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Abstract

Wright’s generalized hypergeometric function is used here to introduce
a new class of complex valued harmonic functions which are orientation
preserving and univalent in the open unit disc. Among the results pre-
sented in this paper include the coefficient bounds, distortion inequality
and covering property, extreme points and certain inclusion results for
the generalized class of functions defined here.
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1. Introduction

A continuous function f = u+iv is a complex- valued harmonic function in a complex
domain € if both v and v are real and harmonic in 2. In any simply-connected domain
D C Q, we can write f = h 4+ g, where h and g are analytic in D. We call h the analytic
part and g the co-analytic part of f. A necessary and sufficient condition for f to be
locally univalent and orientation preserving in D is that |h'(2)] > |¢g'(2)| in D (see [2]).

Denote by JH the family of functions
(1.1)  f=h+g
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which are harmonic, univalent and orientation preserving in the open unit disc U = {z :
|z| < 1} so that f is normalized by f(0) = h(0) = f.(0)—1 = 0. Thus, for f = h+7 € K,
the functions h and g analytic in U can be expressed in the following forms:

—z+Zanz7g z:bnz7 (0<b1 <1),

n=1

and f(z) is then given by

(1.2) —z+Z|an|z +Z bn|2m, (|b1] < 1).

n=1

We note that the family J{ of orientation preserving, normalized harmonic univalent
functions reduces to the well known class S of normalized univalent functions if the
co-analytic part of f is identically zero, i.e. g = 0.

Also, we denote by I{ the subfamily of H consisting of harmonic functions f = h + g
of the form

(1.3) —Z—Z|an|z +Z|b |z, (|b1] < 1).

n=1

The Hadamard product (or convolution) of two power series
(14)  ¢(z)=2z+ i An 2"
n=2
and
(1.5) Y()=z+ i pn 2"
n=2
is defined (as usual) by

n=2

For positive real parameters a1, A1,...,ap, Ap and B1, B1,...,Bq, Bg, (p,q € No = NU
{0}) satisfying the condition that

p
1+i3n—2An20,(zeU),
n=1

n=1

Wright’s generalized hypergeometric function [9]

quq{(alv A1)7 ce (O‘IM AP)? (ﬂlv B1)7 LR (ﬁth B4)§ Z] =p \I’Q[(O‘m A")l;P(ﬁm B")LCI; Z]
is defined by

n

2 al(@ms Am)1.p (B B i{H am+"Am>}{ﬁ1F(ﬁm+"Bm)}l%

n=0 =1

for €U If Ay, =1, (m=1,...,p) and By, = 1, (m = 1,...,q), then we have the
following obvious relationship:

QP\IJQ[(am71)1vp(6m71)1vq;z] = (a17' apa/817"'75q;z)

o F
(L6) Z (@)a - (ap)n 2"
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where pFo(ai1,...ap;B1,...,0q;2) is the generalized hypergeometric function (see for
details [4]) where («)y is the familiar Pochhammer symbol and

(17) Q= (H F(am)> (H F(ﬂm)) :

m=0

By using the generalized hypergeometric function, Dziok and Srivastava [4] introduced
a linear operator which was subsequently extended by Dziok and Raina [3] using the
Wright’s generalized hypergeometric function .

Let W{(am, Am)1,p; (Bm, Bm)1,q) : S — S be a linear operator defined by
Wl(em, Am)1,p; (Bms Bm)1,ql¢(2) := {2z p¥q[(am, Am)1,p; (Bms Bm)1,g; 2]} * 6(2),

then on using (1.4) and (1.7), we get
(1.8)  Wiam, Am)1.p5 (Bm; Bm)rald(2) = 2+ 3 _ on(en) An2",
n=2

where o, (1) is defined by

Ql'(ar + A1(n—1)) ... T(ap + Ap(n — 1))
(n—DIT(G + Bi(n—1))...T(8, + By(n — 1))
and € is given by (1.7).

For the sake of convenience, we use the contracted notation W¥[au] to represent the
following;:

(110) W;’[(Jq]qﬁ(z) = W[(Oé17 A1)7 RN} (0”7 AP); (ﬁh B1)7 ey (ﬂm BQ)]¢(Z)7

which is used throughout the sequel. The linear operator W2 [a1] contains the Dziok-
Srivastava operator (see [4]), and as special cases contains such further linear operators as
the Hohlov operator, Carlson-Shaffer operator, Ruscheweyh derivative operator, general-
ized Bernardi-Libera-Livingston operator and the fractional derivative operator. Details
and references about these operators can be found in [3] and [4].

(1.9)  on(ar) =

In view of the relationship (1.6), and the linear operator (1.8) for the harmonic function
f =h+7g given by (1.1), we define the operator

(1L.11) - Wilan]f(2) = Wilanh(z) + Wilenlg(2),

and introduce below a new subclass Wg ([a1], A,v) of H in terms of the operator defined
by (1.11) .

Let Wi ([aa],7) denote a subclass of H consisting of functions of the form f=h+g
given by (1.2) satisfying the condition that

(1.12) % (argWlea]f(z)) > v =Re { 2(W7laa]h/(2)) — 2(W¢[ou]g'(2)) } >,

Wilonlh(z) + (Wilenlg(2))

(z:rew; 0<0<2m; 0<r<; 0<y<1,; zGU)7

where WP[au]f(z) is given by (1.11). We also let W([eu],7) = Wa ([a1],7) N K.

In this paper, we obtain coefficient conditions for the classes Wg ([a1], v) and Wg([ou], 7).
We also establish a representation theorem, inclusion properties and distortion bounds
for the class We([oa], 7).
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2. Coefficient bounds

The following result gives a sufficient coefficient condition for a harmonic function f
to belong to the class Wg ([au], 7).

2.1. Theorem. Let f =h+g be given by (1.2). If

21 3 L 7|an| + n+7|bn|} onlar) <2

n=1

where a1 =1 and 0 <~y < 1, then f € Wy ([oa], 7).

Proof. Suppose the condition (2.1) holds true. To show that f € Wx([aa],7), we show
(in view of (1.12)) that

2 (Wg [ea] h(2))" = 2 (W [ea] g(2)) } A(2)
R ————— =Ry 2 (2€1),
{ WY aal ()Y + = (W [an] 9(2)) {B<Z>} !
and upon using (8) and (11), the expressions for A(z) and B(z) become

A(z) = 2(W7loa]h(2))" — 2(W§[ea]g(2))’

—z+§ nop(a1)anz E nonalb

n=2 n=1

and

B(Z) =z+ Z Un(al)anzn + Z a'n(ozl)EnE".

n=2 n=1

Using the fact that Re {w} >« if and only if |1 —y+w| > |1+~ — w|, it suffices to show
that

(22)  JA(z) + (1 =7)B(z)| = |A(z) = (1 +7)B(2)| = 0.

Substituting for A(z) and B(z) in (2.2), and performing elementary calculations, we find
that

[A(2) + (1 =7)B(2)| = |A(2) = (1 +7)B(2)|

> (1~ |z|{ [ Lo, |+ 22, |}on<a1>|z| }

=) {2 3 [l + -l o

n=1

=0,

which implies that f(z) € Wg([au1], 7). O

The harmonic function

1_
2.3 = n v (Z)",
(2.3) z+Z e +Z nﬂ% al)yn(z)

1

o=} o0
where Y |zn|+ > |yn| = 1, shows that the coefficient bound given by (2.1) is sharp.
n=2 n=1
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The functions of the form (2.3) are in Wx ([au],y) because

> ({nephonlen)y,, )y (2 onlen), )

oo oo
=14 |zal+ Y lynl
n=2 n=1

=2

n=1

Our next theorem gives a necessary and sufficient condition for functions of the form
(1.3) to be in the class W ([a1], 7).

2.2. Theorem. Forai =1 and 0<~vy <1, f =h+g€ Wxg([a1],7) if and only if

o [n—7 n+y
24 Y |1l + ot <2

n=1

Proof. Since Wg([a1],7v) C€ Wr([ea],7), we only need to prove the “only if” part of the
theorem. To this end, for functions f of the form (1.3), we notice that the condition

5 { 2(Wploa ]l (=) — (Wi la]g'(2)) } -
Welanlh(z) + (Wi [on]g(2))

implies that

1=z = 3 (0= on(@)anz" — 35 (n+7)on(@1)5.7"
§R n=2 - - n=1 2 0.
z— > on(a1)anz™+ Y, on(al)EnE”
n=2 n=1

The above required condition must hold for all values of z in U. Upon choosing the values
of z on the positive real axis where 0 < z = r < 1, we must have

(1=7) = 3 (0= Nonl@)anr™ " = 3 (n+7)on(en)bur"
(2.5) n=2 e > 0.
— > on(ar)anr™ 1+ 3 on(ar)bprn?t
n=2

n=1

s

If the condition (2.4) does not hold, then the numerator in (2.5) is negative for r suffi-
ciently close to 1. Hence, there exist zo = 7o in (0,1) for which the quotient of (2.5) is
negative. This contradicts the required condition for f(z) € Wy([aa],). This completes
the proof of the theorem. O

3. Distortion bounds and extreme points

By applying the condition (2.1), the following results (Theorem 3.1 and Theorem 3.3;
Corollary 3.2) giving the distortion bounds and covering result for functions belonging to
the class Wer([cu1],7y), and the extreme points of the closed convex hulls of W (1], )
denoted by clco Wg([a1],7) can be proved by using similar steps of derivation as given
in [5, 6, 7].

3.1. Theorem. Let f € W ([a1],7), then (for |z| =7 < 1),
o1 (1= 147, \ .
(1 bl)’/‘ )<2_7 2_7171)7“
< £ (2)]

<(1+0b - b .
<(1+ 1)r+a'2(oz1) (2_7 2_71)7'
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3.2. Corollary. If f(z) € Wg(lou],v). Then

w - ol < 202(01) =1 —[oa2(a1) 1]y 202(en) = 1 —[o2(en) + 1]y
{ < @ 7)ox(m) @ oaln) }

C f(U).
3.3. Theorem. A function f(z) € clco W ([a1],7) if and only if

:Z (Xnhn(2) + Yagn(2))

where
1-— n
hi(z) = z,hn(2) = 2z — mz (n>2),
gu(z) = 2+ —— 13" (n>2),

(n +7)on(a1)

Z X, +Y,)=1, X, >0andV, >0.
In particular, the extreme points of Weg([a1],7v) are {hn} and {gn}.

4. Inclusion results
The following result gives the convex combinations of the class Wy ([aa], ).

4.1. Theorem. The family W ([oa],) is closed under convex combinations.

Proof. Let fi € Wg([oa],7), (i=1,2,...), where

oo oo
2)=z=Y lainlz"+ D [binlz".
n=2 n=2

The convex combination of f; may be written as
SUTIEEEES o] D SRT) RS ol potoot) E9

(o=}
provided that > ¢;, (0 < t; < 1). Applying the inequality (2.4) of Theorem 2.2, we

i=1

f: n—7)on(a1) (iﬂamI) i ”*’Y"" 1) (Zmbm)

n=1

s e )

obtain

i=1 n=2 n=1
<Y ti=1,
i=1
and therefore, > t;f; € Wg([oua],7)- =

4.2. Theorem. Let f(z), F(z) € Wg([a1],7), (0 <6 <y < 1), then
f(2) x F(2) € Wg([eu], v) € Wg([au], 6).
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Proof. Let f(z) =z— ) |an|2" + Y [bn]Z" € Wx(jau],y) and F(z) = z— 3 |An|z" +

n=2 n=1 n=2
2. |Bn[z" € Wir([en],0). Then f(z) + F(2) = z = 3 an||An|2" + X2 [bal[Bnlz".
n=1 n=2 n=1

From the assertion that f(z)*F(z) € We([a1], d), we note that [A,| < 1 and |Bn| < 1.
and in view of Theorem 2.2 and the inequality 0 < § <~ < 1, we have

s e dlonton) g4 3 et donlon) g

1-9¢ 1-9¢
n=2 n=1
> (a n+5 a
SZ 1)| ”|+Z = ( 1)|bn|
= (n—7)on al) (n+v)on(a1)
<3 Lo, 5 e o

n=1
which implies by Theorem 2.2 that f(z) € Wg([ou], 7). Hence
f(2) % F(2) € Wg(lea], v) € Wg([au], ).
O

Lastly, we consider the closure property of the class W ([1], y) under the generalized
Bernardi-Libera -Livingston integral operatorL.(f) which is defined by

L) = L [ o, (> 1),

ZC
0
We prove the following result.
4.3. Theorem. Let f(z) € Wg([aa],v). Then Lc(f(2)) € Wg(loa), 7).

Proof. Using (1.1) and (1.3), we get

L) = < jtﬂl [h(t)+@] dt

¢
0

z

(o S )

0 0

=z — f: Anz2" + i B,z"
n=2 n=1

where
c+1 c+1
A, = P |an|; Bn = T [br|..

Hence

therefore by Theorem 2.2, L.(f(2)) € Wg([ou],7)- a

—

and since f(z) € Wx([aa],7),
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Concluding Remarks: If A,, =1, (m=1,...,p) and B, =1, (m =1,...,q) in
(1.10), then as also pointed out in Section 1, Wright’s generalized hypergeometric function
contains, as further special cases, such other linear operators as the Hohlov operator, the
Carlson-Shaffer operator, the Ruscheweyh derivative operator, the generalized Bernardi-
Libera-Livingston operator, the fractional derivative operator, and so on. The various
results presented in this paper would, therefore, provide extensions and generalizations
of those results which were considered earlier for simpler harmonic function classes(see
[5, 6, 8]). The details involved in the derivations of such specializations of the results
presented in this paper are fairly straightforward, and are left to the interested reader.
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