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Abstract

In this article, using the notion of statistical convergence, we relax the
hypotheses of the well-known theorems from classical complex analysis,
such as Weierstrass’ Theorem, Montel’s Theorem and Hurwitz’s The-
orem. So, we obtain more powerful results than the classical ones in
complex analysis.
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1. Introduction

In classical complex analysis, the theorems of Weierstrass, Montel and Hurwitz are
of great use in very many contexts. The main goal of the present paper is to relax
their strong hypotheses via the concept of A-statistical convergence, where A is a non-
negative regular summability matrix. The A-statistical convergence method is defined in
the following way. Let

A := [ajn] (j, n ∈ N := {1, 2, 3, ...})

be an infinite summability matrix. For a given (complex) sequence x := {xn}, the A-

transform of x, denoted by Ax := {(Ax)j}, is given by

(Ax)j =

∞
∑

n=1

ajnxn

provided that the series converges for each j ∈ N. We say that A is regular (see [8]) if
limj (Ax)j = L whenever limn xn = L.
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Assume that A is a non-negative regular summability matrix. Then the sequence
x = {xn} is called A-statistically convergent to L provided that, for every ε > 0,

(1.1) lim
j

∑

n: |xn−L|≥ε

ajn = 0.

We denote this limit by stA−limn xn = L (cf. [4]). Many useful properties and some other
generalizations of A-statistical convergence may be found in the papers [2, 9, 10, 11, 13].
Now we recall some basic properties of A-statistical convergence as follows:

• Actually, this convergence method is based on the concept of A-density. Recall
that the A-density of a subset K ⊂ N, denoted by δA{K}, is given by

δA{K} = lim
j

∞
∑

n=1

ajnχK (n)

provided that the limit exists, where χK is the characteristic function of K; or
equivalently

δA{K} = lim
j

∑

n∈K

ajn.

So, by (1.1), we easily see that stA − lim x = L if and only if

δA{n : |xn − L| ≥ ε} = 0

for every ε > 0.
• If we take A = C1 := [cjn], the Cesáro matrix, then A-statistical convergence

reduces to the concept of statistical convergence (cf. [3]; see also [1, 5]). In this
case, we write st − lim x = L instead of stC1 − lim x = L.

• Taking A = I , the identity matrix, A-statistical convergence coincides with
ordinary convergence, i.e., stI − lim x = lim x = L.

• Observe that every convergent sequence (in the usual sense) is A-statistically
convergent to the same value for any non-negative regular matrix A, but the
converse is not always true. Actually, in [9], Kolk proved that A-statistical
convergence is stronger than convergence when A = [ajn] is a non-negative
regular summability matrix such that

lim
j

max
n

{ajn} = 0.

So, one can construct a sequence that is A-statistically convergent but non-
convergent.

• Not all properties of convergent sequences are true for A-statistical convergence
(or statistical convergence). For instance, although it is well-known that a sub-
sequence of a convergent sequence is convergent, this is not always true for
A-statistical convergence. Another example is that every convergent sequence
must be bounded, however it does not need to be bounded for an A-statistically
convergent sequence.

• A characterization for statistical convergence, i.e., the case of A = C1, was proved
by Connor [1]: st − lim x = L if and only if there exists a subsequence {xnk

}
of x such that δ{n1, n2, . . .} = 1 and limk xnk

= L, where δ{K} := δC1{K}.
It is easy to check that a similar characterization is also valid for A-statistical
convergence when A is any non-negative regular summability matrix.

• We say that a sequence {xn} is A-statistically bounded if there exists a number
M such that δA{n : |xn| ≤ M} = 1. Then, it is easy to see that every A-
statistically bounded sequence contains an ordinary convergent subsequence.
Indeed, if x = (xn) is A-statistically bounded, then, by the definition, it has a
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bounded subsequence, say y = (yk) = (xnk
) for which δA{nk : k ∈ N} = 1. If we

apply the classical Bolzano-Weierstrass theorem to this sequence y = (yk), then
y has a convergent subsequence, say z = (zj) = (ykj

), where {kj : j ∈ N} is an
increasing index set. Since z = (zj) = (ykj

) = (xnkj
), we conclude that z is a

convergent subsequence of the original sequence x = (xn) that is A-statistically
bounded. Some related results may also be found in the papers [6, 7].

With these properties, using A-statistical convergence rather than ordinary convergence
enables us to obtain more powerful results than the classical ones. In the present paper,
we use it to obtain stronger results than some well-known theorems from classical complex
analysis, such as Weierstrass’ Theorem, Montel’s Theorem and Hurwitz’s Theorem.

We now recall some basic concepts from the complex functions theory. Let Ω be an
open set in C, the set of all complex numbers. As usual, a complex valued function f
defined on Ω is called holomorphic on Ω if, for every a ∈ Ω, there exist a neighborhood
U of a, U ⊂ Ω, and a sequence {ck}, k = 0, 1, . . ., of complex numbers such that, for any
z ∈ U , the series

∞
∑

k=0

ck(z − a)k

converges to f(z). By H(Ω) we denote the set of all holomorphic functions on Ω. Assume
that E is a discrete subset of Ω. A holomorphic function f ∈ H(Ω \ E) is said to be
meromorphic on Ω if, for any a ∈ E, there is a disc U with center a, U ⊂ Ω, and two
functions g, h ∈ H(U) such that h is not identically zero on U and (h · f)|U\E = g|U\E.
In other words, f can be locally written as the quotient of two holomorphic functions
even at points of E where it is not a priori defined. Now let Ω be a connected open set
in C and let f be a meromorphic function not identically zero on Ω. Suppose that

f(z) =

∞
∑

k=0

ck(z − a)k

is the Laurent expansion of f at a point a ∈ Ω. Then, the order orda(f) of f at a is
defined by

orda(f) = inf{k : ck 6= 0}.

Throughout the paper, we use the following sets:

U(a, r) := {u ∈ C : |u − a| < r} ,

U(a, r) := {u ∈ C : |u − a| ≤ r} ,

Cr := {u ∈ C : |u − a| = r} .

Then we obtain the following results.

1.1. Theorem (Modified Weierstrass’ Theorem). Let Ω be an open set in C and A =
[ajn] a non-negative regular summability matrix. Let {fn} be a sequence of complex valued

functions defined on Ω. Assume that

(1.2) δA {K} = 1 with K := {n : fn ∈ H(Ω)} .

If, for any compact subset D of Ω,

(1.3) stA − lim
n

‖fn − f‖D = 0

for a certain function f, where ‖·‖D denotes the usual sup-norm on D, then f belongs to

H(Ω). Moreover, the derivative f ′
n exists for every n ∈ K, and

stA − lim
n

∥

∥f ′
n − f ′

∥

∥

D
= 0
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holds for any compact subset D of Ω.

1.2. Theorem (Modified Montel’s Theorem). Let Ω be an open set in C and A = [ajn]
a non-negative regular summability matrix. Let {fn} be a sequence of complex valued

functions defined on Ω. Assume that (1.2) holds. If, for any compact subset D of Ω,

there exists a positive number MD such that

(1.4) δA

{

n : ‖fn‖D ≤ MD

}

= 1,

then there exists a subsequence {fnk
} of holomorphic functions on Ω, which converges

uniformly to a function f ∈ H(Ω) on every compact subset of Ω.

1.3. Theorem (Modified Hurwitz’s Theorem). Let Ω be a connected open set in C and

A = [ajn] a non-negative regular summability matrix. Assume that (1.2) and (1.3) hold.

If, for every n ∈ K, fn is everywhere nonzero on Ω, then, either f ≡ 0 or f has no zeros

on Ω.

1.4. Theorem. Let Ω be a connected open set in C and A = [ajn] a non-negative regular

summability matrix. Assume that (1.2) and (1.3) hold. If, for every n ∈ K, fn is injective

and f is non-constant, then f is also injective.

1.5. Remarks. If we take A = I, the identity matrix, then condition (1.3) reduces to
limn ‖fn − f‖D = 0 for every compact subset D of Ω, i.e., {fn} converges uniformly
to f on every compact subset of Ω. If we also replace (1.2) by the stronger condition
“fn ∈ H(Ω) for each n ∈ N”, then our Theorem 1.1 coincides with the classical theorem
of Weierstrass.

In order to get the theorems of Montel and Hurwitz one can make similar choices in
Theorems 1.2 and 1.3. According to our results, observe that fn does not need to be
holomorphic on Ω for each n ∈ N, additionally infinitely many terms of {fn} need not
be holomorphic on Ω provided that the A-density of the set consisting of these terms is
zero. For example, we may choose A = C1, the Cesáro matrix, and define {fn} on Ω = C

by

(1.5) fn(z) =

{

z, if n = m2, (m = 1, 2, . . .),

ez/n, otherwise.

Now take K := {n : n 6= m2, m = 1, 2, . . .}. Then it is clear that δC1{K} = 1 and
st − limn ‖fn − f‖D = 0, with f = 0 for every compact subset of C. Observe that the
sequence {fn} given by (1.5) satisfies all the hypotheses of Theorems 1.1, 1.2 and 1.3 but
not of their classical ones.

2. Proofs of the main results

Proof of Theorem 1.1. Let a ∈ Ω and r > 0 be so that U(a, r) ⊂ Ω. We may write from
(1.2) that

(2.1) δA{N \ K} = 0.

Let 0 < ρ < r. Then it follows from the Cauchy integral formula for a disc that

(2.2) fn(w) =
1

2πi

∮

Cr

fn(z)

z − w
dz for any n ∈ K and w ∈ U(a, ρ).

Observe that

∣

∣

∣

∣

1

z − w

∣

∣

∣

∣

≤
1

r − ρ
for z ∈ Cr, w ∈ U(a, ρ) and by (1.3),

stA − lim
n

‖fn − f‖Cr
= 0
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since Cr is a compact subset of Ω. So we obtain that

(2.3)

∣

∣

∣

∣

∣

∣

1

2πi

∮

Cr

fn(z)

z − w
dz −

1

2πi

∮

Cr

f(z)

z − w
dz

∣

∣

∣

∣

∣

∣

≤
1

2π

∮

Cr

|fn(z) − f(z)|

|z − w|
dz

≤
r

r − ρ
‖fn − f‖Cr

holds for every n ∈ K and w ∈ U(a, ρ). Now, given ε > 0, define the following sets:

S :=

{

n :

∣

∣

∣

∣

1

2πi

∮

Cr

fn(z)

z − w
dz −

1

2πi

∮

Cr

f(z)

z − w
dz

∣

∣

∣

∣

≥ ε

}

,

T :=

{

n : ‖fn − f‖Cr
≥

ε(r − ρ)

r

}

.

Then, by (2.3), it is clear that S ∩ K ⊆ T ∩ K, which yields
∑

n∈S∩K

ajn ≤
∑

n∈T∩K

ajn ≤
∑

n∈T

ajn for every j ∈ N.

Hence, taking the limit as j → ∞ and using the fact that stA − limn ‖fn − f‖Cr
= 0, we

get

(2.4) lim
j

∑

n∈S∩K

ajn = 0.

Furthermore, since
∑

n∈S

ajn ≤
∑

n∈S∩K

ajn +
∑

n∈S∩(N\K)

ajn ≤
∑

n∈S∩K

ajn +
∑

n∈(N\K)

ajn,

it follows from (2.1) and (2.4) that

lim
j

∑

n∈S

ajn = 0,

which means

stA − lim
n

∣

∣

∣

∣

∣

∣

1

2πi

∮

Cr

fn(z)

z − w
dz −

1

2πi

∮

Cr

f(z)

z − w
dz

∣

∣

∣

∣

∣

∣

= 0 for every w ∈ U(a, ρ),

or equivalently,

stA − lim
n

1

2πi

∮

Cr

fn(z)

z − w
dz = stA − lim

n
fn(w) = f(w) =

1

2πi

∮

Cr

f(z)

z − w
dz

for every w ∈ U(a, ρ). Therefore, f is holomorphic on U(a, ρ). Since Ω is open, we clearly
see that f ∈ H(Ω).

Now let w ∈ U(a, ρ). Then, for any n ∈ K, we may write that

f ′
n(w) =

1

2πi

∮

Cr

fn(z)

(z − w)2
dz.

Since

∣

∣

∣

∣

1

z − w

∣

∣

∣

∣

2

≤
1

(r − ρ)2
for z ∈ Cr and w ∈ U(a, ρ), we obtain that

(2.5)
∥

∥f ′
n − f ′

∥

∥

U(a,ρ)
≤

r

(r − ρ)2
‖fn − f‖Cr
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holds for every n ∈ K. Hence, applying a similar technique as used above, one can easily
obtain from (2.5) and (2.1) that

(2.6) stA − lim
n

∥

∥f ′
n − f ′

∥

∥

U(a,ρ)
= 0.

Now, for any a ∈ Ω, we choose ra > 0 such that U(a, ra) ⊂ Ω. Let ρa = 1
2
ra. In this

case, it is clear that
⋃

a∈Ω

U(a, ρa) = Ω. Assume that D is any compact subset of Ω. Then,

there exist finitely many points a1, a2, . . . , am ∈ D such that D ⊂
m
⋃

i=1

U(ai, ρai
). Hence,

(2.7)
∥

∥f ′
n − f ′

∥

∥

D
≤

m
∑

i=1

∥

∥f ′
n − f ′

∥

∥

U(ai,ρi)
, for each i = 1, 2, . . . , r and n ∈ K.

By (2.6), since

stA − lim
n

∥

∥f ′
n − f ′

∥

∥

U(ai,ρi)
= 0 for each i = 1, 2, . . . , m,

it follows from (2.7) and (2.1) that

stA − lim
n

∥

∥f ′
n − f ′

∥

∥

D
= 0.

The theorem is proved. �

Proof of Theorem 1.2. Let a ∈ Ω and r > 0 be so that U(a, r) ⊂ Ω. For any fixed n ∈ K,
we have

fn(z) =
∞

∑

k=0

ck(fn)(z − a)n,

where ck(fn) := f
(k)
n (a)

k!
, k = 0, 1, . . . By Cauchy’s inequality, there exists a positive

number M = M(r) such that

(2.8) ck(fn) ≤
M(r)

rk
for every k = 0, 1, . . . and n ∈ K.

For k = 0, since c0(fn) ≤ M(r) for every n ∈ K with δA(K) = 1, the sequence
{c0(fn)} is A-statistically bounded. So, it has an ordinary convergent subsequence, say
{

c0

(

f
n
(1)
m

)}

, where {n
(1)
m : m ∈ N} is an increasing index set whose terms are chosen

from the set K. Notice that each member of this subsequence is holomorphic on Ω. Sim-

ilarly, by induction, we can construct an index set {n
(k)
m } such that {n

(k)
m } ⊂ {n

(k−1)
m }

(k ≥ 2) and {ck(f
n
(k+1)
m

)} converges in C as m → ∞ for each k = 0, 1, . . . Therefore, the

final part of the proof immediately follows from the proof of the classical Montel theorem
(see, for instance, [12, pp. 34-35]). �

Proof of Theorem 1.3. By Theorem 1.1, it is clear that f ∈ H(Ω). For the sake of
contradiction, assume that f is not identically zero and that there is a ∈ Ω with f(a) = 0.

In this case, we get that f is non-constant. Now choose r > 0 such that U(a, r) ⊂ Ω and
U(a, r) ∩ {z ∈ Ω : f(z) = 0} = {a}. So, by the argument principle, we may write that

1

2πi

∮

Cr

f ′(z)

f(z)
dz = orda(f) ≥ 1.

On the other hand, since Cr is a compact subset of Ω, it follows from Theorem 1.1 that

stA − lim
n

∥

∥

∥

∥

f ′
n

fn

−
f ′

f

∥

∥

∥

∥

Cr

= 0,
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which implies that

(2.9) stA − lim
n

1

2πi

∮

Cr

f ′
n(z)

fn(z)
dz =

1

2πi

∮

Cr

f ′(z)

f(z)
dz 6= 0.

However, since for each n ∈ K, fn is everywhere nonzero on Ω, the argument principle
gives that

1

2πi

∮

Cr

f ′
n(z)

fn(z)
dz = 0 for each n ∈ K.

Using the fact that δA{K} = 1, we have

stA − lim
n

1

2πi

∮

Cr

f ′
n(z)

fn(z)
dz = 0,

which contradicts with (2.9). �

Proof of Theorem 1.4. By Theorem 1.1, we have f ∈ H(Ω). Suppose that f is non-
constant and there are points a, b ∈ Ω with a 6= b such that f(a) = f(b) = β. Now choose

r > 0 such that U(a, r)∪U(b, r) ⊂ Ω and U(a, r)∩U(b, r) = φ. Then, by the principle of
analytic continuation, we immediately obtain that f |U(a,r) and f |U(b,r) are non-constant.
By Theorem 1.3, for large n ∈ K, the function fn − β has a zero in U(a, r) and one in
U(b, r), so that fn is not injective for n ∈ K. This is a contradiction. �
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