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Abstract

The aim of this study is to introduce the commands we wrote for testing
the parametric logit and probit models against their semiparametric al-
ternatives in the windows based version 4.8 of the XploRe package, and
to show their applicability by using an artificial data set. This study ex-
tends the study of I. Proença and A. Werwatz (Comparing Parametric
and Semiparametric Binary Response Models, Sonderforschungsbereich
373 2000-20, Humboldt Universitaet, Berlin, 1994) in which the code
was written in the old MsDOS format of XploRe for the parametric
logit model, and only for the model with continuous explanatory vari-
ables. Here the parametric probit model and the mixed type of the
explanatory variables (continuous-discrete) are also discussed, and the
new XploRe commands generated for these types of model. Uniform
Confidence Band limits have been used as the testing criteria.
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1. Introduction

Testing the validity of model assumptions in statistical modeling is one of the most
important points to be taken into consideration by researchers. The validity test of the
assumptions related to the error term is generally ignored in discrete dependent variable
models.

The two most widely used models for binary dependent variables are the paramet-
ric probit model based on a normally distributed error term and the parametric logit
model that assumes a logistic distribution for the error term. Biased estimates and very
misleading results are obtained when the model assumptions are violated.

The use of semiparametric methods may be seen as a solution to this problem. No
other assumption is required in these models beyond the linear index restriction on the
explanatory variables. The main problem here is the difficulty of application and in-
terpretation, compared with the parametric alternatives. Therefore, the validity of the
parametric model assumptions should be tested before the analysis.

In this study, Uniform Confidence Band (UCB) limits were used as a testing crite-
ria. In the event that the parametric model is true, there will be no need to use the
semiparametric alternative and take into consideration its complicated structure.

2. The theoretical background

Most research fields of applied Econometrics and Statistics focus on the estimation
of the conditional mean function denoted by E(Y/X = x). The dependent variable Y
may be continuous or binary. If it is binary, the conditional mean function gives the
probability of observations belonging to category “1” coded in the dependent variable.
The model is generally defined as:

(1) E(Y/X = x) = P [Y = 1/X = x] ,

where X represents the vector of explanatory variables.

As mentioned above, the two popular approaches to model estimation are the fully
parametric approach and the semiparametric approach.

2.1. The parametric approach. In the parametric approach for the model given by
Eq. (1), there are a finite number of parameters (finite number of estimates of β) and
the linear index restriction (XT β) is accepted:

(2) E(Y/X = x) = P [Y = 1/X = x] = G(XT β)

Here G is a known function that represents the distribution of the error term. The
name and the parameters of the distribution are also known. As a result, a probability
expression is obtained related to the X values. Because of the linear index assumption
(XT β), the functional form of the explanatory variables is known and this approach is
called the “parametric approach”.

The parametric probit model is obtained by assuming a normally distributed error
term [G( · ) = Φ( · )]. The model is defined as,

(3) E(Y/X = x) = P [Y = 1/X = x] = Φ(XT β),

where Φ represents the standard cumulative normal distribution function.

The parametric logit model is obtained by assuming the logistic distribution for the
error term of the model [G( · ) = Λ( · )]. This model is defined as,

(4) E(Y/X = x) = P [Y = 1/X = x] = Λ(XT β) =
exp(XT β)

1 + exp(XT β)
.
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The model parameters (β’s) are estimated by the Maximum Likelihood Estimation Tech-
nique (MLE) in either model [1, 12, 14].

2.2. The semiparametric approach. In the semiparametric approach, G is an un-
known function (denoted by g) and must be estimated by the nonparametric regression of

Y on the estimated linear index xT β̂. Similar to the parametric model, the linear index
restriction is still valid here. However, estimation methods for the βs’ differ considerably
from the parametric alternatives. The model expression is given as follows:

(5) E(Y/X = x) = P [Y = 1/X = x] = g(XT β).

Various methods have been developed for the estimation of the β’s. Ichimura [9] proposed
the use of the semiparametric least square estimator of β. Klein and Spady [10] devel-
oped a quasi-maximum-likelihood estimator. The main disadvantages of these estimators
are the computational difficulty and the requirement of solving nonlinear optimization
problems iteratively. Powell, Stock and Stoker [13] developed an estimator based on the
Average Derivatives (ADE). The distribution assumption is not required for the depen-
dent variable Y and the resulting estimator is a “Direct Estimator” which is not iterative.
Its only disadvantage is that it can only be applied to continuous explanatory variables
because it has to satisfy a differentiability condition [9, 10, 13].

2.2.1. The density weighted average derivative estimator of the index parameters. As-
sume that X is a continuously distributed random vector and that G is a differentiable
function required for the identifiability of β. Under these assumptions,

(6)
∂E(Y/x)

∂x
= βG

′

(XT β)

can be derived. Additionally, for any restricted and continuous function W , we have

(7) E

[

W (X)
∂E(Y/X)

∂x

]

= βE
[

W (X)G′(XT β)
]

The left side of Eq. (7) is called the ADE with weight function W . Eq. (7) shows that the
weighted average derivative of E (Y/x) is proportional to β. Because of the requirement
of scale normalization, β is only defined according to the scale and any weighted average
derivative of E(Y/x) is equal to β. Therefore, only estimating the left side of Eq. (7) is
adequate for the estimation of β.

Dividing each component on the left side of Eq. (7) by the first component, the scale
normalization of β1 = 1 can be achieved in the semiparametric approach. The left side

of Eq. (7) can be estimated by replacing the kernel estimator of ∂E(Y/X)
∂x

and the sample
mean for the population expected value [E( · )].

2.1. Theorem. Let p( · ) be the probability density function of X and W (x) = p(x).
Then the left side of Eq. (7) can be written as follows.

(8) E

[

W (x)
∂E(Y/X)

∂x

]

= E

[

p(X)
∂E(Y/X)

∂x

]

=

∫

∂E(Y/x)

∂x
p(x)2 dx.

In this case, δ is defined as δ = E
[

W (X) ∂E(Y/X)
∂x

]

. An efficient estimator of δ can be

obtained by replacing p with a nonparametric estimator of it and replacing the expecta-
tion operator (E) with the sample mean. The estimator of δ is given as,

(9) δn = −
2

n

n
∑

i=1

Yi
∂pni(xi)

∂x
,

where {Yi, Xi; i = 1, . . . , n} denotes the sample values of the observation “i” and pni(xi)
is the estimator of the joint probability density function p(Xi). Since, the joint probability
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density function of X is used as the weight function, the resulting estimator δn is called
the “Density Weighted Average Derivative Estimator” (DWADE).

The kernel estimation of the density function of pni(xi) is given as,

(10) pni(x) =
1

n − 1

∑

j=1
j 6=i

(

1

hn

)k

K

(

x − Xj

hn

)

,

where k denotes the dimension of X, K is a multivariate kernel function with k-dimensional

component and {hn} is the series of bandwidth parameters. The formulation of ∂pni (x)
∂x

is given as follows.

(11)

∂pni(x)

∂x
=

1

n − 1

n
∑

j=1
j 6=i

(

1

hn

)k

K′

(

x − Xj

hn

) (

1

hn

)

=
1

n − 1

n
∑

j=1
j 6=i

(

1

hn

)k+1

K′

(

x − Xj

hn

)

.

Here, K′is the first order derivative of K (gradient vector). Replacing Eq. (11) in Eq. (9),
the DWADE estimator is obtained [5, 13] as follows:

(12) δn = −
2

n (n − 1)

n
∑

i=1

n
∑

j=1
j 6=i

(

1

hn

)k+1

K′

(

Xi − Xj

hn

)

Yi

2.2.2. The estimation procedure of β’s in the model with mixed explanatory variable. In
this model, discrete and continuous variables are shown by Z and X, respectively. The
conditional expectation is given as,

(13) E(Y/X = x,Z = z) = g(XT β + ZT α),

where β and α are vectors of parameters. Ichimura [9], Klein and Spady [10] and Manski
[11] proved that at least one continuous explanatory variable had to be included in the
model to achieve the identifiability of the parameters β and α. The first component of
the vector of the continuous variables is set to “1” for this reason. The parameter β can
be estimated using existing methods given in subsection 2.2. “DWADE” is used in this
study.

Horowitz and Hardle [7] developed an estimator for the parameter α. The horizontal

distance between g(v + z(i)α) and g(v + z(1)α), (i = 2, . . . , M) is used for this estimator.

Here, Sz ≡ {z(i) : i = 1, . . . , M} define the discrete random variable Z. They assumed
that g(v + zα) satisfies a weak monotonicity condition. They also assumed that there
are finite numbers v0, v1, c0 and c1 such that v0 < v1, c0 < c1, g(v + zα) < c0 for
each z ∈ Sz if v < v0 and g(v + zα) > c1 for each z ∈ Sz if v > v1. The complex
structure of the estimator is defined clearly in the study of Horowitz and Hardle [7].
Only the determination of the scalars c0 and c1 is required in the commands in XploRe.
To achieve this, the data is graphed on each level of the discrete variable and the interval
where the monotonicity condition is satisfied is determined [6, 7, 9, 10, 11].

2.2.3. The optimal bandwidth selection problem. The nonparametric regression method
is used in the estimation of the link function g and the bandwidth (h) selection problem
arises at this point. A specific method that gives the optimal bandwidth value has not
yet been determined. The Least Square Cross-Validation (CV) method given in Eq. (14)
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is used here because of its simple mathematical structure. The optimal h is obtained by
minimizing the CV function.

(14) CV (h) =
1

n

n
∑

i=1

[

Yi −

∑n
j 6=i Yj Kh (Xi − Xj)

∑n
j 6=i Kh (Xi − Xj)

)

]2

In Eq. (14), K is a kernel function, Y is the observed dependent variable values and n is
the sample size [3, 6].

In this study we firstly wrote the XploRe commands for the estimation of the β ’s in
the semiparametric model estimation on the basis of the DWADE estimator by taking
into consideration the advantages discussed in Subsection 2.2.1. Then we extended these
commands to the case of both continuous and discrete explanatory variable models.

3. The uniform confidence bands procedure

UCB were used for testing the validity of the parametric logit and probit models. The
UCB procedure generally includes the following steps.

• Firstly, the linear index function XT β is estimated using one of the estimators
introduced in Subsection 2.2.

• After the estimation of XT β, the nonparametric regression of Y on the estimated

value XT β̂ is applied.
• UCB limits are constructed based on the nonparametric estimates.

If the parametric link function lies around the nonparametric estimates between the
confidence limits, it is concluded that the use of the parametric model is appropriate for
the data. The UCB limits for the nonparametric estimate (m(x)) at point x is given as,

(14) P

{

m̂h(x) − zn, α

√

σ̂2
h ‖K‖2

2

nhf̂h(x)
≤m(x) ≤ m̂h(x) + zn,α

√

σ̂2
h ‖K‖2

2

nhf̂h(x)

}

∼= 1 − α,

where h is the optimal bandwidth parameter required for the nonparametric estimate,
σ̂2

h is the estimated variance of m(x) given by Eq. (18) and K is an arbitrary kernel
function. Gaussian, Epanechnikov and Quadratic kernels are frequently used in practice.
It is a well known fact that the choice of the kernel function does not significantly change
the estimation results. Therefore any kernel function can be used in the estimation
procedure. K′ is the first order derivative of K and ‖K‖2

2 is the second order norm of K
defined by Eq. (16). Here,

‖K‖2
2 =

∫

[K (s)]2 ds;

zn,α =

{

− log
(

− 1
2

log(1 − α)
)

(2δ log n)1/2
+ dn

}1/2(15)

dn = (2δ log n)1/2 + (2 δ log n)−1/2 log







1

2π

∥

∥

∥
K

′
∥

∥

∥

2

‖K‖2







1/2

(16)

σ̂2
h(x) =

1
n

∑n
i=1 K

(

xi−x
h

)

{yi − m̂h(x)}2

∑n
i=1 K

(

xi−x
h

)(17)

Restrictive assumptions are needed for the UCB. These assumptions are listed below.

a) The support of X is [0, 1].
b) m( · ), fX( · ) and σ( · ) are twice differentiable.
c) K is differentiable with support [-1,1] and K(−1) = K(1) = 0.
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d) hn = n−δ ; δ ∈(1/5, 1/2).

If the semiparametric link function (g) is not scaled in the same way as the parametric link
function (G), the two link functions cannot be shown on the same graph simultaneously.
The following process was followed for solving this problem [6, 8, 15].

a) β is estimated using one of the semiparametric methods.

b) Index values are computed using the estimates β̂. (υi = xiβ̂; i = 1, . . . , n).
c) The scale parameter s and constant term c of the parametric model are estimated

using yi and υi.
d) A probability estimation for observation i is obtained from ŷi = cdfn[(υi − c/s)]

and ŷi = (1 + exp(c − υi)/s)−1 for the probit and logit model, respectively.
e) The ỹi ’s are computed by applying the nonparametric regression of yi on υi,

then the link function is estimated and confidence limits are constructed.
f) ŷi, ỹi and the confidence limits are graphed against υi.

4. XploRe commands for testing the parametric models against

their semiparametric alternatives

In this section, the commands we constructed in the windows based version 4.8 of the
XploRe package for testing the parametric logit and probit models against their semi-
parametric alternatives are introduced in the case of continuous and mixed explanatory
variable models, separately. The quantlet “dwade” is used for the models with continu-
ous explanatory variables whereas the quantlet “adedis” is used for the estimation of the
discrete-continuous explanatory variable models [2, 4, 15].

4.1. Commands for testing the validity of the parametric probit model. In
this subsection, explanations of the commands we wrote for testing the validity of the
parametric probit model with continuous and mixed explanatory variables,respectively,
are given.

4.1.1. Commands for the model with continuous explanatory variable(s).

proc(cb4)=ozge()

dat=read("probit1") ; Reads the data set called “probit1” written in ASCII for-
mat.

y=dat[,3] ; Describes the column number of the dependent variable (y) in the
data set.

x=dat[,1:2] ; Describes the column number of the explanatory variables (x) in
the data set.

x=x.-mean(x) ; Centralizes x values to eliminate high correlation.
ozdeg=eigsm(cov(x)) ; Calculates the eigenvalues and eigenvectors of the covari-

ance matrix of x.
w=ozdeg.values ; Expresses the eigenvalues using matrix “w”.
v=ozdeg.vectors ; Expresses the eigenvectors using matrix “v”.
mah=v*(sqrt(1./w).*v’) ; Applies the Mahalanobis transformation.
x=x*mah ; Weights raw data matrix x by the transformation matrix “mah”.
library("smoother") ; Calls the “smoother” library for the estimation of β.
library("metrics") ; Calls the “metrics” library for the mathematical calcula-

tions.
library("plot") ; Calls the “plot” library for the graphical representation.
h=0.2*(max(x).-min(x))’ ; Describes the bandwidth value required for the esti-

mation of β.
b=dwade(x,y,h) ; Gives the semiparametric estimation using the “dwade” method.
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b=mah*b ; Gives the original values of b estimations.
b=b./abs(b[1,]) ; Normalizes all estimated b ’s dividing by the first estimated

coefficient. This normalization is required for the comparison of the estimated
parameters of the parametric probit model and the semiparametric alternative.

υi = x*b ; Gives the linear index estimation of observation i.
x=matrix(rows(x))~υi ; Adds a column matrix with entries “1” to the left side of

the matrix.

; The estimation of the scale s and constant c of the parametric probit model

library("glm") ; Calls the “glm” library for the estimation of the parametric
model.

g=glmest("bipro",x,y) ; Gives the estimations of the parametric probit model.
glmout("bipro",x,y,g.b,g.bv,g.stat) ; Gives the outputs of the parametric

probit model.
c=g.b[1,] ; Gives the first coefficient of the parametric probit model (b0).
s=g.b[2,] ; Gives the second coefficient of the parametric probit model (b1).
yhatpro=cdfn(( υi-c)/s) ; Calculates the probability of belonging to the category

“1” coded in the dependent variable for each observation using c and s values of
the probit model.

z=y~yhatpro ; Adds the yhatpro column to the right side of y.
z1= υi~yhatpro ; Adds the yhatpro column on the right side of υi.
z1sirali=sort(z1) ; Sorts the z1 values.

; Nonparametric regression of y on υi

data=υi ~y ; Adds the column matrix y to the right side of υi.
h1=regxbwsel(data) ; Gives alternative bandwidth selection methods such as Cross-

Validation, Shibata’s Model Selector, Akaike’s Information Criterion, Rice’s T
etc. The Cross-Validation method is used here.

{mh,clo,cup}=regxcb(data,h1,0.05,"gau") ; Calculates mh, the lower confidence
band (clo) limit and the upper confidence band (cup) limit at the α = 0.05 level
and with the “Gaussian” kernel function. This command provides users a chance
to change the confidence level (0.10, 0.20 etc.) and the kernel function (“epa”,
“qua”, etc).

{mh,cli,cui}=regxci(data,h1,0.05,"gau") ; Calculates mh and the pointwise
confidence intervals with level and with the “Gaussian” kernel function.

; Graphical representation of mh, yhatpro and the confidence bands

z1sirali=setmask(z1sirali,"circles","red") ; Describes the image of “z1 sir-
ali” in the graph.

mh=setmask(mh,"line","black") ; Describes the image of “mh” in the graph.
clo=setmask(clo,"line","blue","thin","dashed") ; Describes the image of “clo”

in the graph.
cup=setmask(cup,"line","blue","thin","dashed") ; Describes the image of “cup”

in the graph.
plot(z1sirali,mh,clo,cup) ; Plots “z1sirali”, “mh”, “clo” and “cup”.
endp

ozge()

4.1.2. Commands for the model with mixed explanatory variable(s).

proc(cb4)=ozge ()

dat=read("probit2") ; Reads the data set called “probit2” written in ASCII for-
mat.
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y=dat[,4] ; Describes the column number of the dependent variable (y) in the
data set.

x=dat[,1:2] ; Describes the column number of the continuous explanatory vari-
able(s) (x) in the data set.

z=dat[,3] ; Describes the column number of the discrete explanatory variable(s)
(z) in the data set.

x=x.-mean(x) ; Centralizes x values to eliminate high correlation.
ozdeg=eigsm(cov(x)) ; Calculates the eigenvalues and eigenvectors of the covari-

ance matrix of x.
w=ozdeg.values ; Expresses the eigenvalues using a matrix “w”.
v=ozdeg.vectors ; Expresses the eigenvectors using a matrix “v”.
mah=v*(sqrt(1./w).*v’) ; Applies the Mahalanobis transformation.
x=x*mah ; Weights the raw data matrix x by the transformation matrix “mah”.
library("smoother") ; Calls the “smoother” library for the estimation of β.
library("metrics") ; Calls the “metrics” library for the mathematical calcula-

tions.
library("plot") ; Calls the “plot” library for the graphical representation.
h=0.2*(max(x).-min(x))’ ; Describes the bandwidth value required for the esti-

mation of β.
{delt,alphahat,lim,hd,text}=adedis(z,x,y,h,1.5,0.2,0.8) ; Executes the

“adedis” command for the estimation of the β’s for the discrete and continuous
explanatory variables, separately. “delt” contains the β estimations of the con-
tinuous variable(s) whereas “alphahat” contains the β estimations of the discrete
one(s). Using the methods in Subsection 2.2.3, hfac = 1.5; c0 = 0.2 and c1 =
0.8 are determined.

b=mah*delt ; Shows the transformations to the original values of the estimations
of the continuous explanatory variables.

b=b./abs(b[1,]) ; Normalizes all estimated b ’s by dividing by the first estimated
coefficient. This normalization is required for the comparison of the estimated
parameters of the parametric probit model and the semiparametric alternative.

υi= x*b+z*alphahat ; Gives the linear index estimation of observation i.
x=matrix(rows(x))∼ υi ; Adds a column matrix of elements “1” to the left side

of the matrix υi.

; The estimation of the scale s and constant c of the parametric probit model

library("glm") ; Calls the “glm” library for the estimation of the parametric
model.

g=glmest("bipro",x,y) ; Gives the estimations of the parametric probit model.
glmout("bipro",x,y,g.b,g.bv,g.stat) ; Gives the outputs of the parametric

probit model.
c=g.b[1,] ; Gives the first coefficient of the parametric probit model (b0).
s=g.b[2,] ; Gives the second coefficient of the parametric probit model (b1).
yhatpro=cdfn((υi-c)/s) ; Calculates the probability of belonging to the category

“1” coded in the dependent variable for each observation using the c and s values
of the probit model.

z=yyhatpro ; Adds the yhatpro column to the right side of y.
z1=υi ∼yhatpro ; Adds the yhatpro column to the right side of υi.
z1sirali=sort(z1) ; Sorts the z1 values.

; Nonparametric regression of y on υi

data=υi ∼y ; Adds the y column matrix to the right side of υi.
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h1=regxbwsel(data) ; Gives alternative bandwidth selection methods such as Cross-
Validation, Shibata’s Model Selector, Akaike’s Information Criterion, Rice’s T
etc. The Cross-Validation method is used here.

{mh,clo,cup}=regxcb(data,h1,0.05,"gau") ; Calculates mh, the lower confidence
band (clo) limit and the upper confidence band (cup) limit at the α = 0.05 con-
fidence level and with the “Gaussian” kernel function. This command provides
the user the chance to change the confidence level (0.10, 0.20 etc.) and the kernel
function (“epa”, “qua” etc).

{mh,cli,cui}=regxci(data,h1,0.05,"gau") ; Calculates mh and pointwise con-
fidence intervals at the α = 0.05 level and with the “Gaussian” kernel function.

Graphical representation of mh, yhatpro and the confidence bands

z1sirali=setmask(z1sirali,"circles","red") ; Describes the image of “z1 sir-
ali” in the graph.

mh=setmask(mh,"line","black") ; Describes the image of “mh” in the graph.
clo=setmask(clo,"line","blue","thin","dashed") ; Describes the image of “clo”

in the graph.
cup=setmask(cup,"line","blue","thin","dashed") ; Describes the image of “cup”

in the graph.
plot(z1sirali,mh,clo,cup) ; Plots “z1sirali”, “mh”, “clo” and “cup”.
endp

ozge()

4.2. Commands for testing the validity of the parametric logit model. In this
subsection, explanations of the commands written for testing the validity of the para-
metric logit model with continuous and mixed explanatory variables are given.

4.2.1. Commands for the model with continuous explanatory variable(s).

proc(cb4)=ozge ()

dat=read("logit1") ; Reads the data set called “logit1” written in ASCII format.
y=dat[,3] ; Describes the column number of the dependent variable (y) in the

data set.
x=dat[,1:2] ; Describes the column number of the explanatory variables (x) in

the data set.
x=x.-mean(x) ; Centralizes x values to eliminate high correlation.
ozdeg=eigsm(cov(x)) ; Calculates the eigenvalues and eigenvectors of the covari-

ance matrix of x.
w=ozdeg.values ; Expresses the eigenvalues using a matrix “w”.
v=ozdeg.vectors ; Expresses the eigenvectors using a matrix “v”.
mah=v*(sqrt(1./w).*v’) ; Applies the Mahalanobis transformation.
x=x*mah ; Weights raw data matrix x by the transformation matrix “mah”.
library("smoother") ; Calls the “smoother” library for the estimation of β.
library("metrics") ; Calls the “metrics” library for the mathematical calcula-

tions.
library("plot") ; Calls the “plot” library for the graphical representation.
h=0.2*(max(x).-min(x))’ ; Describes the bandwidth value required for the esti-

mation of β.
b=dwade(x,y,h) ; Gives the semiparametric estimation of β using the “dwade”

method.
b=mah*b ; Gives the original values of the b estimations.
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b=b./abs(b[1,]) ; Normalizes all estimated b ’s by dividing by the first estimated
coefficient. This normalization is required for the comparison of the estimated
parameters of the parametric logit model and the semiparametric alternative.

υi= x*b ; Gives the linear index estimation of observation i.
x=matrix(rows(x))∼ υi ; Adds a column matrix with elements “1” to the left side

of the matrix υi.

; The estimations of the scale s and constant c of the parametric logit model

library("glm") ; Calls the “glm” library for the estimation of the parametric
model.

g=glmest("bilo",x,y) ; Gives the estimations of the parametric logit model.
glmout("bilo",x,y,g.b,g.bv,g.stat) ; Gives the outputs of the parametric logit

model.
c=g.b[1,] ; Gives the first coefficient of the parametric logit model (b0).
s=g.b[2,] ; Gives the second coefficient of the parametric logit model (b1).
yhat=(1+exp(c-vi)/s)∧-1 ; Calculates the probability of belonging to the cate-

gory “1” coded in the dependent variable for each observation using the c and s
values of the logit model.

z=y∼yhat ; Adds the yhat column to the right side of y.
z1=υi ∼yhat ; Adds the yhat column to the right side of υi.
z1sirali=sort(z1) ; Sorts the z1 values.

; Nonparametric regression of y on υi

data=υi ∼y ; Adds the y column matrix to the right side of υi.
h1=regxbwsel(data) ; Gives alternative bandwidth selection methods such as Cross-

Validation, Shibata’s Model Selector, Akaike’s Information Criterion, Rice’s T
etc. The Cross-Validation method is used here.

{mh,clo,cup}=regxcb(data,h1,0.05,"gau") ; Calculates mh, the lower confidence
band (clo) limit and upper confidence band (cup) limit at the α = 0.05 level and
with the “Gaussian” kernel function. This command provide users the chance
to change the confidence level (0.10, 0.20 etc.) and the kernel function (“epa”,
“qua” etc).

{mh,cli,cui}=regxci(data,h1,0.05,"gau") ; Calculates mh and the pointwise
confidence intervals at the α = 0.05 level and with the “Gaussian” kernel func-
tion.

; Graphical representation of mh, yhat and the confidence bands

z1sirali=setmask(z1sirali,"circles","red") ; Describes the image of “z1 sir-
ali” in the graph.

mh=setmask(mh,"line","black") ; Describes the image of “mh” in the graph.
clo=setmask(clo,"line","blue","thin","dashed") ; Describes the image of “clo”

in the graph.
cup=setmask(cup,"line","blue","thin","dashed") ; Describes the image of “cup”

in the graph.
plot(z1sirali,mh,clo,cup) ; Plots “z1sirali”, “mh”, “clo” and “cup”.
endp

ozge()

4.2.2. Commands for the model with mixed explanatory variable(s).

proc(cb4)=ozge ()

dat=read("logit2") ; Reads the data set called “logit2” written in ASCII format.
y=dat[,4] ; Describes the column number of the dependent variable (y) in the

data set.
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x=dat[,1:2] ; Describes the column number of the continuous explanatory vari-
able(s) (x) in the data set.

z=dat[,3] ; Describes the location in the data set of the discrete explanatory
variable(s) (z).

x=x.-mean(x) ; Centralizes the x values to eliminate high correlation.
ozdeg=eigsm(cov(x)) ; Calculates the eigenvalues and eigenvectors of the covari-

ance matrix of x.
w=ozdeg.values ; Expresses the eigenvalues using a matrix “w”.
v=ozdeg.vectors ; Expresses the eigenvectors using a matrix “v”.
mah=v*(sqrt(1./w).*v’) ; Applies the Mahalanobis transformation.
x=x*mah ; Weights the raw data matrix x by the transformation matrix “mah”.
library("smoother") ; Calls the “smoother” library for the estimation of β.
library("metrics") ; Calls the “metrics” library for the mathematical calcula-

tions.
library("plot") ; Calls the “plot” library for the graphical representation.
h=0.2*(max(x).-min(x))’ ; Describes the bandwidth value required for the esti-

mation of β.
{delt,alphahat,lim,hd,text}=adedis(z,x,y,h,1.5,0.2,0.8) ; Executes the

“adedis” command for the estimation of the β ’s for the discrete and continuous
explanatory variables, separately. “delt” contains the β estimations of the con-
tinuous variable(s) whereas “alphahat” contains the β estimations of the discrete
one(s). Using the methods in Subsection 2.2.3, hfac = 1.5; c0 = 0.2 and c1 =
0.8 are determined.

b=mah*delt ; Shows the transformations to the original values of the estimations
of the continuous explanatory variables.

b=b./abs(b[1,]) ; Normalizes all estimated b ’s by dividing by the first estimated
coefficient. This normalization is required for the comparison of the estimated
parameters of the parametric logit model and the semiparametric alternative.

υi= x*b+z*alphahat ; Gives the linear index estimation of observation i.
x=matrix(rows(x))∼ υi ; Adds a column matrix with elements “1” to the left side

of the matrix υi.

; The estimations of the scale s and constant c of the parametric logit model

library("glm") ; Calls the “glm” library for the estimation of the parametric
model.

g=glmest("bilo",x,y) ; Gives the estimations of the parametric logit model.
glmout("bilo",x,y,g.b,g.bv,g.stat) ; Gives the outputs of the parametric logit

model.
c=g.b[1,] ; Gives the first coefficient of the parametric logit model (b0).
s=g.b[2,] ; Gives the second coefficient of the parametric logit model (b1).
yhat=(1+exp(c-vi)/s)^ -1 ; Calculates the probability of belonging to the cate-

gory “1” coded in the dependent variable for each observation using the c and s
values of the logit model.

z=y∼yhat ; Adds the yhat column to the right side of y.
z1=υi ∼yhat ; Adds the yhat column to the right side of υi.
z1sirali=sort(z1) ; Sorts the z1 values.

; Nonparametric regression of y on υi

data=υi ∼y ; Adds the y column matrix to the right side of υi.
h1=regxbwsel(data) ; Gives alternative bandwidth selection methods such as Cross-

Validation, Shibata’s Model Selector, Akaike’s Information Criterion, Rice’s T
etc. The Cross-Validation method is used here.
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{mh,clo,cup}=regxcb(data,h1,0.05,"gau") ; Calculates mh, the lower confidence
band (clo) limit and upper confidence band (cup) limit at the α = 0.05 level and
with the “Gaussian” kernel function. This command provide users to with the
chance to change the confidence level (0.10, 0.20 etc.) and the kernel function
(“epa”, “qua” etc).

{mh,cli,cui}=regxci(data,h1,0.05,"gau") ; Calculates mh and the pointwise
confidence intervals at the α = 0.05 level and with the “Gaussian” kernel func-
tion.

; Graphical representation of mh, yhatpro and the confidence bands

z1sirali=setmask(z1sirali,"circles","red") ; Describes the image of “z1 sir-
ali” in the graph.

mh=setmask(mh,"line","black") ; Describes the image of “mh” in the graph.
clo=setmask(clo,"line","blue","thin","dashed") ; Describes the image of “clo”

in the graph.
cup=setmask(cup,"line","blue","thin","dashed") ; Describes the image of “cup”

in the graph.
plot(z1sirali,mh,clo,cup) ; Plots “z1sirali”, “mh”, “clo” and “cup”.
endp

ozge()

5. An application

In this section, the applicability of all XploRe commands was shown using an artificial
data. In the simulated data, Y is a binary variable coded as 0 and 1. X is a n×2 matrix
denoting the observed continuous variables. Z is a n×1 matrix representing the observed
discrete explanatory variable. The sample size is 80. The commands given in Section
4 were run to test the validity of the parametric probit and logit models. When the
procedures were run, an optional bandwidth selection method for the estimation of mh
(such as Cross-Validation, AIC etc.) was displayed. The UCB confidence limits are
calculated and graphed after selecting one of them.

5.1. Results for the parametric probit model with continuous explanatory

variables. Figure 1 shows the optimal bandwidth parameter value (h1 = 1.06988) ob-
tained by the cross-validation method. The optimal range of h was (0.168495-2.69523).

Figure 1. Optimal bandwidth value for the nonparametric regression of Y
on X with continuous explanatory variables
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Figure 2 shows the graph of the estimated parametric curve, nonparametric curve and
UCB limits for the α = 0.05 level and the Gaussian kernel.

Figure 2. Estimated parametric curve, nonparametric curve and UCB

limits with a 1 − α = 0.95 confidence level

In Figure 2, red circles represent the parametric link function, the black line represents
the estimated nonparametric curve and the broken blue line represents the lower and
upper UCB limits.

Because some part of the red circles lie outside the UCB limits, it is concluded that
the use of the parametric probit model is not appropriate for modeling the data and the
use of the semiparametric approach is proposed.

5.2. Results of the parametric probit model with mixed explanatory vari-

ables. As seen in Figure 3, the optimal bandwidth parameter value obtained by the
cross-validation method is (h1 = 0.386358) in this case. The optimal range of h is
(0.283922-4.54275).
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Figure 3. Optimal bandwidth value for the nonparametric regression of Y
on X with mixed explanatory variables

In Figure 4, the use of the parametric probit model is rejected again.

Figure 4. Estimated parametric curve, nonparametric curve and UCB

limits with a 1 − α = 0.95 confidence level



Testing Binary Parametric Models 213

5.3. Results of the parametric logit model with continuous explanatory vari-

ables. The optimal bandwidth parameter value obtained by the cross-validation method
is (h1 = 1.06988). The optimal range of h is (0.168495-2.69523).

Figure 5. Optimal bandwidth value for the nonparametric regression of Y
on X with continuous explanatory variables

Figure 6 suggests the use of the semiparametric approach instead of the parametric logit
model for modeling the data as in the probit model case.

Figure 6. Estimated parametric curve, nonparametric curve and UCB

limits with a 1 − α = 0.95 confidence level
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5.4. Results of the parametric logit model with mixed explanatory variables.

The optimal bandwidth parameter value obtained by the cross-validation method is (h1 =
0.386358) in this case. The optimal range of h is (0.283922-4.54275).

Figure 7. Optimal bandwidth value for the nonparametric regression of Y
on X with mixed explanatory variables

In Figure 8, the use of the parametric logit model with mixed explanatory variables is
also rejected.

Figure 8. Estimated parametric curve, nonparametric curve and UCB

limits with a 1 − α = 0.95 confidence level
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6. Conclusion

Parametric modeling is widely used in most studies because of its simplicity in in-
terpretation and application for binary responses. However, the validity of these types
of models is all based on the assumptions related to the error term. The parametric
probit model assumes a normally distributed error term whereas a logistic distribution
is required for the parametric logit model. The main problem here is to test the validity
of these assumptions. At this point, a statistical testing criterion is needed to determine
the validity of the parametric models for the data before the analysis part.

In this study, Uniform Confidence Band Limits (UCB) were used as testing criteria.
We wrote the commands for both logit and probit models and for continuous and discrete
explanatory variable cases in the Windows based version 4.8 of the XploRe package, which
is new for the statistical literature. This study extends the study of Proença and Werwatz
[15] in which the code was written for the logit model and only for continuous explanatory
variables in the old MsDOS format. The explanation of all commands was given in
Section 4. Artificial data was used with two continuous and one discrete explanatory
variable with a binary dependent variable. The XploRe commands were executed to test
the validity of the parametric probit and logit models for this data. In conclusion, the
parametric models were rejected against the semiparametric alternatives in all situations.

Due to the fact that they enable a test of the validity of the parametric probit and logit
models before the analysis part, we hope that the updated and extended version of the
commands in XploRe will be a guide to practitioners studying in this area. Additionally,
the applications given in Section 5 will help applied researchers to see the use of and the
applicability of the commands in practice.
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