GENERALIZED DERIVATIONS AS HOMOMORPHISMS OR AS ANTI-HOMOMORPHISMS IN A PRIME RING

Asma Ali* and Deepak Kumar*

Received $09: 10: 2008$: Accepted $11: 12: 2008$

Abstract

Let R be a prime ring. Suppose that θ, ϕ are endomorphisms of R. An additive mapping $F: R \rightarrow R$ is called a generalized (θ, ϕ)-derivation if there exists a (θ, ϕ)-derivation $d: R \rightarrow R$ such that $F(x y)=F(x) \theta(y)+$ $\phi(x) d(y)$ holds for all $x, y \in R$. Let J be a nonzero Jordan ideal of R. In the present paper we begin by proving the following: If F is a generalized (θ, ϕ)-derivation on R which acts as a homomorphism or as an anti- homomorphism on J, then either $d=0$ or $J \subseteq Z(R)$.

Keywords: Jordan ideals, Torsion free rings, Derivations, Generalized derivations, Generalized (θ, ϕ)-derivations, (θ, ϕ)-derivations.
2000 AMS Classification: $16 \mathrm{~W} 25,16 \mathrm{~N} 60,16 \mathrm{U} 80$.

1. Introduction

Throughout R will denote an associative ring with centre $Z(R)$. A ring R is said to be prime (resp. semiprime) if $a R b=\{0\}$ implies that either $a=0$ or $b=0$ (resp. $a R a=\{0\}$ implies that $a=0$). For any $x, y \in R$ we shall write $[x, y]=x y-y x$ and $x \circ y=x y+y x$. An additive subgroup J of R is said to be a Jordan ideal of R if $x \circ r \in J$ for all $x \in R$ and $r \in J$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$, holds for all $x, y \in R$. Let θ, ϕ be endomorphisms of R. An additive mapping $d: R \rightarrow R$ is called a (θ, ϕ)-derivation if $d(x y)=d(x) \theta(y)+\phi(x) d(y)$, holds for all $x, y \in R$. An additive mapping $\delta: R \rightarrow R$ is called a left (θ, ϕ)-derivation if $\delta(x y)=\theta(x) \delta(y)+\phi(y) \delta(x)$, holds for all $x, y \in R$. An example of a (θ, ϕ)-derivation on a ring R when R has a nontrivial central idempotent e is the mapping $d: R \rightarrow R$ such that $d(x)=e x, \theta=I_{R}$ (or d), and $\phi(x)=(1-e) x$ (formally). Here d is a not a derivation on R, for $d(e e)=e e e \neq 2 e e e=(e e) e+e(e e)=d(e) e+e d(e)$. In any ring

[^0]R with endomorphism θ if we let $d=I_{R}-\theta$, then d is a $\left(\theta, I_{R}\right)$ - derivation, but not a derivation on R. An additive mapping $F: R \rightarrow R$ is called a generalized (θ, ϕ)-derivation on R if there exists a (θ, ϕ)-derivation $d: R \rightarrow R$ such that $F(x y)=F(x) \theta(y)+\phi(x) d(y)$ holds for all $x, y \in R$. Clearly concept of a generalized (θ, ϕ)-derivation includes the concepts of (θ, ϕ) - derivations $\left(F=d\right.$), of derivations ($F=d$ and $\theta=\phi=I_{R}$) and of generalized derivations $\left(\theta=\phi=I_{R},[6]\right)$. Hence it would be interesting if one could extend the results concerning these notions to generalized (θ, ϕ) - derivations.

Bell and Kappe [4] proved that if d is a derivation of a prime ring R which acts as a homomorphism, or as an anti-homomorphism on a nonzero ideal I of R, then $d=0$ on R. Recently Asma et al [1] obtained the result in the setting of Lie ideals of a prime ring.

Further, Yenigul and Argac [7] proved the above result for α-derivations in prime rings. Ashraf et al. [2] obtained the result for (σ, τ)-derivations in prime rings.

The purpose of this paper is to extend the mentioned results for generalized (θ, ϕ) derivations on a Jordan ideal of a prime ring.

2. Main Results

2.1. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal and a subring of R. Suppose θ is an automorphism of R and $F: R \rightarrow R$ is a generalized (θ, θ)-derivation with associated (θ, θ)-derivation d.
(i) If F acts as a homomorphism on J, then either $d=0$ on R or $J \subseteq Z(R)$.
(ii) If F acts as an anti-homomorphism on J, then either $d=0$ on R or $J \subseteq Z(R)$.

Proof. We begin with the following lemmas which are essential for developing the proof of our theorem. The proofs of Lemma 2.2-2.4 follow immediately from Herstein's Theorem on Jordan ideals of prime rings [5, Theorem 1.1], and that of lemma 2.5 from [3, Lemma 2].
2.2. Lemma. Let R be a prime ring and J be a nonzero Jordan ideal of R. If $a \in R$ and $a J=(0)$ or $J a=(0)$, then $a=0$.
2.3. Lemma. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. If $a J b=(0)$, then either $a=0$ or $b=0$.
2.4. Lemma. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. If J is a commutative Jordan ideal, then $J \subseteq Z(R)$.
2.5. Lemma. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. Suppose θ, ϕ are automorphisms of R. If R admits $a(\theta, \phi)$-derivation d such that $d(J)=(0)$, then either $d=0$ or $J \subseteq Z(R)$.

Going to the proof of Theorem 2.1, suppose that $J \nsubseteq Z(R)$.
(i) If F acts as a homomorphism on J, then we have

$$
\begin{equation*}
F(u v)=F(u) \theta(v)+\theta(u) d(v)=F(u) F(v), \text { for all } u, v \in J . \tag{2.1}
\end{equation*}
$$

Replacing v by $v w$ in (2.1), we get

$$
F(u) \theta(v) \theta(w)+\theta(u)(d(v) \theta(w)+\theta(v) d(w))=F(u)(F(v) \theta(w)+\theta(v) d(w))
$$

for all $u, v, w \in J$. Using (2.1), the above relation yields that $(F(u)-\theta(u)) \theta(v) d(w)=0$, for all $u, v, w \in J$. That is, $\theta^{-1}(F(u)-\theta(u)) v \theta^{-1}(d(w))=0$, for all $u, v, w \in J$ and hence $\theta^{-1}(F(u)-\theta(u)) J \theta^{-1}(d(w))=(0)$, for all $u, w \in J$. Now Lemma 2.3 implies that either $F(u)-\theta(u)=0$ or $d(w)=0$. If $F(u)-\theta(u)=0$, for all $u \in J$, then the relation (2.1) implies that $\theta(u) d(v)=0$, for all $u, v \in J$. Now replace u by $u w$, to get $\theta(u) \theta(w) d(v)=0$, for all $u, v, w \in J$. This implies that $u w \theta^{-1}(d(v))=0$ and hence $u J \theta^{-1}(d(v))=(0)$, for
all $u, v \in J$. Again by Lemma 2.3, we have either $u=0$ or $d(v)=0$. Since J is a nonzero Jordan ideal, we find that $d(v)=0$, for all $v \in J$. Hence Lemma 2.5 completes the proof.
(ii) If F acts as an anti-homomorphism on J, then we have

$$
\begin{equation*}
F(u v)=F(u) \theta(v)+\theta(u) d(v)=F(v) F(u), \text { for all } u, v \in J . \tag{2.2}
\end{equation*}
$$

Replacing u by $u v$ in (2.2), we get

$$
\begin{equation*}
\theta(u) \theta(v) d(v)=F(v) \theta(u) d(v), \text { for all } u, v \in J \tag{2.3}
\end{equation*}
$$

Substituting $w u$ in place of u, we have $\theta(w) \theta(u) \theta(v) d(v)=F(v) \theta(w) \theta(u) d(v)$, for all $u, v \in J$. Multiplying (2.3) on the left by $\theta(w)$, we get $[F(v), \theta(w)] \theta(u) d(v)=0$, for all $u, v, w \in J$. This implies that $\theta^{-1}([F(v), \theta(w)]) u \theta^{-1}(d(v))=0$, for all $u, v, w \in$ J. Thus, using Lemma 2.3, either $d(v)=0$ or $[F(v), \theta(w)]=0$ for all $v, w \in J$. If $[F(v), \theta(w)]=0$ for all $w, v \in J$, then replacing v by $v w$ in the above relation, we get $\theta(v)[d(w), \theta(w)]+[\theta(v), \theta(w)] d(w)=0$, for all $v, w \in J$. Now replace v by $u v$ to get $[\theta(u), \theta(w)] \theta(v) d(w)=0$, for all $v, u, w \in J$. This gives that $[u, w] v \theta^{-1}(d(w))=0$, for all $v, u, w \in J$. Again by Lemma 2.3, for each $w \in J$, either $[u, w]=0$ or $d(w)=0$. Hence by using Braur's trick, we find that either $[u, w]=0$, for all $u, w \in U$ or $d(w)=0$, for all $w \in J$. If $[u, w]=0$, for all $u, w \in J$, then by Lemma 2.4, J is central, a contradiction. On the other hand, if $d(w)=0$, for all $w \in J$, then by Lemma 2.5 we get the required result.
2.6. Theorem. Let R be a semiprime ring and θ an automorphism on R. Suppose $F: R \rightarrow R$ is a generalized (θ, θ)-derivation with associated (θ, θ)-derivation d. If F acts as a homomorphism on R, then $d=0$.

Proof. If F acts as a homomorphism on R, then we have $F(x y)=F(x) F(y)$. This implies that

$$
\begin{equation*}
F(x) \theta(y)+\theta(x) d(y)=F(x) F(y), \text { for all } x, y \in R . \tag{2.4}
\end{equation*}
$$

Replacing y by $y z$, we get

$$
\begin{equation*}
F(x) \theta(y) \theta(z)+\theta(x) d(y) \theta(z)+\theta(x) \theta(y) d(z)=F(x) F(y) \theta(z)+F(x) \theta(y) d(z) \tag{2.5}
\end{equation*}
$$ for all $x, y \in R$.

Multiplying (2.4) on the right by $\theta(z)$, we obtain

$$
\begin{equation*}
F(x) \theta(y) \theta(z)+\theta(x) d(y) \theta(z)=F(x) F(y) \theta(z), \text { for all } x, y \in R . \tag{2.6}
\end{equation*}
$$

Now Comparing (2.5) and (2.6), we have

$$
\begin{equation*}
\theta(x) \theta(y) d(z)=F(x) \theta(y) d(z), \text { for all } x, y, z \in R \tag{2.7}
\end{equation*}
$$

Substituting $x z$ for x in (2.7), we obtain

$$
\begin{equation*}
\theta(x) \theta(z) \theta(y) d(z)=F(x) \theta(z) \theta(y) d(z)+\theta(x) d(z) \theta(y) d(z), \text { for all } x, y, z \in R \tag{2.8}
\end{equation*}
$$

Replacing y by $z y$ in (2.7), we have

$$
\begin{equation*}
\theta(x) \theta(z) \theta(y) d(z)=F(x) \theta(z) \theta(y) d(z), \text { for all } x, y \in R \tag{2.9}
\end{equation*}
$$

Comparing (2.8) and (2.9), we find that $\theta(x) d(z) \theta(y) d(z)=0$, for all $x, y, z \in R$. Substituting $y x$ for y we obtain $\theta(x) d(z) \theta(y) \theta(x) d(z)=0$, for all $x, y, z \in R$, that is $\theta(x) d(z) R \theta(x) d(z)=(0)$, for all $x, z \in R$. The fact that R is semiprime yields that $\theta(x) d(z)=0$, for all $x, z \in R$. Thus, we have $d(z) \theta(x) d(z)=0$, for all $x, z \in R$, that is $d(z) R d(z)=(0), x, z \in R$. Again, since R is semiprime we obtain the required result.
2.7. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal and a subring of R. Suppose that θ, ϕ are automorphisms of R, and that $d: R \rightarrow R$ is a left (θ, ϕ)-derivation of R.
(i) If d acts as a homomorphism on J, then $d=0$ on R.
(ii) If d acts as an anti-homomorphism on J, then $d=0$ on R.

Proof. (i) If d acts as a homomorphism, then we have

$$
\begin{equation*}
d(u v)=d(u) d(v)=\theta(u) d(v)+\phi(v) d(u), \text { for all } u, v \in J \tag{2.10}
\end{equation*}
$$

Substituting $v w$ for v in (2.10), we find that $d(u) d(v) d(w)=\theta(u) d(v) d(w)+\phi(v) \phi(w) d(u)$, for all $u, v, w \in J$. Multiplying (2.10) on the right by $d(w)$, we obtain $d(u) d(v) d(w)=$ $\theta(u) d(v) d(w)+\phi(v) d(u) d(w)$ for all $u, v, w \in J$. Hence we have $\phi(v)\{d(u) d(w)-\phi(w) d(u)\}$ $=0$, for all $u, v, w \in J$. Now using (2.10) we find that $\phi(v) \theta(u) d(w)=0$, for all $u, v, w \in J$, that is, $v \phi^{-1}(\theta(u) d(w))=0$, for all $u, v, w \in J$. An application of Lemma 2.2 yields that $\phi^{-1}(\theta(u) d(w))=0$ i.e., $\theta(u) d(w)=0$, for all $u, w \in J$. Thus, $u \theta^{-1}(d(w))=0$, for all $u, w \in J$. Again Lemma 2.2 yields that
(2.11) $d(w)=0$, for all $w \in J$.

Replacing w by $w r+r w$ in (2.11), we obtain
(2.12) $\theta(w) d(r)+\phi(w) d(r)=0$, for all $w \in J, r \in R$.

Replace w by $u w$ in (2.12), to get $\theta(u) \theta(w) d(r)+\phi(u) \phi(w) d(r)=0$ for all $u, w \in J, r \in R$. Multiplying (2.12) on the left by $\theta(u)$, we obtain $\theta(u) \theta(w) d(r)+\theta(u) \phi(w) d(r)=0$ for all $u, w \in J, r \in R$. Hence we have $\{\theta(u)-\phi(u)\} \phi(w) d(r)=0$, for all $u, w \in J, r \in R$, that is $\phi^{-1}\{\theta(u)-\phi(u)\} J \phi^{-1} d(r)=0$, for all $u, w \in J, r \in R$. Now an application of Lemma 2.3 yields that either $\theta(u)-\phi(u)=0$ or $d(r)=0$, for all $u \in J$ and $r \in R$. If $\theta(u)=\phi(u)$, for all $u \in J$, then the relation (2.12) implies that $2 \theta(u) d(r)=0$, for all $u \in J$ and $r \in R$. Since R is 2-torsion free, $\theta(u) d(r)=0$, i.e., $u \theta^{-1}(d(r))=0$, for all $u \in J$ and $r \in R$. Lemma 2.2 yields that $\theta^{-1}(d(r))=0$ i.e., $d(r)=0$, for all $r \in R$. Hence, in both the cases $d=0$.
(ii) If d acts as an anti-homomorphism on J, then
(2.13) $d(u v)=d(v) d(u)=\theta(u) d(v)+\phi(v) d(u)$, for all $u, v \in J$.

Replacing u by u^{2} in (2.13), we have $d(v) d(u) d(u)=\theta(u) \theta(u) d(v)+\phi(v) d(u) d(u)$, for all $u, v \in J$. Multiplying (2.13) by $d(u)$ on the right, we get $d(v) d(u) d(u)=\theta(u) d(v) d(u)+$ $\phi(v) d(u) d(u)$, for all $u, v \in J$. Hence we obtain $\theta(u)\{d(v) d(u)-\theta(u) d(v)\}=0$, for all $u, v \in J$. Using (2.13), we obtain $\theta(u) \phi(v) d(u)=0$, that is, $\phi^{-1}(\theta(u)) J \phi^{-1}(d(u))=(0)$, for all $u \in J$. An application of Lemma 2.3 yields that either $\theta(u)=0$ or $d(u)=0$, that is $u=0$ or $d(u)=0$, for all $u \in J$. But $u=0$ yields that $d(u)=0$, for all $u \in J$. Using similar arguments to those used to get $d=0$ from (2.7), we get the required result.

References

[1] Ali, A., Rehman, N. and Shakir, A. On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101, 79-82, 2003.
[2] Ashraf, M., Rehman, N. and Quadri, M. A. On (σ, τ)-derivations in certain classes of rings, Rad. Mat. 9, 187-192, 1999.
[3] Aydin, N. and Kaya K. Some generalization in prime rings with (σ, τ)-derivations, Doga Tr. J. Math. 16,169-176, 1992.
[4] Bell, H. E. and Kappe, L. C. Rings in which derivations satisfy certain algebraic conditions, Acta. Math. Hungar. 53, 339-346, 1989.
[5] Herstein, I. N., Topics in Ring Theory (Univ. Chicago Press, Chicago, 1969).
[6] Hvala, B. Generalized derivations in rings, Comm. Algebra 26 (4), 1147-1166, 1998.
[7] Yenigul, M. and Argac, N. On prime and semiprime rings with α-derivations, Turk. J. Math. 18, 280-284, 1994.

[^0]: *Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India. E-mail: (Asma Ali) asma_ali2@rediffmail.com

