
Hacettepe Journal of Mathematics and Statistics
Volume 38 (2) (2009), 185 – 198

RESEARCH INTO MULTIPLE OUTLIERS

IN LINEAR REGRESSION ANALYSIS
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Abstract

Studying the observations in regression analysis it is seen that the out-
put of regression is affected from outliers in the direction of the depen-
dent and / or the independent variables. In this paper multiple outliers
are examined in two real data sets. The results concerned with which
method can determine multiple outliers better are examined with the
help of some statistics and REC curve which can be used for determin-
ing efficiency. Also, the results are tried to support by using Monte
Carlo Simulation.
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1. Introduction

The aim of regression analysis is to form a suitable model providing an explanation
of the relationship between the dependent (Y ) and independent (Xj) variables with
the help of data. To form this model using the ordinary least squares (OLS) method
some assumptions have to be satisfied. Specifically, the errors must have zero mean and
equal variance, and be uncorrelated. If an inference is made, they must be normally
distributed. Also, there must be no complete or approximate multicollinearity between
the independent variables. The model of linear regression is given in matrix notation as
follows:

(1) Y = Xβ + ε.

The observation distances matrix (projection or hat matrix) is given by

(2) H = X
(
X ′X

)
−1

X ′,

∗Department of Statistics, Faculty of Science and Letters, Mimar Sinan F.A. University,
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and the residual is defined as

(3) e = Y − HY = Y − Ŷ.

For given n and k, k′ = k +1, Y is the (n× 1) vector of responses, X the (n× k′) matrix
of independent variables, β the (k′ × 1) vector of unknown parameters, ε the (n × 1)
vector of errors, H the (n × n) hat matrix and e the (n × 1) vector of residuals.

2. The concept of outlier and the study of a single outlier

Studying observations in regression analysis it is often seen that the output of regres-
sion is affected by observations far in the direction of the dependent variable (outlier)
and / or observations far in the direction of the independent variables (leverage) [10].

A single outlier is studied with the help of ordinary graphs and statistics. The most
used graphs in the study of a single outlier are the graphs of residual vs. each independent

variable or the graph of residual vs. fitted value (Ŷ). The most often used statistics in
the study of a single outlier are studentized or r-studentized residuals. Moreover, the
diagonal elements of the hat matrix or the Mahalanobis Distance can be used to determine
leverages. The effects of these observations on fitted parameters are studied with various
statistics, such as DFFITS, DFBETAS, Cook Distance, COVRATIO, etc. [7].

3. The study of multiple outliers

Almost all techniques used for determining a single outlier are based on removing
an observation from the data set. But, in some cases one outlier can affect another in
various ways. These effects are known as masking and swamping effects. In the presence
of the masking effect, outliers are hidden by other outliers and therefore, they cannot
be determined. In other words, for a case with two outliers, leaving one of them from
the data set can result in the other being determined as an outlier. In the presence
of the swamping effect, outliers drag the fitted line towards themselves and some other
observations can be determined as outliers because they are far from the fitted line. In
other words, for a case with two outliers, as a result of leaving one of them from the data
set the other can be determined as a good observation. In the presence of these effects
statistics used for determining single outlier cannot give true results. Therefore, various
methods insensitive to these effects are used for determining multiple outliers [4].

3.1. Forward search method. The forward search method (FSM) is a method which
has been developed to overcome the masking and swamping effects created by multiple
outliers in a data set. Two different approaches are available in the literature for the
forward search method. These are the Hadi and Simonoff Approach [8] and the Atkinson
and Riani Approach [3].

3.1.1. Hadi and Simonoff’s approach. The forward search method can be used in mul-
tiple regression with more than two independent variables. Firstly, a regression model
is formed for a data set with n observations and |ei| values are calculated. The basic
subset is formed with the observations having the least k + 1 (number of parameters in

the model) |ei| values. If B is the basic subset, β̂B is the column vector of the fitted
parameter values obtained from observations in the basic subset, and XB is the full-
ranked matrix formed by observations in the basic subset. If XB is not the full-ranked
matrix, observations are added taking into consideration the |ei| values until the matrix
has full rank. The subset M containing h = ⌊(n + k − 1) /2⌋ observations and no outliers
is determined using the steps given below, where ⌊ · ⌋ gives the integer part of the value
[8]:
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• A regression model is formed with the observations in B and

(4)

∣∣∣yi − x′

iβ̂B

∣∣∣
√

1 − x′

i (X ′

BXB)−1
xi

, i ∈ B,

∣∣∣yi − x′

iβ̂B

∣∣∣
√

1 + x′

i (X ′

BXB)−1
xi

, i /∈ B.

When calculating the values defined above the observations are given in ascend-
ing order.

• The size of the basic subset is denoted by s. If s = h, the subset M has the first
h observations. If s < h, a new basic subset is formed with the ordered s + 1
observations and the first two steps are applied again.

The forward search method continues with the subset M of size s having no outliers, by
following the steps given below [8]:

• (5) ui =






yi − x′

iβ̂M

σ̂M

√
1 − x′

i (X ′

MXM )−1
xi

, i ∈ M,

yi − x′

iβ̂M

σ̂M

√
1 + x′

i (X ′

MXM )−1
xi

, i /∈ M.

The values defined above are calculated, where β̂M is the column vector of the
fitted parameter values obtained from observations in the subset M , σ̂M is the
standard deviation obtained from observations in the subset M , and XM is the
full-ranked matrix formed by the observations in this subset.

• Observations are put in ascending order of the values |ui|, and u(s+1) is the
value |ui| in the (s + 1)-th place. If u(s+1) ≥ t(α/2(s+1),s−k), all observations for
which |ui| ≥ t(α/2(s+1),s−k) are given as outliers and the forward search method
is stopped. Otherwise, a new subset M is formed from the (s + 1) ordered
observations and these steps are applied again. If n = s + 1 the data set does
not contain any outliers.

3.1.2. Atkinson and Riani’s approach. Atkinson and Riani [3] propose that at the be-
ginning of the forward search the subset size be taken as m = k′, and that many subsets
be formed with m observations in each subset. The possible number of subsets is

(
n

k′

)
. If

this number is very large, the number of subsets are usually taken as 1000. The beginning
subset is chosen to definitely not contain an outlier and to have the least median squared
residual. The n × (k′ + 1) matrix W is given by

(6) W =





1 x11 x12 · · · x1k y1

1 x12 x22 · · · x2k y2

...
...

...
. . .

...
...

1 xn1 xn2 · · · xnk yn





and

(7) S
(m)
i1,...,im

≡ {wi1 , . . . , wim
}

are sets containing m different ordered observations, where 1 ≤ i1 ≤ · · · ≤ im ≤ n,
i1, . . . , im is the i-th observation in these sets, and wi1 is the i1-th row of the matrix W .
Also, ι′ = [i1, . . . , im] and e

i,S
(m)
ι

is the residual calculated for the i-th observation in
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S
(m)
ι . The beginning subset S

(k′)
∗ is chosen to satisfy

(8) e2

[Med.],S
(k′)
∗

= enkι

[
e2

[Med.],S
(k′)
ι

]

where e2

[a],S
(k′)
ι

is the a-th squared residual chosen from e2

i,S
(k′)
ι

, i = 1, 2, . . . , n and Med.

is the integer part of the number (n + k′ + 1) /2:

(9) Med. =
⌊(

n + k′ + 1
) /

2
⌋

.

In this approach, by adding observations to the beginning subset S
(m)
∗ , it follows that

all squared residuals
(
e2

i,S
(m)
∗

, i = 1, 2, . . . , n
)

calculated with the help of this subset

are ordered and the observation with the least squared residual is added to the subset.
Although one observation is usually added to the subset, two or more observations can
sometimes be added. The forward search method continues until all observations are
added to the subset. This method is a union of the robust and least squares fitting
methods. Therefore, if the data set has q outliers these observations enter into the subset
in the last q steps. Up to this time the residual graphs and fitted parameter values are
approximately the same. But, the variance does not stay the same. If there are no
outliers, s2

S
(m)
∗

< s2

S
(n)
∗

= s2 for m < n. As a result of an increase in the observation

number the values t decrease.

In 1994 Woodruff and Rocke stated that determining multiple outliers becomes dif-
ficult as a result of an increase in the size of the problem. Therefore, a few forward
searches may be needed to determine the outliers. Because of this a stalactite graph is
drawn to suggest some different beginning subsets. In the graph, rows show the size of
the subset and columns show the observation number. Observations having big absolute
residuals (bigger than 2 and 3) are marked with symbols in the graph. Multiple outliers
can be seen from the graph [2] for all sizes of a subset.

Apart from the forward search method, some robust fitting methods can be used for
determining multiple outliers.

3.2. The least median squares method. The least median squares (LMS) method,
which has a big breakdown point (approximately 50%), is used for finding robust fitted
values of parameters and determining multiple outliers by means of decreasing the effects
of residuals. This method is defined below [11]:

(10) LMS = min
β

[med
i

(yi − x
′

iβ)2].

3.3. Huber’s method. Multiple outliers can be determined by using some robust
methods based on an alternative function and weights. In 1981 Huber defined the weight,

(11) wi =






1, |ei/σ̂| ≤ t
t

|ei/σ̂|
, |ei/σ̂| > t

where σ̂ is the standard deviation of the residuals and t is a constant value which was
proposed as t = 2.0 by Montgomery and Peck [9].

3.4. Regression error characteristic curves. Regression Error Characteristic (REC)
curves are used for assessing quickly the relative merits of different regression functions.

These curves are drawn with the squared residuals
(
Y − Ŷ

)2
or the absolute deviations∣∣Y − Ŷ

∣∣ on the x-axis vs. the probability values on the y-axis.

Some general properties of REC curves are given below [5]:
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• REC curves enable regression functions to be compared with one another and
the model in the null hypothesis.

• The area of the REC curve gives the expected performance of the regression
model. Also, the cumulative distribution function (CDF) can be calculated with
the help of the curve. Therefore, the area over the curve (AOC) is a biased
estimation of the expected error.

• Different REC curves can drawn with squared residuals or absolute deviations.
In fact, there is no change in the relative condition of the curves.

• It can be easily determined with the help of REC curves whether different re-
gression models are similar or quite different.

• As the size of the sample goes to infinity, the AOC converges to the expected
value of the error. If e is based on absolute deviation, AOC converges to the mean
absolute deviaton (MAD); if e is based on squared residuals, AOC converges to
the mean squared error (MSE).

• The smaller the AOC, the better the regression model.

Aspects of REC curves for some special conditions are given below [5]:

• Because they are approximately preserved under monotonous transformations
REC curves can be obtained for some logarithmic transformations, square root
transformations, etc.

• If the data set has outliers, the upper part of the REC curve becomes smooth
and does not reach 1 until the tolerance of error increases.

• REC curves sometimes increase rapidly in the middle and become smooth at the
end. This condition shows a concave behaviour. A model having a REC curve
like this is probably a biased model.

In order to draw the graph the algorithm given below can be used:

(1) Absolute or squared residuals are calculated and ordered (e).

(2) e0 = 0; sum = 0;

(3) for i = 1:n

(4) if e(i) > e0

(5) plot(e0, sum/n);

(6) e0 = e(i);

(7) end

(8) sum = sum + 1;

(9) end

(10) plot(e(n), sum/n);

REC curves can be used not only for comparing regression functions but also for deter-
mining multiple outliers with the help of AOC. In the application below, AOC is taken
as a measurement of efficiency and the REC curves are used for determining multiple
outliers.

4. Applications on two real data sets

The data set in Asikgil [1] contains information about houses to let in Kadikoy-Centre
in Istanbul between August and November of the year 2005. The data set has 76 ob-
servations, 20 of which assumed to be free of outliers are chosen randomly and used for
cross-validation analysis later. The variables used in the analysis are given below:

X1: The size of the house to let (m2)
X2: The floor number of the house to let
X3: The deposit paid to the landlord (TL)
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S: Type of heating of the house to let (stove, stove using natural gas, central
heating, combined boiler)

M B1: Kitchen and bathroom of the house to let are modern and well-kept or not
B1: The house to let is near to the sea or not
Y: Rent of the house (TL)

The data set was analyzed with SPSS11.5. It was seen that the assumptions are best
satisfied for the logarithmic transformation of the variable Y .

Some groups containing suspicious observations were examined with DFFITS, COV-
RATIO and the statistics of Tatlidil [12], but a definite result could not be obtained
because of masking and swamping effects [1]. The “fwd” library of S-PLUS2000 was
then used for determining multiple outliers in the data set. Using Atkinson and Riani’s
approach, the steps showing the entry of observations to the beginning subset were as
given in Table 1.

Table 1. Entry of Observations to the Subset

Step Number (m) Obs. Number Step Number (m) Obs. Number

10 50 34 32

11 42 35 5

12 51 36 7

13 10 37 49

14 4 38 54

15 37 39 22

16 45 40 9

17 55 41 16

18 1 42 27

19 34 43 20

20 53 44 33

21 26 45 24

22 56 46 52

23 25 47 29

24 48 48 46

25 40 49 17

26 19 50 39

27 23 51 11

28 28 52 8

29 38 53 15

30 47 54 18

31 12 55 21

32 31 56 35

33 14

Using the output from S-PLUS2000 the stalactite plot based on the beginning subset is
as given in Figure 1. It can be said that observations 8, 15, 18, 21, 29, 35 and 39 are
outliers because of their large residuals compared with the other observations.
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Figure 1. Stalactite Plot for the Forward Search Method

Observation Number

1 2 3 4 5

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Step

Number

9 + + ∗

10 + + ∗ +

11 + + ∗ +

12 + + + +

13 + + + +

14 + + ∗ +

15 + + ∗

16 + + ∗

17 + + ∗ +

18 + + + +

19 + + + +

20 + + + +

21 + + + +

22 + + + +

23 + + + +

24 + + + +

25 + + + +

26 + + + +

27 + + + +

28 + + + +

29 + + + +

30 + + + +

31 + + + +

32 + + +

33 + +

34 + +

35 + + +

36 + +

37 + + ∗

38 + + ∗

39 + ∗

40 + + ∗

41 + + ∗

42 + ∗

43 + + + ∗

44 + + ∗

45 + + ∗

46 + ∗

47 + ∗

48 + ∗

49 + ∗

50 + ∗

51 + ∗

52 + + ∗

53 + + ∗

54 + ∗

55 + ∗

56 + ∗

+ : Observations having absolute residuals greater than or equal to 2

∗ : Observations having absolute residuals greater than or equal to 3



192 B. Aşıkgil, A. Erar

Combinations of suspicious observations obtained from LMS, FSM and those common
to the two methods are described below:

Research into
Multiple Outliers






LMS
{
(A) Observations 17, 18, 21, 35, 39

FSM






(B) Observations 8, 21, 35, 39

(C) Observations 8, 21, 29, 35, 39

(D) Observations 8, 15, 18, 21, 29, 35, 39

Common
{
(E) Observations 21, 35, 39

By removing these combinations of observations from the data set the changes in some
statistics were examined. The 20 observations chosen randomly at the beginning were
used for calculating PRESS (Prediction Error Sum of Squares) and MATLAB7.1 was
used for drawing the REC curves. All of the results are given in Table 2 and the graph
of the REC curves is given in Figure 2.

Table 2. Examination of Multiple Outliers

MODELS R2 σ̂ PRESS AOC

ENTIRE SET OLS 0.861 0.132 0.189 0.0134

A 0.916 0.094 0.165 0.0071

B 0.906 0.099 0.379 0.0077

C 0.892 0.099 0.206 0.0077

D 0.920 0.088 0.194 0.0060

E 0.896 0.103 0.183 0.0084

HUBER 0.886 0.119 0.180 0.0132

It can be seen from the REC curves in Figure 2 that if observations in combination (D)
are removed from the data set, AOC becomes smaller than others. Finally, the following
results are obtained regarding the examination:

(1) By taking into consideration the coefficient of determination, standart deviation
and AOC in Table 2 it can be seen that the model D is the best. But, by taking
into consideration PRESS obtained from cross-validation the model A becomes
the best. To sum up, since the most three important statistics indicate the model
D the observations in the combination (D) can be the true multiple outliers.

(2) The observations in the combination (A) are obtained from LMS and the obser-
vations in the combination (D) are obtained from the stalactite plot in FSM.

(3) Therefore, for this data set it can be said that the stalactite plot in FSM gives
better results than robust methods in determining multiple outliers.



Multiple outliers in linear regression 193

Figure 2. The Plot of REC Curves for Various Models
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We now make a similar examination of the air pollution data set given in Candan [6].
The stalactite plot based on the beginning subset is given in Figure 3. The steps showing
the entry of observations to the beginning subset are not given here.

Combinations of suspicious observations obtained from LMS, FSM and those common
to the two methods are described below:

Research into
Multiple Outliers






LMS
{
(A) Observations 2, 8, 9, 24, 26, 29, 33

FSM






(B) Observations 26, 28, 29, 33, 34, 42

(C) Observations 25, 26, 28, 29, 33, 34, 42

(D) Observations 4, 24, 25, 26, 28, 29, 33, 34, 37, 42

Common
{
(E) Observations 26, 29, 33

By removing the above combinations of observations from the data set the changes in
some statistics can be examined in Table 3 and also in Figure 4.
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Figure 3. Stalactite Plot for the Forward Search Method

Observation Number

1 2 3 4 5

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

Step

Number

8 + + ∗ ∗ ∗ ∗ + +

9 + + ∗ ∗ ∗ ∗ + +

10 + + ∗ ∗ ∗ ∗ + +

11 + + ∗ ∗ ∗ ∗ + +

12 + + ∗ ∗ ∗ ∗ + +

13 + + ∗ ∗ ∗ ∗ + +

14 + + ∗ ∗ ∗ ∗ + +

15 + + ∗ ∗ ∗ ∗ + +

16 + + ∗ ∗ ∗ ∗ + +

17 + + ∗ ∗ ∗ ∗ + +

18 + + ∗ + ∗ ∗ + +

19 + + ∗ ∗ ∗ ∗ +

20 + + ∗ ∗ ∗ ∗ +

21 + + ∗ ∗ ∗ ∗ +

22 + + ∗ + ∗ ∗ +

23 + + ∗ ∗ ∗ ∗ +

24 + + ∗ ∗ ∗ ∗ +

25 + + + ∗ ∗ ∗ ∗ + +

26 + + + ∗ ∗ ∗ ∗ + +

27 + + + ∗ ∗ ∗ ∗ + +

28 + + + ∗ ∗ ∗ ∗ + +

29 + + + ∗ ∗ + ∗ + + +

30 + + + ∗ + + ∗ + +

31 + + + ∗ + + ∗ + +

32 + + ∗ + + ∗ +

33 + + ∗ + + ∗ +

34 + ∗ + + ∗

35 + ∗ + + ∗

36 + ∗ + + ∗

37 + + ∗ + ∗ +

38 + + ∗ + + +

39 + + ∗ + ∗ + +

40 + + ∗ + ∗ + +

41 ∗ + ∗ +

42 + ∗ + ∗ +

43 + + + +

44 + + + +

45 + + + +

46 + + + +

47 + + +

48 + +

49 +

50

+ : Observations having absolute residuals greater than or equal to 2

∗ : Observations having absolute residuals greater than or equal to 3
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Table 3. Examination of Multiple Outliers

MODELS R2 σ̂ PRESS AOC

ENTIRE SET OLS 0.410 0.207 0.456 0.0346

A 0.631 0.168 0.611 0.0211

B 0.596 0.165 0.456 0.0212

C 0.634 0.157 0.532 0.0188

D 0.719 0.132 0.753 0.0131

E 0.541 0.180 0.443 0.0255

HUBER 0.339 0.219 0.400 0.0346

Figure 4. The Plot of REC Curves for Various Models
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It can be said that observations 4, 24, 25, 26, 28, 29, 33, 34, 37 and 42 are outliers
by taking into consideration Table 3 and Figure 4. Finally, it can be seen that similar
results concerned with which method can determine multiple outliers better are obtained
for both of the data sets in [1] and [6].
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5. Monte Carlo simulation

In this section a simulation study is considered in order to support our result on
which method can determine multiple outliers better. The conditions under which the
simulation was performed are:

(1) The multiple linear regression model is yi = β0 + β1x1i + β2x2i + εi,

(2) The first independent variable is generated from N(3, 1) and the second inde-
pendent variable is generated from N(2, 1),

(3) The parameter vector is β′ = [0.5 1.0 2.0],

(4) The error terms are independent and identically distributed from N(0, 1),

(5) The sample size is determined as n = 20 and 50,

(6) The percentage of outliers for each sample size is determined as 10% and 20%,

(7) Specific observations are formed as outliers which lie approximately 2σ away
from the data set for each sample size,

(8) The iteration number for each sample size is 1000.

Under these conditions, the simulation results are given in Table 4 and Table 5 for
the sample size n = 20, and in Table 6 and Table 7 for the sample size n = 50. All
observations are given in Table 4 to see the cases clearly. Only outliers are given in the
other tables. All these tables present the percentages for determining different outliers
by using Huber, LMS and FSM.

Table 4. Simulation result for n = 20 and 10% outlier

Methods

Observation Number Huber LMS FSM

1 1 5 3

2 0 2 3

3 0 1 4

4 0 1 3

5 3 6 7

6 0 3 4

7 0 5 2

8 0 1 2

9 0 2 4

10 0 2 3

11 1 2 4

12 0 3 4

13 76 80 87

14 0 4 6

15 0 1 4

16 65 80 85

17 0 1 6

18 0 3 3

19 0 2 2

20 0 0 1
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Table 5. Simulation result for n = 20 and 20% outlier

Methods

Observation Number Huber LMS FSM

5 65 82 88

11 66 84 88

13 67 79 85

16 63 80 82

Table 6. Simulation result for n = 50 and 10% outlier

Methods

Observation Number Huber LMS FSM

7 89 87 91

11 86 90 92

23 91 90 91

35 82 85 91

44 86 85 92

Table 7. Simulation result for n = 50 and 20% outlier

Methods

Observation Number Huber LMS FSM

2 71 89 88

7 67 80 85

11 64 80 83

15 66 82 82

19 67 82 83

23 64 86 85

28 67 90 91

35 60 82 84

44 68 78 82

48 73 84 88

After the simulation study it can be said that:

(1) Taking Table 4 and Table 5 (not given in full) into consideration, we see that
FSM tends to determine some non-outlier observations as outliers for small sam-
ple sizes such as n = 20.

(2) Taking Table 6 and Table 7 into consideration, we see that for big sample sizes
such as n = 50 LMS tends to approach FSM in its ability to determining outliers,

(3) Generally, FSM has a better chance than the other methods in determining
multiple outliers.
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6. Conclusion

In this paper, we have tried to determine multiple outliers by using various methods
in the presence of masking and swamping effects. We have discussed which of these
methods can determine all multiple outliers, and it has been proposed that FSM gives
better results than the other methods in determining multiple outliers.

To sum up, it can be said that the stalactite plot obtained from the output of FSM is
especially useful in determining multiple outliers.
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