

250 0.3122 LS 0.3103 0.3064 (0.0165) 0.2737 0.3391

O 0.3085 0.3045 (0.0165) 0.2718 0.3374

OS 0.3074 0.3034 (0.0166) 0.2706 0.3364

M 0.3121 0.3081 (0.0168) 0.2749 0.3415

Traditional interval based on the estimator M : (0.2662, 0.3579)

Table 8. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 2, p = 5)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.1491 0.1376 (0.0275) 0.0850 0.1927

DS 0.1566 0.1449 (0.0277) 0.0917 0.2000

L 0.1622 0.1501 (0.0289) 0.0947 0.2078

50 0.1698 LS 0.1697 0.1575 (0.0290) 0.1016 0.2150

O 0.1596 0.1476 (0.0288) 0.0926 0.2051

OS 0.1518 0.1400 (0.0286) 0.0858 0.1973

M 0.1698 0.1571 (0.0301) 0.0904 0.1927

Traditional interval based on the estimator M : (0.0904, 0.2469)

D 0.1541 0.1482 (0.0205) 0.1095 0.1884

DS 0.1578 0.1519 (0.0205) 0.1130 0.1920

L 0.1607 0.1547 (0.0210) 0.1150 0.1958

100 0.1642 LS 0.1644 0.1583 (0.0210) 0.1186 0.1994

O 0.1595 0.1534 (0.0209) 0.1139 0.1994

OS 0.1557 0.1497 (0.0209) 0.1104 0.1907

M 0.1645 0.1582 (0.0214) 0.1178 0.2002

Traditional interval based on the estimator M : (0.1106, 0.2183)

D 0.1566 0.1542 (0.0130) 0.1291 0.1800

DS 0.1581 0.1557 (0.0130) 0.1305 0.1815

L 0.1593 0.1569 (0.0131) 0.1315 0.1829

250 0.1608 LS 0.1607 0.1583 (0.0131) 0.1329 0.1844

O 0.1588 0.1564 (0.0131) 0.1310 0.1824

OS 0.1573 0.1549 (0.0131) 0.1296 0.1809

M 0.1607 0.1583 (0.0132) 0.1327 0.1846

Traditional interval based on the estimator M : (0.1270, 0.1945)
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Table 9. Estimated values and bootstrap percentile intervals
for the actual error rate (∆ = 3, p = 5)

n τ (ξ̂)
Error rate
estimators

Estimates
Bootstrap
estimates
(St. Dev.)

Bootstrap
lower

bounds

Bootstrap
upper
bounds

D 0.0662 0.0559 (0.0171) 0.0266 0.0908

DS 0.0681 0.0615 (0.0178) 0.0304 0.0976

L 0.0703 0.0634 (0.0184) 0.0313 0.1008

50 0.0737 LS 0.0765 0.0693 (0.0192) 0.0355 0.1079

O 0.0685 0.0617 (0.0182) 0.0302 0.0987

OS 0.0624 0.0561 (0.0174) 0.0263 0.0917

M 0.0739 0.0665 (0.0194) 0.0327 0.1058

Traditional interval based on the estimator M : (0.0281, 0.1198)

D 0.0643 0.0610 (0.0127) 0.0381 0.0868

DS 0.0672 0.0638 (0.0130) 0.0404 0.0901

L 0.0683 0.0648 (0.0132) 0.0410 0.0916

100 0.0702 LS 0.0713 0.0677 (0.0135) 0.0434 0.0949

O 0.0675 0.0641 (0.0131) 0.0404 0.0906

OS 0.0645 0.0612 (0.0128) 0.0381 0.0873

M 0.0701 0.0665 (0.0135) 0.0421 0.0939

Traditional interval based on the estimator M : (0.0380, 0.1021)

D 0.0658 0.0644 (0.0082) 0.0496 0.0811

DS 0.0669 0.0656 (0.0082) 0.0500 0.0823

L 0.0674 0.0660 (0.0083) 0.0503 0.0829

250 0.0681 LS 0.0685 0.0671 (0.0084) 0.0514 0.0842

O 0.0671 0.0657 (0.0083) 0.0501 0.0826

OS 0.0659 0.0645 (0.0082 0.0491 0.0813

M 0.0681 0.0667 (0.0084) 0.0509 0.0837

Traditional interval based on the estimator M : (0.0479, 0.0882)
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