GENERALIZED DERIVATIONS AS HOMOMORPHISMS OR AS ANTI-HOMOMORPHISMS IN A PRIME RING

Asma Ali^{*} and Deepak Kumar^{*}

Received 09:10:2008 : Accepted 11:12:2008

Abstract

Let R be a prime ring. Suppose that θ, ϕ are endomorphisms of R. An additive mapping $F: R \to R$ is called a generalized (θ, ϕ) -derivation if there exists a (θ, ϕ) -derivation $d: R \to R$ such that $F(xy) = F(x)\theta(y) + \phi(x)d(y)$ holds for all $x, y \in R$. Let J be a nonzero Jordan ideal of R. In the present paper we begin by proving the following: If F is a generalized (θ, ϕ) -derivation on R which acts as a homomorphism or as an anti- homomorphism on J, then either d = 0 or $J \subseteq Z(R)$.

Keywords: Jordan ideals, Torsion free rings, Derivations, Generalized derivations, Generalized (θ, ϕ) -derivations, (θ, ϕ) -derivations.

2000 AMS Classification: 16 W 25, 16 N 60, 16 U 80.

1. Introduction

Throughout R will denote an associative ring with centre Z(R). A ring R is said to be prime (resp. semiprime) if $aRb = \{0\}$ implies that either a = 0 or b = 0 (resp. $aRa = \{0\}$ implies that a = 0). For any $x, y \in R$ we shall write [x, y] = xy - yx and $x \circ y = xy + yx$. An additive subgroup J of R is said to be a Jordan ideal of R if $x \circ r \in J$ for all $x \in R$ and $r \in J$. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + xd(y), holds for all $x, y \in R$. Let θ, ϕ be endomorphisms of R. An additive mapping $d : R \to R$ is called a (θ, ϕ) -derivation if $d(xy) = d(x)\theta(y) + \phi(x)d(y)$, holds for all $x, y \in R$. An additive mapping $\delta : R \to R$ is called a left (θ, ϕ) -derivation if $\delta(xy) = \theta(x)\delta(y) + \phi(y)\delta(x)$, holds for all $x, y \in R$. An example of a (θ, ϕ) -derivation on a ring R when R has a nontrivial central idempotent e is the mapping $d : R \to R$ such that d(x) = ex, $\theta = I_R$ (or d), and $\phi(x) = (1 - e)x$ (formally). Here d is a not a derivation on R, for $d(ee) = eee \neq 2eee = (ee)e + e(ee) = d(e)e + ed(e)$. In any ring

^{*}Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India. E-mail: (Asma Ali) asma_ali2@rediffmail.com

R with endomorphism θ if we let $d = I_R - \theta$, then *d* is a (θ, I_R) - derivation, but not a derivation on *R*. An additive mapping $F : R \to R$ is called a generalized (θ, ϕ) -derivation on *R* if there exists a (θ, ϕ) -derivation $d : R \to R$ such that $F(xy) = F(x)\theta(y) + \phi(x)d(y)$ holds for all $x, y \in R$. Clearly concept of a generalized (θ, ϕ) -derivation includes the concepts of (θ, ϕ) - derivations (F = d), of derivations $(F = d \text{ and } \theta = \phi = I_R)$ and of generalized derivations $(\theta = \phi = I_R, [6])$. Hence it would be interesting if one could extend the results concerning these notions to generalized (θ, ϕ) - derivations.

Bell and Kappe [4] proved that if d is a derivation of a prime ring R which acts as a homomorphism, or as an anti-homomorphism on a nonzero ideal I of R, then d = 0 on R. Recently Asma et al [1] obtained the result in the setting of Lie ideals of a prime ring.

Further, Yenigul and Argac [7] proved the above result for α -derivations in prime rings. Ashraf et al. [2] obtained the result for (σ, τ) -derivations in prime rings.

The purpose of this paper is to extend the mentioned results for generalized (θ, ϕ) -derivations on a Jordan ideal of a prime ring.

2. Main Results

2.1. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal and a subring of R. Suppose θ is an automorphism of R and $F : R \to R$ is a generalized (θ, θ) -derivation with associated (θ, θ) -derivation d.

- (i) If F acts as a homomorphism on J, then either d = 0 on R or $J \subseteq Z(R)$.
- (ii) If F acts as an anti-homomorphism on J, then either d = 0 on R or $J \subseteq Z(R)$.

Proof. We begin with the following lemmas which are essential for developing the proof of our theorem. The proofs of Lemma 2.2 - 2.4 follow immediately from Herstein's Theorem on Jordan ideals of prime rings [5, Theorem 1.1], and that of lemma 2.5 from [3, Lemma 2].

2.2. Lemma. Let R be a prime ring and J be a nonzero Jordan ideal of R. If $a \in R$ and aJ = (0) or Ja = (0), then a = 0.

2.3. Lemma. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. If aJb = (0), then either a = 0 or b = 0.

2.4. Lemma. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. If J is a commutative Jordan ideal, then $J \subseteq Z(R)$.

2.5. Lemma. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. Suppose θ, ϕ are automorphisms of R. If R admits a (θ, ϕ) -derivation d such that d(J) = (0), then either d = 0 or $J \subseteq Z(R)$.

Going to the proof of Theorem 2.1, suppose that $J \not\subset Z(R)$.

(i) If F acts as a homomorphism on J, then we have

(2.1) $F(uv) = F(u)\theta(v) + \theta(u)d(v) = F(u)F(v), \text{ for all } u, v \in J.$

Replacing v by vw in (2.1), we get

$$F(u)\theta(v)\theta(w) + \theta(u)(d(v)\theta(w) + \theta(v)d(w)) = F(u)(F(v)\theta(w) + \theta(v)d(w)),$$

for all $u, v, w \in J$. Using (2.1), the above relation yields that $(F(u) - \theta(u))\theta(v)d(w) = 0$, for all $u, v, w \in J$. That is, $\theta^{-1}(F(u) - \theta(u))v\theta^{-1}(d(w)) = 0$, for all $u, v, w \in J$ and hence $\theta^{-1}(F(u) - \theta(u))J\theta^{-1}(d(w)) = (0)$, for all $u, w \in J$. Now Lemma 2.3 implies that either $F(u) - \theta(u) = 0$ or d(w) = 0. If $F(u) - \theta(u) = 0$, for all $u \in J$, then the relation (2.1) implies that $\theta(u)d(v) = 0$, for all $u, v \in J$. Now replace u by uw, to get $\theta(u)\theta(w)d(v) = 0$, for all $u, v, w \in J$. This implies that $uw\theta^{-1}(d(v)) = 0$ and hence $uJ\theta^{-1}(d(v)) = (0)$, for all $u, v \in J$. Again by Lemma 2.3, we have either u = 0 or d(v) = 0. Since J is a nonzero Jordan ideal, we find that d(v) = 0, for all $v \in J$. Hence Lemma 2.5 completes the proof.

(ii) If F acts as an anti-homomorphism on J, then we have

(2.2) $F(uv) = F(u)\theta(v) + \theta(u)d(v) = F(v)F(u), \text{ for all } u, v \in J.$

Replacing u by uv in (2.2), we get

(2.3) $\theta(u)\theta(v)d(v) = F(v)\theta(u)d(v)$, for all $u, v \in J$.

Substituting wu in place of u, we have $\theta(w)\theta(u)\theta(v)d(v) = F(v)\theta(w)\theta(u)d(v)$, for all $u, v \in J$. Multiplying (2.3) on the left by $\theta(w)$, we get $[F(v), \theta(w)]\theta(u)d(v) = 0$, for all $u, v, w \in J$. This implies that $\theta^{-1}([F(v), \theta(w)])u\theta^{-1}(d(v)) = 0$, for all $u, v, w \in J$. Thus, using Lemma 2.3, either d(v) = 0 or $[F(v), \theta(w)] = 0$ for all $v, w \in J$. If $[F(v), \theta(w)] = 0$ for all $w, v \in J$, then replacing v by vw in the above relation, we get $\theta(v)[d(w), \theta(w)] + [\theta(v), \theta(w)]d(w) = 0$, for all $v, w \in J$. Now replace v by uv to get $[\theta(u), \theta(w)]\theta(v)d(w) = 0$, for all $v, u, w \in J$. This gives that $[u, w]v\theta^{-1}(d(w)) = 0$, for all $v, u, w \in J$. Again by Lemma 2.3, for each $w \in J$, either [u, w] = 0 or d(w) = 0. Hence by using Braur's trick, we find that either [u, w] = 0, for all $u, w \in U$ or d(w) = 0, for all $w \in J$. If [u, w] = 0, for all $u, w \in J$, then by Lemma 2.4, J is central, a contradiction. On the other hand, if d(w) = 0, for all $w \in J$, then by Lemma 2.5 we get the required result.

2.6. Theorem. Let R be a semiprime ring and θ an automorphism on R. Suppose $F: R \to R$ is a generalized (θ, θ) -derivation with associated (θ, θ) -derivation d. If F acts as a homomorphism on R, then d = 0.

Proof. If F acts as a homomorphism on R, then we have F(xy) = F(x)F(y). This implies that

(2.4) $F(x)\theta(y) + \theta(x)d(y) = F(x)F(y)$, for all $x, y \in R$.

Replacing y by yz, we get

(2.5)
$$F(x)\theta(y)\theta(z) + \theta(x)d(y)\theta(z) + \theta(x)\theta(y)d(z) = F(x)F(y)\theta(z) + F(x)\theta(y)d(z),$$
for all $x, y \in R$.

Multiplying (2.4) on the right by $\theta(z)$, we obtain

(2.6) $F(x)\theta(y)\theta(z) + \theta(x)d(y)\theta(z) = F(x)F(y)\theta(z)$, for all $x, y \in R$.

Now Comparing (2.5) and (2.6), we have

(2.7) $\theta(x)\theta(y)d(z) = F(x)\theta(y)d(z)$, for all $x, y, z \in R$.

Substituting xz for x in (2.7), we obtain

(2.8) $\theta(x)\theta(z)\theta(y)d(z) = F(x)\theta(z)\theta(y)d(z) + \theta(x)d(z)\theta(y)d(z)$, for all $x, y, z \in R$. Replacing y by zy in (2.7), we have

(2.9) $\theta(x)\theta(z)\theta(y)d(z) = F(x)\theta(z)\theta(y)d(z)$, for all $x, y \in R$.

Comparing (2.8) and (2.9), we find that $\theta(x)d(z)\theta(y)d(z) = 0$, for all $x, y, z \in R$. Substituting yx for y we obtain $\theta(x)d(z)\theta(y)\theta(x)d(z) = 0$, for all $x, y, z \in R$, that is $\theta(x)d(z)R\theta(x)d(z) = (0)$, for all $x, z \in R$. The fact that R is semiprime yields that $\theta(x)d(z) = 0$, for all $x, z \in R$. Thus, we have $d(z)\theta(x)d(z) = 0$, for all $x, z \in R$, that is $d(z)Rd(z) = (0), x, z \in R$. Again, since R is semiprime we obtain the required result. \Box

2.7. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal and a subring of R. Suppose that θ, ϕ are automorphisms of R, and that $d: R \to R$ is a left (θ, ϕ) -derivation of R.

- (i) If d acts as a homomorphism on J, then d = 0 on R.
- (ii) If d acts as an anti-homomorphism on J, then d = 0 on R.

Proof. (i) If d acts as a homomorphism, then we have

(2.10) $d(uv) = d(u)d(v) = \theta(u)d(v) + \phi(v)d(u), \text{ for all } u, v \in J.$

Substituting vw for v in (2.10), we find that $d(u)d(v)d(w) = \theta(u)d(v)d(w) + \phi(v)\phi(w)d(u)$, for all $u, v, w \in J$. Multiplying (2.10) on the right by d(w), we obtain $d(u)d(v)d(w) = \theta(u)d(v)d(w) + \phi(v)d(u)d(w)$ for all $u, v, w \in J$. Hence we have $\phi(v)\{d(u)d(w) - \phi(w)d(u)\} = 0$, for all $u, v, w \in J$. Now using (2.10) we find that $\phi(v)\theta(u)d(w) = 0$, for all $u, v, w \in J$, that is, $v\phi^{-1}(\theta(u)d(w)) = 0$, for all $u, v, w \in J$. An application of Lemma 2.2 yields that $\phi^{-1}(\theta(u)d(w)) = 0$ i.e., $\theta(u)d(w) = 0$, for all $u, w \in J$. Thus, $u\theta^{-1}(d(w)) = 0$, for all $u, w \in J$. Again Lemma 2.2 yields that

 $(2.11) \quad d(w) = 0, \text{ for all } w \in J.$

Replacing w by wr + rw in (2.11), we obtain

(2.12) $\theta(w)d(r) + \phi(w)d(r) = 0$, for all $w \in J$, $r \in R$.

Replace w by uw in (2.12), to get $\theta(u)\theta(w)d(r) + \phi(u)\phi(w)d(r) = 0$ for all $u, w \in J, r \in R$. Multiplying (2.12) on the left by $\theta(u)$, we obtain $\theta(u)\theta(w)d(r) + \theta(u)\phi(w)d(r) = 0$ for all $u, w \in J, r \in R$. Hence we have $\{\theta(u) - \phi(u)\}\phi(w)d(r) = 0$, for all $u, w \in J, r \in R$, that is $\phi^{-1}\{\theta(u) - \phi(u)\}J\phi^{-1}d(r) = 0$, for all $u, w \in J, r \in R$. Now an application of Lemma 2.3 yields that either $\theta(u) - \phi(u) = 0$ or d(r) = 0, for all $u \in J$ and $r \in R$. If $\theta(u) = \phi(u)$, for all $u \in J$, then the relation (2.12) implies that $2\theta(u)d(r) = 0$, for all $u \in J$ and $r \in R$. Since R is 2-torsion free, $\theta(u)d(r) = 0$, i.e., $u\theta^{-1}(d(r)) = 0$, for all $u \in J$ and $r \in R$. Lemma 2.2 yields that $\theta^{-1}(d(r)) = 0$ i.e., d(r) = 0, for all $r \in R$. Hence, in both the cases d = 0.

(ii) If d acts as an anti-homomorphism on J, then

(2.13) $d(uv) = d(v)d(u) = \theta(u)d(v) + \phi(v)d(u), \text{ for all } u, v \in J.$

Replacing u by u^2 in (2.13), we have $d(v)d(u)d(u) = \theta(u)\theta(u)d(v) + \phi(v)d(u)d(u)$, for all $u, v \in J$. Multiplying (2.13) by d(u) on the right, we get $d(v)d(u)d(u) = \theta(u)d(v)d(u) + \phi(v)d(u)d(u)$, for all $u, v \in J$. Hence we obtain $\theta(u)\{d(v)d(u) - \theta(u)d(v)\} = 0$, for all $u, v \in J$. Using (2.13), we obtain $\theta(u)\phi(v)d(u) = 0$, that is, $\phi^{-1}(\theta(u))J\phi^{-1}(d(u)) = (0)$, for all $u \in J$. An application of Lemma 2.3 yields that either $\theta(u) = 0$ or d(u) = 0, that is u = 0 or d(u) = 0, for all $u \in J$. But u = 0 yields that d(u) = 0, for all $u \in J$. Using similar arguments to those used to get d = 0 from (2.7), we get the required result.

References

- Ali, A., Rehman, N. and Shakir, A. On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101, 79–82, 2003.
- [2] Ashraf, M., Rehman, N. and Quadri, M. A. On (σ, τ)-derivations in certain classes of rings, Rad. Mat. 9, 187–192, 1999.
- [3] Aydin, N. and Kaya K. Some generalization in prime rings with (σ, τ)-derivations, Doga Tr. J. Math. 16,169–176, 1992.
- [4] Bell, H. E. and Kappe, L. C. Rings in which derivations satisfy certain algebraic conditions, Acta. Math. Hungar. 53, 339–346, 1989.
- [5] Herstein, I. N., Topics in Ring Theory (Univ. Chicago Press, Chicago, 1969).
- [6] Hvala, B. Generalized derivations in rings, Comm. Algebra 26 (4), 1147–1166, 1998.
- [7] Yenigul, M. and Argac, N. On prime and semiprime rings with α-derivations, Turk. J. Math. 18, 280–284, 1994.

20