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Abstract

This paper considers compactness in a ditopological setting. After a
brief introduction, Section 2 is devoted to compact and cocompact
spaces. Results include preservation under surjective (co) continu-
ous difunctions, and analogues of the Mrowka Charcterization and
Tychonoff Product Theorem. Stability and costability are discussed
in Section 3. Here generalizations of several results concerning sep-
aration are presented, characterizations of the compact and cocom-
pact elements of the texturing given under suitable conditions and the
preservation of stability and costability under surjective bicontinuous
difunctions established. Finally Section 4 considers dicompactness and
cumulates with a proof of the Tychonoff Product Theorem for this very
important class of ditopological texture spaces.
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1. Introduction

Textures were introduced by the first author as a point-set setting for the study of fuzzy
sets, but they have since proved useful as a framework in which to discuss complement-
free mathematical concepts. There is now a considerable literature on this subject, and
an adequate introduction to the theory and the motivation for its study may be obtained
from [2, 3, 4, 5, 6, 7].

Briefly, if S is a set, a texturing S of S is a subset of P(S) which is a point-separating,
complete, completely distributive lattice containing S and ∅, and for which meet coincides
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with intersection and finite joins with union. The pair (S, S) is then called a texture. We
regard a texture (S, S) as a framework in which to do mathematics.

For a texture (S, S), most properties are conveniently defined in terms of the p-sets
Ps =

⋂

{A ∈ S | s ∈ A} and the q-sets, Qs =
∨

{A ∈ S | s /∈ A}. We recall from [5] the
following fundamental properties:

(1) For A, B ∈ S, if A 6⊆ B then there exists s ∈ S with A 6⊆ Qs and Ps 6⊆ B.
(2) A =

⋂

{Qs | Ps 6⊆ A} for all A ∈ S.
(3) A =

∨

{Ps | A 6⊆ Qs} for all A ∈ S.

For A ∈ S the core A♭ of A is given by A♭ = {s ∈ S | A 6⊆ Qs}. The set A♭ does
not necessarily belong to S, but we note for future reference that for A,B ∈ S we have
A ⊆ B ⇐⇒ A♭ ⊆ B♭.

The following are some basic examples of textures we will need later on.

1.1. Examples. (1) If X is a set and P(X) the powerset of X, then (X, P(X)) is the
discrete texture on X. For x ∈ X, Px = {x} and Qx = X \ {x}.

(2) Setting I = [0, 1], I = {[0, r), [0, r] | r ∈ I} gives the unit interval texture (I, I). For
r ∈ I, Pr = [0, r] and Qr = [0, r).

(3) The texture (L, L) is defined by L = (0, 1], L = {(0, r] | r ∈ I}. For r ∈ L,
Pr = (0, r] = Qr.

As noted in [1, 8] we may associate with (S, S) the C-space (core-space) [10] (S, Sc), and
then the frequently occurring relationship Ps2

6⊆ Qs1
, s1, s2 ∈ S, is equivalent to s1 ωS s2,

where ωS is the interior relation for (S, Sc). For the above examples x1 ωX x2 ⇐⇒ x1 =
x2, r1 ωI r2 ⇐⇒ r1 ≤ r2 and r1 ωL r2 ⇐⇒ r1 < r2, respectively.

In general a texturing S need not be closed under the operation of taking the set
complement, so we must forego the usual relationship between the open and closed sets.
In the context of a texture (S, S) the notion of topology is therefore replaced by that of
dichotomous topology. Specifically, a dichotomous topology, or ditopology for short, on a
texture (S, S) is a pair (τ, κ) of subsets of S, where the set of open sets τ satisfies

(1) S, ∅ ∈ τ ,
(2) G1, G2 ∈ τ =⇒ G1 ∩ G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I =⇒

∨

i Gi ∈ τ ,

and the set of closed sets κ satisfies

(1) S, ∅ ∈ κ,
(2) K1, K2 ∈ κ =⇒ K1 ∪ K2 ∈ κ and
(3) Ki ∈ κ, i ∈ I =⇒

⋂

Ki ∈ κ.

For A ∈ S the closure [A] and interior ]A[ of A are given by

[A] =
⋂

{K ∈ κ | A ⊆ K} and ]A[ =
∨

{G ∈ τ | G ⊆ A}

respectively.

If (X, u, v) is a bitopological space [13] then (u, vc) is a ditopology on (X, P(X)). In
particular, (u, uc) is a ditopology on (X, P(X)) induced by the topology u on X. It is
special in the following sense. An inclusion-reversing idempotent mapping σ : S → S,
where one exists, is known as a complementation on (S, S). Should κ = σ(τ ) then
(S,S, σ, τ, κ) is said to be a complemented ditopological texture space. The ditopology
(u, uc) is clearly complemented for the complementation πX : P(X) → P(X) given by
πX(Y ) = X \Y . The texture (I, I) has a natural complementation ι, ι([0, r)) = [0, 1− r],
ι([0, r]) = [0, 1 − r) and complemented ditopology τI = {[0, r) | r ∈ I} ∪ {I}, κI = {[0, r] |
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r ∈ I} ∪ {∅}; while (L, L) has a natural complementation λ, λ((0, r]) = (0, 1 − r] and
complemented ditopology (L, L).

In addition to the link with topological and bitopological spaces mentioned above,
fuzzy sets and topologies may also be represented naturally as ditopological texture
spaces [3], although we will not pursue this aspect here.

We recall the product of textures and of ditopological texture spaces. Let (Sj , Sj),
j ∈ J , be textures and S =

∏

j∈J Sj . If Ak ∈ Sk for some k ∈ J we write

E(k, Ak) =
∏

j∈J

Yj where Yj =

{

Aj , if j = k

Sj , otherwise.

Then the product texturing S =
⊗

j∈J Sj of S consists of arbitrary intersections of ele-
ments of the set

E =

{

⋃

j∈J

E(j, Aj) | Aj ∈ Sj for j ∈ J

}

.

Let (Sj , Sj), j ∈ J be textures and (S, S) their product. Then for s = (sj) ∈ S,

Ps =
⋂

j∈J

E(j, Psj
) =

∏

j∈J

Psj
, and Qs =

⋃

j∈J

E(j, Qsj
).

It is easy to verify that for Aj ∈ Sj , j ∈ J we have
∏

j∈J Aj ∈ S and
(

∏

j∈J Aj

)♭

=
∏

j∈J A♭
j .

In case (τj , κj) is a ditopology on (Sj , Sj), j ∈ J , the product ditopology on the
product texture (S,S) has subbase {E(j, G) | G ∈ τj , j ∈ J}, cosubbase γ = {E(j, K) |
K ∈ κj , j ∈ J}.

One of the most useful notions in the theory of (ditopological) texture spaces is that
of difunction [5]. A difunction is a special type of direlation. Specifically, if (S, S), (T, T)
are textures we will denote by P (s,t), Q(s,t) respectively the p-sets and q-sets for the

texture (S × T, P(S) ⊗ T). Then:

(1) r ∈ P(S) ⊗ T is called a relation from (S, S) to (T, T) if it satisfies

R1 r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t).

R2 r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

(2) R ∈ P(S) ⊗ T is called a corelation from (S, S) to (T, T) if it satisfies
CR1 P (s,t) 6⊆ R,Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R.

CR2 P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.
(3) A pair (r,R), where r is a relation and R a corelation from (S, S) to (T, T) is

called a direlation from (S, S) to (T, T).

Inverses and compositions of direlations are given in [5]. The notion of difunction is
derived from that of direlation as follows.

1.2. Definition. Let (f, F ) be a direlation from (S, S) to (T, T). Then (f, F ) is called a
difunction from (S,S) to (T, T) if it satisfies the following two conditions.

DF1 For s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ ∃ t ∈ T with f 6⊆ Q(s,t) and P (s′,t) 6⊆ F .

DF2 For t, t′ ∈ T and s ∈ S, f 6⊆ Q(s,t) and P (s,t′) 6⊆ F =⇒ Pt′ 6⊆ Qt.

Difunctions are preserved under composition, and there is a natural identity difunction
so one may consider the category dfTex of textures and difunctions [5].
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Let (f, F ) be a difunction from (S, S) to (T, T), and B ∈ T. Then the inverse image
f←(B) and the inverse co-image F←(B) of B are given by the formulae

(1.1)
f←(B) =

∨

{Ps | ∀ t, f 6⊆ Q(s,t) =⇒ Pt ⊆ B} ∈ S, and

F←(B) =
⋂

{Qs | ∀ t, P (s,t) 6⊆ F =⇒ B ⊆ Qt} ∈ S,

respectively. It is known that for difunctions the inverse image and inverse co-image
coincide for all B ∈ T, and that they preserve arbitrary intersections and joins. In case
we have ditopologies (τS, κS), (τT , κT ) on (S, S), (T, T) respectively then (f, F ) is called
continuous if G ∈ τT =⇒ F←G ∈ τS, cocontinuous if K ∈ κT =⇒ f←K ∈ κS and
bicontinuous if it is both. The category of ditopological texture spaces and bicontinuous
difunctions is denoted by dfDitop.

The image f→A and co-image F→A of A ∈ S under (f, F ) are given by

(1.2)
f→A =

⋂

{Qt | ∀ s, f 6⊆ Q(s,t) =⇒ A ⊆ Qs}, and

F→A =
∨

{Pt | ∀ s, P (s,t) 6⊆ F =⇒ Ps ⊆ A},

respectively. Interrelations between these and the inverse (co-) image are given in [5]. If
(f, F ) : (S, S, τS, κS) → (T, T, τT , κT ) is a difunction then

(1) (f, F ) is open (co-open) if G ∈ τS =⇒ f→G ∈ τT (F→G ∈ τT ).
(2) (f, F ) is closed (coclosed) if K ∈ κS =⇒ f→K ∈ κT (F→K ∈ κT ).

1.3. Definition. Let (f, F ) be a difunction from (S,S) to (T, T). Then (f, F ) is called
surjective if it satisfies the condition

SUR. For t, t′ ∈ T , Pt 6⊆ Qt′ =⇒ ∃ s ∈ S with f 6⊆ Q(s,t′) and P (s,t) 6⊆ F .

Likewise, (f, F ) is called injective if it satisfies the condition

INJ. For s, s′ ∈ S and t ∈ T , f 6⊆ Q(s,t) and P (s′,t) 6⊆ F =⇒ Ps 6⊆ Qs′ .

A difunction which is both surjective and injective is called bijective. The bijective
difunctions are precisely the isomorphisms of dfTex [5, Proposition 3.14 (5)]. The iso-
morphisms of dfDitop are known as dihomeomorphisms [1]. These are the bijective
difunctions which, together with their inverse are bicontinuous.

In general difunctions are not directly related to ordinary (point) functions between
the base sets, but we recall from [5, Lemma 3.4] that if (S,S), (T, T) are textures and
ϕ : S → T an ω-compatible point function, namely one satisfying Ps 6⊆ Qs′ =⇒ Pϕ(s) 6⊆
Qϕ(s′), then the formulae

(1.3)
fϕ =

∨

{P (s,t) | ∃ u ∈ S with Ps 6⊆ Qu and Pϕ(u) 6⊆ Qt},

Fϕ =
⋂

{Q(s,t) | ∃ v ∈ S with Pv 6⊆ Qs and Pt 6⊆ Qϕ(v)},

define a difunction (fϕ, Fϕ) from (S, S) to (T, T). Moreover, it is easy to verify that for
each B ∈ T we have f←ϕ B = ϕ←B = F←ϕ B, where

(1.4) ϕ←B =
∨

{Pu | ϕ(u) ∈ B} =
⋂

{Qv | ϕ(v) /∈ B}.

Breaking the link between the open and closed sets means that certain results in the
theory of topological spaces cannot hold in the theory of general ditopological texture
spaces. For example, while every open cover of a topological space has a finite subcover
if and only if every family of closed sets with the finite intersection has a non-empty
intersection, this does not hold for ditopologies in general. The first statement is taken
as the definition of compactness, and the second as a dual concept called cocompactness.
Such pairs of dual properties occur often in the theory of ditopological texture spaces,
although some properties, such as normality, turn out to be self-dual.
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Compactness and cocompactness in ditopological texture spaces are investigated in
Section 2. Preservation under surjective (co) continuous difunctions is established, gen-
eralizations of the Mrowka Characterization Theorem [9, 15] are proved and versions of
the Tychonoff product theorem are given for both compact and cocompact ditopological
texture spaces.

Compact ditopological texture spaces lack many of the nice properties of compact
spaces, and the same is true of cocompact spaces. For instance, closed elements of the
texturing need not be compact, and non of the results concerning separation axioms in
topological spaces hold in the ditopological case. After giving some counterexamples,
Section 3 presents the dual notions of stability and costability for ditopological texture
spaces. It is shown that such spaces have some of the pleasant properties of compact
topological spaces. In particular many results concerning separation axioms are shown to
have appropriate generalizations. Under suitable conditions the compact sets of a stable
ditopological space are characterized in terms of pseudo-closed sets, and dual results are
given for costable spaces. Finally, it is shown that stability and costability are preserved
under bicontinuous surjective difunctions.

Ditopological texture spaces which have all of the four properties compact, stable,
cocompact and costable are discussed in Section 4 under the name dicompact. Charac-
terizations in terms of dicovers and in terms of difamilies satisfying the finite exclusion
property are recalled [2], and a version of the Tychonoff Product Theorem is presented.

The reader is referred to [11] for concepts from lattice theory not defined here.

This paper is largely based on previously unpublished work from the PhD thesis of
the second author [12], but several results have been reformulated and extended, and
new material added.

2. Compactness and cocompactness

We begin by considering a direct generalization of the topological notion of compact-
ness. Let (τ, κ) be a ditopology on the texture space (S, S) and take A ∈ S. The family
{Gi | i ∈ I} is said to be an open cover of A if Gi ∈ τ for all i ∈ I and A ⊆

∨

i∈I Gi.
Dually we may speak of a closed cocover of A, namely a family {Fi | i ∈ I} with Fi ∈ κ
for all i ∈ I satisfying

⋂

i∈I Fi ⊆ A. Let us now recall [2],

2.1. Definition. Let (τ, κ) be a ditopology on the texture (S,S) and A ∈ S.

(i) A is called compact if whenever {Gi | i ∈ I} is an open cover of A then there is
a finite subset J of I with A ⊆

⋃

j∈J Gj . In particular the ditopological texture

space (S,S, τ, κ) is called compact if S is compact.
(ii) A is cocompact if whenever {Fi | i ∈ I} is a closed cocover of A there is a finite

subset J of I with
⋂

j∈J Fj ⊆ A. In particular the ditopological texture space

(S, S, τ, κ) is called cocompact if ∅ is cocompact.

In general compactness and cocompactness are independent, as the following examples
show.

2.2. Example. Consider the texture (L, L) of Example 1.1 (3).

(1) Define the ditopology (τ, κ) by τ = {∅, L} and κ = L. Since τ is finite, (τ, κ)
is compact. However, it is not cocompact since, for example, the family F =
{(0, 1/n] | n = 1, 2, . . .} of closed sets satisfies

⋂

F = ∅, but no finite subset of F

has an empty intersection.
(2) Dually let τ = L and κ = {∅, L}. Then the ditopology (τ, κ) is cocompact but

not compact.
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On the other hand, for complemented ditopological texture spaces these two properties
are equivalent.

2.3. Proposition. Let (τ, κ) be a complemented ditopology on (S,S, σ). Then (S,S, σ, τ, κ)
is compact if and only if it is cocompact.

Proof. Suppose that (τ, κ) is compact and let F = {Fi | i ∈ I} be a family of closed sets
with

⋂

F = ∅. Consider the family G = {σ(Fi) | i ∈ I} of open sets. Then
∨

G =
∨

{σ(Fi) | i ∈ I} = σ(
⋂

{Fi | i ∈ I}) = σ(∅) = S

and so we have J ⊆ I finite with
∨

{σ(Fi) | i ∈ J} = S, whence
⋂

{Fi | i ∈ J} = ∅ and
we see that (τ, κ) is cocompact.

In just the same way, if (τ, κ) is cocompact then it is compact. �

2.4. Example. Let (I, I) be the unit interval texture of Examples 1.1 (2) with com-
plementation ι and complemented ditopology (τI, κI) as defined above. Then (τI, κI) is
compact because I is the only open set containing 1, and hence must belong to any open
cover of I since for this texture join coincides with union. It follows by Proposition 2.3
that (τI, κI) is also cocompact.

As is well known, if X and Y are topological spaces, f : X → Y a continuous function
and A ⊆ X is compact then f(A) ⊆ Y is compact. Below we generalize this result to
ditopological texture spaces.

2.5. Theorem. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be a continuous difunction.
If A ∈ S1 is (τ1, κ1)-compact then f→A ∈ S2 is (τ2, κ2)-compact.

Proof. Take f→A ⊆
∨

j∈J Gj , where Gj ∈ τ2, j ∈ J . Now by [5, Theorem 2.24 (2 a) and

Corollary 2.12 (2)] we have

A ⊆ F←(f→A) ⊆ F←
(

∨

j∈J

Gj

)

=
∨

j∈J

F←Gj .

Also, F←Gj ∈ τ1 since (f, F ) is continuous, so by the compactness of A there exists
J ′ ⊆ J finite such that A ⊆

⋃

j∈J′ F←Gj . Hence

f→A ⊆ f→
(

⋃

j∈J′

F←Gj

)

=
⋃

j∈J′

f→(F←Gj) ⊆
⋃

j∈J′

Gj

by [5, Corollary 2.12 (2) and Theorem 2.24 (2 b)]. This establishes that f→A is compact.
�

2.6. Proposition. Let (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) be ditopological texture spaces
and (f, F ) : S1 → S2 a continuous surjective difunction. Then if (S1, S1, τ1, κ1) is com-
pact so is (S2, S2, τ2, κ2).

Proof. This follows by taking A = S1 in Theorem 2.5 and noting that f→S1 = f→(F←S2) =
S2 by [5, Proposition 2.28 (1 c) and Corollary 2.33 (1)]. �

2.7. Corollary. Let (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) be ditopological texture spaces and
ϕ : S1 → S2 a continuous surjective ω-preserving point function. If (S1, S1, τ1, κ1) is
compact so is (S2, S2, τ2, κ2).
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Proof. If we show that the associated difunction (fϕ, Fϕ) is surjective the result will
follow at once from Proposition 2.6. Hence, take t, t′ ∈ S2 with Pt 6⊆ Qt′ . We may choose
w ∈ S2 satisfying Pt 6⊆ Qw and Pw 6⊆ Qt′ . Since ϕ is surjective there exists s ∈ S1 with
w = ϕ(s). Hence Pϕ(s) 6⊆ Qt′ , so P (s,ϕ(s)) 6⊆ Q(s,t′), and since f =

∨

{P (s,ϕ(s)) | s ∈ S1}

we have f 6⊆ Q(s,t′). In just the same way P (s,t) 6⊆ F , and we have established that

(fϕ, Fϕ) is surjective. �

As expected, we have dual results for cocompactness. We omit the proofs.

2.8. Theorem. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be a cocontinuous difunc-
tion. If A ∈ S1 is (τ1, κ1)-cocompact then F→A is (τ2, κ2)-cocompact. �

2.9. Proposition. Let (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) be ditopological texture spaces
and (f, F ) : S1 → S2 a cocontinuous surjective difunction. If (S1, S1, τ1, κ1) is cocompact
so is (S2, S2, τ2, κ2). �

2.10. Corollary. Let (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) be ditopological texture spaces
and ϕ : S1 → S2 a cocontinuous surjective ω-preserving point function. Then if (S1, S1, τ1, κ1)
is cocompact so is (S2, S2, τ2, κ2). �

It should be noted that Proposition 2.6 and Proposition 2.9 are strictly more pow-
erful than their respective corollaries. Indeed, even if the surjective difunction postu-
lated in these propositions corresponds to a point function, this point function need
not be surjective. An example is provided by [6, Example 2.14]. Here we recall that
(MI, MI , µI , τI, κI), the Hutton texture of (I, I, τI, κI), is given by

MI = (I × {0}) ∪ ((I \ {0}) × {1}),

MI = {Ar | r ∈ I} ∪ {Br | r ∈ I},

µI(Ar) = B1−r, µI(Br) = A1−r, r ∈ I,

where

Ar = {(s, 0) | 0 ≤ s ≤ r} ∪ {(s, 1) | 0 < s ≤ r}

Br = {(s, 0) | 0 ≤ s < r } ∪ {(s, 1) | 0 < s ≤ r}.

It is easy to see that

P(r,0) = Ar, Q(r,0) = Br (0 ≤ r ≤ 1) and P(r,1) = Br, Q(r,1) = Br (0 < r ≤ 1).

The complemented ditopology (τI, κI) is given by τI = {Br | r ∈ I} ∪ {MI}, κI = {Ar |
r ∈ I} ∪ {∅}. The ω-preserving bicontinuous point function ϕ : I → MI defined by
ϕ(r) = (r, 0), 0 ≤ r ≤ 1 is injective but clearly not surjective. On the other hand, it is
shown in [6, Example 2.14] that the corresponding difunction (fϕ, Fϕ) is a dfDitop iso-
morphism between (I, I, ι, τI, κI) and (MI , MI , µI , τI , κI), hence in particular a continuous
surjection. Since (I, I, τI, κI) is compact by Example 2.4 we deduce by Proposition 2.6
that (MI , MI , µI , τI , κI) is compact. In just the same way (fϕ, Fϕ) is cocontinuous, so
by Proposition 2.9 the space (MI , MI , µI , τI, κI) is also cocompact. Of course, in this
particular case it is also easy to verify these results directly.

Now let us consider a family (Si, Si, τi, κi), i ∈ I , of non-empty ditopological texture
spaces and denote by (S, S, τ, κ) the product of these spaces. For each k ∈ I ,

(2.1) πk =
∨

{P (s,sk) | s = (si) ∈ S}, Πk =
⋂

{Q(s,sk) | s = (si) ∈ S♭}

define the k-th projection difunction (πk, Πk) on (S, S) to (Sk, Sk) [6, Lemma 3.9]. More-
over:

2.11. Lemma. Let (S, S) be the product of non-empty textures (Si, Si), i ∈ I. Then the
k-th projection difunction (πk, Πk) is surjective.
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Proof. Here (πk, Πk) : (S, S) → (Sk, Sk). Take t, t′ ∈ Sk with Pt 6⊆ Qt′ . Take any s ∈ S
with Pt 6⊆ Qsk

and Psk
6⊆ Qt′ . This is possible since Sk 6= ∅ for all k ∈ I . It is clear that

πk 6⊆ Q(s,t′) and P (s,t) 6⊆ Πk, so (πk, Πk) is surjective. �

Finally (πk, Πk) is bicontinuous by the definition of the product ditopology, so Propo-
sition 2.6 and Proposition 2.9 immediately give the following:

2.12. Corollary. Let (Si, Si, τi, κi), i ∈ I, be non-empty ditopological texture spaces and
(S,S, τ, κ) their product.

(1) If (S, S, τ, κ) is compact then (Sk, Sk, τk, κk) is compact for each k ∈ I.
(2) If (S, S, τ, κ) is cocompact then (Sk, Sk, τk, κk) is cocompact for each k ∈ I. �

The above corollary gives us one direction of a Tychonoff Theorem for compact and
cocompact ditopological texture spaces. To prove the opposite direction we require ap-
propriate generalizations of the Alexander subbase theorem. We begin with a definition
(c.f. [16]).

2.13. Definition. Let (S, S) be a texture.

(1) A ⊆ S is inadequate provided
∨

A 6= S. It is finitely inadequate provided no
finite subcollection covers S.

(2) A ⊆ S is co-inadequate provided
⋂

A 6= ∅. It is finitely co-inadequate provided
no finite subcollection cocovers ∅.

Clearly, finite co-inadequacy is equivalent to the finite intersection property. Now we
give:

2.14. Theorem. Let (τ, κ) be a ditopology on the texture space (S, S) and γ a subbase
for τ . Then (τ, κ) is compact iff every open cover of S by elements of γ has a finite
subcover.

Proof. =⇒. Clear since γ ⊆ τ .

⇐=. Suppose that every cover of S by members of γ has a finite subcover. We prove
that (τ, κ) is compact by proving that every finitely inadequate collection of open sets is
inadequate. Let B be a finitely inadequate collection of open sets and P the set of all
finitely inadequate collections G of open sets such that B ⊆ G. Then (P,⊆) is a poset.
Let C be a chain in P , and let G

∗ be the union of all the member of C. Then G
∗ is a

collection of open sets and clearly B ⊆ G
∗. Furthermore for each G ∈ C, G ⊆ G

∗. Suppose
there is a finite subcollection U1, U2, . . . Un of G∗ that covers S. For each i = 1, 2 . . . n
there exists Gi ∈ C such that Ui ∈ Gi. Since C is a chain there exists k with 1 ≤ k ≤ n
such that Gk contains all the sets Gi, i = 1, 2, . . . , n, and so for each i = 1, 2, . . . n we have
Ui ∈ Gk. However, Gk is finitely inadequate and we have a contradiction. Therefore G∗

is finitely inadequate. Hence G
∗ ∈ P and G

∗ is an upper bound of C. By Zorn’s Lemma,
P has a maximal element A. We want to show that B is inadequate. Since B ⊆ A, it is
sufficient to show that A is inadequate. We establish that A has the following properties.

(a) If U ∈ τ and U /∈ A, then there exists a finite subcollection U1, U2, . . . , Un of A

such that S = U ∪ (
⋃n

i=1 Ui)
(b) If U1, U2, . . . , Un is a finite collection of open sets none of which belong to A

then
⋂n

i=1 Ui 6∈ A

(c) If U1, U2, . . . , Un is a finite collection of open sets and V ∈ A satisfies
⋂n

i=1 Ui ⊆
V then there exists j with 1 ≤ j ≤ n such that Uj ∈ A.

Proof of (a). Clear since A ∪ {U} cannot be finitely inadequate.
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Proof of (b). It is sufficient to show (b) for the case of two sets U1, U2 /∈ A. By
(a) there are finite subcollections V1, V2, . . . , Vn and W1, W2, . . . , Wm of A such that
S = U1 ∪

⋃n
i=1 Vi = U2 ∪

⋃m
j=1 Wj Hence

S = (U1 ∩ U2) ∪
n
⋃

i=1

Vi ∪
m
⋃

j=1

Wj .

Since A is finitely inadequate, U1 ∩ U2 /∈ A. Hence (b) is proved.

Proof of (c). Suppose U1, U2, . . . , Un are open sets and V ∈ A satisfies
⋂n

i=1 Ui ⊆ V . If
non of the sets Ui, i = 1, 2, . . . , n belongs to A then by (b),

⋂n
i=1 Ui /∈ A. By (a) there is

a finite subcollection V1, V2, . . . , Vm of A such that S = (
⋂n

i=1 Ui) ∪
⋃m

j=1 Vj , whence,

S = V ∪

( m
⋃

j=1

Vj

)

.

This is a contradiction since A is finitely inadequate, therefore (c) is true.

The collection γ ∩ A is finitely inadequate because γ ∩ A ⊆ A and A is finitely
inadequate. Let us show that

∨

A ⊆
∨

(A ∩ γ). Take s ∈ S with
∨

A 6⊆ Qs. Then we
have A ∈ A with A 6⊆ Qs. Since A ∈ τ and γ is a subbase for τ , by [6, Theorem 3.2 (1 ii)]
there exists G1, G2, . . . , Gn ∈ γ so that

⋂n
i=1 Gi ⊆ A and

⋂n
i=1 Gi 6⊆ Qs. By (c) there

exists k, 1 ≤ k ≤ n, so that Gk ∈ A ∩ γ, and Gk 6⊆ Qs, so
∨

(A ∩ γ) 6⊆ Qs. This verifies
that

∨

A ⊆
∨

(A ∩ γ). If
∨

A = S then
∨

(A ∩ γ) = S, and since by hypothesis every
cover of S by sets in γ has a finite subcover, we obtain a contradiction to the fact that
the family A ∩ γ is finitely inadequate. Hence A, and therefore B is inadequate, and we
deduce that (τ, κ) is compact. �

The corresponding result for cocompactness is given below. Since the proof is essen-
tially dual to the above it is omitted.

2.15. Theorem. Let (τ, κ) be a ditopology on the texture space (S, S) and γ a subbasis
for the closed sets κ. Then (τ, κ) is cocompact iff every closed cocover of ∅ by member of
γ has a finite subcocover �.

We may now give the Tychonoff Theorem for compactness and cocompactness.

2.16. Theorem. Let (Si, Si, τi, κi), i ∈ I, be non-empty ditopological texture spaces and
(S,S, τ, κ) their product.

(i) (S, S, τ, κ) is compact if and only if (Si, Si, τi, κi) is compact for all i ∈ I.
(ii) (S, S, τ, κ) is cocompact if and only if (Si, Si, τi, κi) is cocompact for all i ∈ I. �

Proof. (i) =⇒. This is just Corollary 2.12.

⇐=. Let γ be the subbase {E(i, G) | i ∈ I, G ∈ τi} and C an open cover of S by sets
in γ. For i ∈ I let

Ci =
∨

{G | E(i, G) ∈ C}.

By [3, Lemma 2.3] we have S =
∨

C =
⋃

i∈I E(i, Ci). If we had Ci 6= Si for all i ∈ I
then we could choose si ∈ Si with si /∈ Ci and then s = (si) ∈ S would satisfy s /∈
⋃

i∈I E(i, Ci), which contradicts the above. Hence there exists k ∈ I so that Ck = Sk,
whence {G | E(i, G) ∈ C} is an open cover of Sk in (Sk, Sk, τk, κk). Since this space is
compact we have G1, G2, . . . , Gn with E(k, Gj) ∈ C and Sk = G1 ∪G2 ∪ . . .∪Gn. Hence

n
⋃

j=1

E(k,Gj) = E(k, Sk) = S,
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which shows that {E(k, G1), E(k, G2), . . . , E(k, Gn)} is a finite subcover of C. Hence, by
Theorem 2.14, the product space (S, S, τ, κ) is compact.

(ii) =⇒. This is dual to (i) and is omitted. �

We now recall [6, Proposition 3.21], which states that the projection difunctions on
a product ditopological space are always open and coclosed. This should be compared
with the following:

2.17. Theorem. Let (S1, S1, τ1, κ1) be compact, (S2, S2, τ2, κ2) any ditopological texture
space and (S,S, τ, κ) the product of these spaces. Then the projection

(π2, Π2) : (S, S, τ, κ) → (S2, S2, τ2, κ2)

is co-open.

Proof. We must show that G ∈ τ =⇒ Π→2 G ∈ τ2. Assume that for some G ∈ τ we have
Π→2 G 6∈ τ2. Then Π→2 G 6⊆ ]Π→2 G[, so there exists t ∈ S2 with Π→2 G 6⊆ Qt and

(2.2) Pt 6⊆ ]Π→2 G[.

Since Π→2 G =
∨

{Pt | P ((u,v),t) 6⊆ Π2 =⇒ P(u,v) ⊆ G}, there exists t′ so that Pt′ 6⊆ Qt

and

(2.3) P ((u,v),t′) 6⊆ Π2 =⇒ P(u,v) ⊆ G.

Let us choose v ∈ S2 with Pt′ 6⊆ Qv and Pv 6⊆ Qt, and take any s ∈ S♭
1. Note that

Pt′ 6⊆ Qv implies Qv 6= S2, so v ∈ S♭
2 and we have (s, v) ∈ S♭

1 × S♭
2 = S♭. Hence

Π2 ⊆ Q((s,v),v) by (2.1), and since P ((s,v),t′) 6⊆ Q((s,v),v) we obtain P ((s,v),t′) 6⊆ Π2. The

implication (2.3) now gives us P(s,v) ⊆ G, whence G 6⊆ Q(s,t) since Pv 6⊆ Qt.

By definition the family of sets {(G1 × S2) ∩ (S1 × G2)} for G1 ∈ τ1 and G2 ∈ τ2 is

a base for τ . Hence, since G ∈ τ and for each s ∈ S♭
1 we have G 6⊆ Q(s,t), there exists

G1
s ∈ τ1 and G2

s ∈ τ2 so that

(G1
s × S2) ∩ (S1 × G2

s) ⊆ G,(2.4)

(G1
s × S2) ∩ (S1 × G2

s) 6⊆ Q(s,t).(2.5)

We wish to show that

(2.6) S1 =
∨

{G1
s | s ∈ Sb}.

Clearly it is sufficient to show S1 ⊆
∨

{G1
s | s ∈ Sb}, so we assume this is false, whence we

have u ∈ S1 satisfying S1 6⊆ Qu and Pu 6⊆
∨

{G1
s | s ∈ Sb}. Clearly u ∈ S♭

1, so Pu 6⊆ G1
u.

Hence G1
u × S2 ⊆ Qu × S2 ⊆ (Qu × S2) ∪ (S1 × Qt) = Q(u,t), which contradicts (2.5) for

s = u, and so establishes (2.6).

As the space (S1, S1, τ1, κ1) is compact there exists s1, s2 . . . sn ∈ S♭
1 such that S1 =

⋃n
i=1 G1

si
. We prove that

(2.7) Pt ⊆ G2
s1

∩ G2
s2

. . . ∩ G2
sn

⊆ Π→2 G.

The first inclusion is clear since G2
si

6⊆ Qt, i = 1, 2, . . . , n by (2.5). Assume that
⋂

i=1 G2
si

6⊆ Π→2 G. Then ∃z ∈ S2 such that
⋂

i=1 G2
si

6⊆ Qz and Pz 6⊆ Π→2 G. Now

since Pz 6⊆ Π2(G) =
∨

{Pt | P ((u,v),t) 6⊆ Π2 =⇒ P(u,v) ⊆ G} there exists u ∈ S1,

v ∈ S2, such that P ((u,v),z) 6⊆ Π2 and P(u,v) 6⊆ G. Again we may choose u′, v′ so that

P(u,v) 6⊆ Q(u′,v′) and P(u′,v′) 6⊆ G. Clearly P ((u′,v′),z) 6⊆ Π2 by condition CR1 for the

corelation Π2. Also, (u′, v′) ∈ S♭, and since Π2 =
⋂

{Q((u′,v′),v′) | (u′, v′) ∈ S♭} we see
that Pz 6⊆ Qv′ . This implies that Pv′ ⊆ Pz, and since P(u′,v′) 6⊆ G we obtain

(2.8) P(u′,z) 6⊆ G.
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Now Pu′ ⊆ S1 =
⋃n

i=1 G1
si

by (2.6), so there exists k, 1 ≤ k ≤ n, so that Pu′ ⊆ G1
sk

. Also
⋂n

i=1 G2
si

6⊆ Qz implies G2
sk

6⊆ Qz and so Pz ⊆ G2
sk

. Hence

P(u′,z) ⊆ G1
sk

× G2
sk

⊆ G

by (2.4), and this contradicts (2.8) and hence proves (2.7). Since G2
s1

∩G2
s2

. . .∩G2
sn

∈ τ2

the inclusions (2.7) imply that Pt ⊆ ]Π→G[ which contradicts (2.2). This completes the
proof of the theorem. �

The above property of compact ditopological texture spaces is in fact characteristic,
as the following theorem shows.

2.18. Theorem. Let (S1, S1, τ1, κ1) be a ditopological texture space. The following are
equivalent.

(i) (S1, S1, τ1, κ1) is compact.
(ii) For all ditopological texture spaces (S2, S2, τ2, κ2), the projection difunction (π2, Π2)

on the product of (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) is co-open.
(iii) For all ditopological texture spaces (S2, S2, τ2, κ2) with S2 = P(S2) and κ2 =

P(S2), the projection difunction (π2, Π2) on the product of (S1, S1, τ1, κ1) and
(S2, S2, τ2, κ2) is co-open.

Proof. (i) =⇒ (ii). This is just Theorem 2.17.

(ii) =⇒ (iii). Clear since (iii) is a special case of (ii).

(iii) =⇒ (i). Suppose (iii) is true and (i) is false. Then ∃Gi ∈ τ , i ∈ I , such that
S1 =

∨

i∈I Gi but S1 6=
⋃

i∈I′ Gi for all finite I ′ ⊆ I . We must show the existence of a
ditopological texture space (S2, S2, τ2, κ2) which contradicts (iii).

Choose t0 6∈ S1 and make the following definitions:

S2 = S♭
1 ∪ {t0},

S2 = P(S2),

τ2 =
{

H ⊆ S2 | ∃ i1, i2, . . . , in ∈ I so that H ∪
(

⋃n

k=1
G♭

ik

)

= S2

}

∪ {∅},

κ2 = P(S2).

Clearly (S2, S2) is a texture and κ2 a cotopology on this texture. We must verify that
τ2 is a topology. Clearly S2 ∈ τ2, and by definition ∅ ∈ τ2. Suppose that H1, H2 ∈ τ2.
If either of H1, H2 is empty so is H1 ∩ H2 and so H1 ∩ H2 ∈ τ2. Hence suppose that
H1 6= ∅ 6= H2. Now we have i1, i2, . . . , in ∈ I and in+1, in+2, . . . , im ∈ I so that

H1 ∪
(

⋃n

k=1
G♭

ik

)

= S2 = H2 ∪
(

⋃m

k=n+1
G♭

ik

)

.

It follows that (H1∩H2)∪
(

⋃m
k=1 G♭

ik

)

= S2, whence again H1∩H2 ∈ τ2. Since in (S2, S2)

join is the same as union, it remains to show that if Hα ∈ τ2 then H =
⋃

α Hα ∈ τ2.
If Hα = ∅ for all α there is nothing to prove, so assume we have α0 with Hα0

6= ∅.

Then we have i1, i2, . . . , in ∈ I so that Hα0
∪

(

⋃n
k=1 G♭

ik

)

= S2. But Hα0
⊆ H , so

H ∪
(

⋃n
k=1 G♭

ik

)

= S2, and we have proved that H ∈ τ2. Hence τ2 is indeed a topology,

so (S2, S2, τ2, κ2) is a ditopological texture space which satisfies the hypotheses of (iii).

Let (S, S, τ, κ) be the product of the spaces (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2). We
show that there exists G ∈ τ for which Π→2 G /∈ τ2.

For i ∈ I note that (S2 \ G♭
i) ∪ G♭

i = S2, whence S2 \ G♭
i ∈ τ2. Define

(2.9) G =
∨

{(Gi × S2) ∩ (S1 × (S2 \ G♭
i)) | i ∈ I} ∈ τ.
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Let us prove that Π→G = {t0}.

First assume that Π→2 G 6⊆ {t0}. Hence

{t ∈ S2 | P ((s1,s2),t) 6⊆ Π2 =⇒ P(s1,s2) ⊆ G} 6⊆ {t0}

since in the texture (S2, S2) we have Pt = {t}. Hence

(2.10) ∃ t1 ∈ S2, t1 6= t0 and P ((s1,s2),t1) 6⊆ Π2 =⇒ P(s1,s2) ⊆ G.

By the definition of S2 we have t1 ∈ S♭
1, so Qt1 6= S1 and we may choose t2 ∈ S1 so that

Pt2 6⊆ Qt1 . Without loss of generality we may assume t2 ∈ S♭
1, and S♭

2 = S2 so t1 ∈ S♭
2.

Hence, by the definition of Π2, we have Π2 ⊆ Q((t2,t1),t1), whence P ((t2,t1),t1) 6⊆ Π2 since

Pt1 6⊆ Qt1 in the texture (S2, S2). By the implication (2.10) we obtain P(t2,t1) ⊆ G, and
since Pt2 6⊆ Qt1 in (S1, S1) and Pt1 6⊆ Qt1 in (S2, S2) we obtain

G =
∨

i∈I

{(Gi × S2) ∩ (S1 × (S2 \ G♭
i))} 6⊆ Q(t1,t1).

Then there exists i ∈ I with

(Gi × S2) ∩ (S1 × (S2 \ G♭
i)) 6⊆ Q(t1,t1) = (S1 × (S2 \ {t1})) ∪ (Qt1 × S2).

In particular Gi × S2 6⊆ Qt1 × S2 and S1 × (S2 \ G♭
i) 6⊆ S1 × (S2 \ {t1}). From the

first of these we obtain Gi 6⊆ Qt1 , whence t1 ∈ G♭
i , while from the second we have

S2 \ G♭
i 6⊆ S2 \ {t1}, which gives the contradiction t1 ∈ G♭

i . So our supposition is wrong
and Π→2 G ⊆ {t0}.

Now assume that {t0} 6⊆ Π→2 G. Then there exists s = (s1, s2) ∈ S such that

P ((s1,s2),t0)) 6⊆ Π2 and P(s1,s2) 6⊆ G. But s2 ∈ S2 = S♭
2, and without loss of general-

ity we may assume s1 ∈ S♭
1. Hence, from the formula for Π2 we obtain Pt0 6⊆ Qs2

. Since
Qs2

= S2 \ {s2} we obtain s2 = t0 and so

(2.11) P(s1,t0) 6⊆ G.

On the other hand s1 ∈ S♭
1 implies that

∨

i∈I Gi = S1 6= Qs1
so there exists i0 ∈ I with

Gi0 6= Qs1
. Hence P(s1,t0) ⊆ Gi0 × S2. Since P(s1,t0) 6⊆ (Gi0 × S2)∩ (S1 × (S2 \G♭

i0)) by

(2.9) and (2.11), we have P(s1,t0) 6⊆ S1 × (S2 \ G♭
i0) and so t0 ∈ G♭

i0 ⊆ S♭
1 ⊆ S1, which

contradicts the choice of t0. Hence {t0} ⊆ Π→2 G.

This verifies that Π→2 G = {t0}, as claimed. If we had {t0} ∈ τ2 then we should have

i1, i2, . . . , in ∈ I so that {t0} ∪ (
⋃n

k=1 Gik
)♭ = S2 = S♭

1 ∪ {t0}. This would imply that

S♭
1 = (

⋃n
k=1 Gik

)♭, and so S1 =
∨n

k=1 Gik
. This would contradict our supposition about

the family Gi, i ∈ I . Therefore {t0} 6∈ τ2 and so Π→2 G /∈ τ2. This contradicts the
conclusion of (iii), and proves that (S1, S1, τ1, κ1) is compact. �

2.19. Corollary. Let (S1, S1, τ1, κ1) be a ditopological texture space. Then the following
are equivalent.

(i) (S1, S1, τ1, κ1) is compact.
(ii) For all ditopological texture spaces (S2, S2, τ2, κ2), the projection difunction (π2, Π2)

on the product of (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) is co-open.
(iii) For all normal ditopological texture spaces (S2, S2, τ2, κ2) the projection difunc-

tion (π2, Π2) on the product of (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) is co-open.

Proof. A ditopological texture space (S2, S2, τ2, κ2) with S2 = P(S2) and κ2 = P(S2) is
normal. �
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It follows that Theorem 2.17 generalizes the characterization of compact topological
spaces due to Mrówka [15] (see also [9]).

As expected the dual results for cocompactness also hold. We summarize these in the
following theorem and corollary. The proofs are essentially dual to those for compactness,
and we just sketch an outline.

2.20. Theorem. Let (S1, S1, τ1, κ1) be a ditopological texture space. The following are
equivalent.

(i) (S1, S1, τ1, κ1) is cocompact.
(ii) Given any ditopological texture space (S2, S2, τ2, κ2), the projection difunction

(π2, Π2) on the product of (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) is closed.
(iii) Given any ditopological texture space (S2, S2, τ2, κ2) with S2 = P(S2) and τ2 =

P(S2), the projection difunction (π2, Π2) on the product of (S1, S1, τ1, κ1) and
(S2, P(S2), P(S2), κ2) is closed.

Proof. (i) =⇒ (ii). Suppose that K is closed for the product topology, but that π→2 K
is not closed. Then we may take t ∈ S2 with [π2(K)] 6⊆ Qt, Pt 6⊆ π→2 K and obtain
sets K1

z ∈ κ1, K2
z ∈ κ2 for z ∈ S1 for which K ⊆ (K1

z × S2) ∪ (S1 × K2
z ) and P(z,t) 6⊆

(K1
z ×S2)∪ (S1 ×K2

z ). From the cocompactness of (τ1, κ1) we see that there exist points
zk ∈ S1, k = 1, 2, . . . , n for which

⋂n
k=1 K1

zk
= ∅. If now we let F =

⋃n
k=1 K2

zk
∈ κ2 then

it may be shown that π→2 K ⊆ F ⊆ Qt, so giving the contradiction [π→2 K] ⊆ Qt. Hence
(π2, Π2) is closed.

(ii) =⇒ (iii). Immediate.

(iii) =⇒ (i). Suppose (iii) holds but that (i) is false. Then there are sets Fi ∈ κ1,
i ∈ I , with the finite intersection property but having an empty intersection. We define
the ditopological texture space (S2, P(S2), P(S2), κ2) by taking t0 /∈ S1 and setting

S2 = S1 ∪ {t0},

κ2 = {B ⊆ S2 | B ∩
⋂

i∈I′

Ki = ∅ for some finite I ′ ⊆ I} ∪ {S2}.

It is clear that κ2 is a cotopology on (S2, P(S2)). Moreover, S2\Ki ∈ κ2 for each i ∈ I and
so K =

⋂

i∈I [(Ki × S2)∪ (S1 × (S2 \ Ki))] is closed for the product ditopology. However
it may be verified that π→2 K = S1, and it is clear that S1 /∈ κ2 since

⋂

i∈I′ Fi 6= ∅ for

each finite I ′ ⊆ I . This contradiction to (iii) establishes that (τ1, κ1) is cocompact. �

2.21. Corollary. Let (S1, S1, τ1, κ1) be a ditopological texture space. The following are
equivalent.

(i) (S1, S1, τ1, κ1) is cocompact.
(ii) Given any ditopological texture space (S2, S2, τ2, κ2), the projection difunction

(π2, Π2) on the product of (S1, S1, τ1, κ1) and (S2, S2, τ2, κ2) is closed.
(iii) Given any normal ditopological texture space (S2, S2, τ2, κ2), the projection di-

function (π2, Π2) on the product of (S1, S1, τ1, κ1) and (S2, P(S2), P(S2), κ2) is
closed. �

3. Stability and Costability

In a compact topological space every closed subset is compact. The following example
shows that this is not true for compact ditopological texture spaces. Dually we give an
example of a cocompact ditopological space in which not every open subset is cocompact.

3.1. Example. Consider the texture (L, L) of Examples 1.1 (3).
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(1) Let τ = {(0, r] | 0 ≤ r ≤ 1/2} ∪ {L} and κ = {∅, (0, 1/2], L}. It is trivial to
verify that (τ, κ) is a ditopology on (L, L). This ditopology is compact because
any open cover of L must contain L, and so {L} is a finite subcover. In fact it
is cocompact also, because κ is finite. However, the closed subset K = (0, 1/2]
is not compact because C = {(0, 1/2 − 1/n] | n = 3, 4, 5, . . .} is an open cover of
K with no finite subcover.

(2) Dually, let τ = {∅, (0, 1/2], L} and κ = {(0, r] | 1/2 ≤ r ≤ 1} ∪ {∅}. The
ditopology (τ, κ) on (L, L) is cocompact since every cocover of ∅ must contain ∅,
whence {∅} is a finite subcocover. It is also compact because τ is finite. However
the open set G = (0, 1/2] is not cocompact because D = {(0, 1/2 + 1/n] | n =
3, 4, 5, . . .} is a closed cocover of G with no finite subcocover.

This leads to the following concepts.

3.2. Definition. [2]. Let (τ, κ) be a ditopology on the texture (S, S). Then (τ, κ) is
called,

(i) Stable if every K ∈ κ with K 6= S is compact.
(ii) Costable if every G ∈ τ with G 6= ∅ is cocompact.

These concepts generalize analogous concepts for bitopological spaces introduced by
R.D. Kopperman in [14]. Examples 3.1 (1) shows that a compact ditopological texture
space need not be stable, while (2) shows that a cocompact ditopological texture space
need not be costable. The following examples show that the converses also hold.

3.3. Example. Consider the texture (L, L) as in the previous examples.

(1) Let τ = L and κ = {∅, L}. The ditopology (τ, κ) is not compact because
C = {(0, 1 − 1/n] | n = 2, 3, 4, . . .} is an open cover of L which has no finite
subcover. On the other hand (τ, κ) is stable because the only closed set different
from L is ∅, and this set is trivially compact.

(2) Dually let τ = {∅, L} and κ = L. This ditopology is costable but not cocompact.
(3) Let τ = L and κ = {∅, (0, 1/2], L}. Since κ is finite every open set is cocompact.

Hence (τ, κ) is costable and cocompact. However the closed set (0, 1/2] is not
compact since C = {(0, 1/2 − 1/n] | n = 3, 4, 5, . . .} is an open cover with no
finite subcover. Hence (τ, κ) is not stable. It is also not compact.

(4) Dually, let τ = {∅, (0, 1/2], L} and κ = L. The ditopology (τ, κ) is stable and
compact but neither costable nor cocompact.

The last two examples show that in general stability and costability are independent
of one another. However for complemented ditopological texture spaces these concepts
are equivalent, as we now show.

3.4. Proposition. Let (S, S, σ) be a texture with complement σ and let (τ, κ) be a com-
plemented ditopology on (S, S, σ). Then (τ, κ) is stable if and only if (τ, κ) is costable.

Proof. Let (τ, κ) be stable, take G ∈ τ with G 6= ∅ and let D be a closed cocover of G.
Set K = σ(G). Then K ∈ κ satisfies K ∈ κ, K 6= S. Hence K is compact. Let C =
{σ(F ) | F ∈ D}. Since

⋂

D ⊆ G we have K ⊆
∨

C, i.e. C is an open cover of K so there
exists F1, F2, . . . , Fn ∈ D so that K ⊆ σ(F1)∪σ(F2)∪ . . .∪σ(Fn) = σ(F1 ∩F2∩ . . .∩Fn).
This gives F1 ∩ F2 ∩ . . . ∩ Fn ⊆ σ(K) = G, so G is cocompact. Hence (τ, κ) is costable.

The proof that costable implies stable is the dual of the above, and is omitted. �

3.5. Theorem. A regular stable ditopological texture space is normal.



Compactness in Ditopological Texture Spaces 35

Proof. Let F ∈ κ, G ∈ τ with F ⊆ G. By [7, Definition 5.18] we must prove that there
exists H ∈ τ satisfying

F ⊆ H ⊆ [H ] ⊆ G.

There are two cases to consider.

(i) G = S. In this case we may take H = S, and then F ⊆ H ⊆ [H ] ⊆ G.

(ii) G 6= S. Take any s ∈ S with G 6⊆ Qs. Then by regularity [7, Definition 3.1 (e)] there
exists Hs ∈ τ with Hs 6⊆ Qs and [Hs] ⊆ G. Now we prove that F ⊆

∨

{Hs | G 6⊆ Qs}.

Assume that F 6⊆
∨

{Hs | G 6⊆ Qs}. Then ∃ u ∈ S such that F 6⊆ Qu and Pu 6⊆
∨

{Hs | G 6⊆ Qs}. Now F 6⊆ Qu and F ⊆ G implies G 6⊆ Qu, so we have Hu ∈ τ with
Hu 6⊆ Qu and [Hu] ⊆ G. But now Pu ⊆ Hu ⊆

∨

{Hs | G 6⊆ Qs}, which is a contradiction.
Hence F ⊆

∨

{Hs | G 6⊆ Qs}, that is {Hs | G 6⊆ Qs} is an open cover of F . But F 6= S
since F ⊆ G and G 6= S, whence F is compact since (τ, κ) is stable. Hence there exists
s1, s2, . . . , sn ∈ S such that

F ⊆ Hs1
∪Hs2

∪. . .∪Hsn ⊆ [Hs1
∪Hs2

∪. . .∪Hsn ] = [Hs1
]∪[Hs2

]∪. . .∪[Hsn ] ⊆ G.

If we define H = Hs1
∪ Hs2

∪ . . . ∪ Hsn then we see that H ∈ τ and F ⊆ H ⊆ [H ] ⊆ G.

From (i) and (ii) we have that (τ, κ) is normal. �

3.6. Theorem. A coregular costable ditopological texture space is normal.

Proof. Dual to the proof of Theorem 3.5. �

3.7. Theorem. A R1 costable ditopological texture space is regular.

Proof. Let G ∈ τ , G 6⊆ Qs. We must show that there exists H ∈ τ satisfying

H 6⊆ Qs and [H ] ⊆ G.

First take v ∈ S satisfying G 6⊆ Qv and Pv 6⊆ Qs. Since (τ, κ) is R1, by [7, Defini-
tion 3.1 (c)] for any t ∈ S with Pt 6⊆ G there exists Ht ∈ τ with Ht 6⊆ Qv and Pt 6⊆ [Ht].
Let us show that

⋂

{[Ht] | Pt 6⊆ G} ⊆ G.

Assume this is false. Then we have u ∈ S for which
⋂

{[Ht] | Pt 6⊆ G} 6⊆ Qu and Pu 6⊆ G.
As above we have Hu ∈ τ with Hu 6⊆ Qv and Pu 6⊆ [Hu], so

⋂

{[Ht] | Pt 6⊆ G} ⊆
[Hu] ⊆ Qu, which is a contradiction. Hence the above inclusion is valid, which means
that {[Ht] | Pt 6⊆ G} is a closed cocover of G.

By hypothesis G 6⊆ Qs, and so G 6⊆ ∅. Since (τ, κ) is costable, G is cocompact and
so there exists t1, t2 . . . tn with Pti

6⊆ G for which [Ht1 ] ∩ [Ht2 ] . . . ∩ [Htn ] ⊆ G. Let
H = Ht1 ∩ Ht2 . . . ∩ Htn . Then H ∈ τ , Hti

6⊆ Qv =⇒ Pv ⊆ Hti
, i = 1, 2, . . . , n, whence

Pv ⊆ H and so H 6⊆ Qs since Pv 6⊆ Qs. Finally,

[H ] = [Ht1 ∩ Ht2 . . . ∩ Htn ] ⊆ [Ht1 ] ∩ [Ht2 ] ∩ . . . ∩ [Htn ] ⊆ G,

which shows that H has the required properties. Hence (τ, κ) is regular. �

3.8. Theorem. A co-R1 stable ditopological texture space is coregular.

Proof. Dual to the proof of Theorem 3.7. �

On the other hand the R0 axiom [7, Definition 3.1 (a)] in the presence of costability
does not imply R1, as the following example shows.
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3.9. Example. Let X be an infinite set and consider the complemented texture (X, P(X), πX).
Define the complemented ditopology (τ, κ) by taking κ to consist of X and the set of
finite subsets of X and τ to be the cofinite topology on X. It is well known [16] that τ
is a compact topology, so all the closed subsets are compact also. This means that the
ditopology (τ, κ) is compact and stable. Since (τ, κ) is a complemented ditopology, it is
also cocompact and costable by Proposition 2.3 and Proposition 3.4, respectively.

Take G ∈ τ and G 6⊆ Qx = X \ {x} for x ∈ X. Then Px = {x} ⊆ G, and since {x}
is a finite set we have Px ∈ κ, so [Px] = Px ⊆ G. This proves that (τ, κ) is R0, whence
(τ, κ) is also co-R0 by [7, Corollary 3.5]

On the other hand, (τ, κ) is not R1. To see this take G ∈ τ and x, y ∈ X with G 6⊆ Qx

and Py 6⊆ G. Suppose that we have H ∈ τ with H 6⊆ Qx and Py 6⊆ [H ], i.e. x ∈ H and
y /∈ [H ]. Now H 6= ∅ so H is the complement of a finite set, and so is an infinite set since
X is infinite. It follows that [H ] = X, and this contradicts y /∈ [H ].

By definition every closed set in a compact stable ditopological texture space is com-
pact, and likewise every open set in a cocompact costable space is cocompact. In order
to investigate in greater detail precisely which sets are compact or cocompact in such
spaces the following definitions will prove useful.

3.10. Definition. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S.

(1) (a) Q(A) =
⋂

{ ]Qs[ | Ps 6⊆ A}.
(b) A is called pseudo open if Q(A) = ]A[.

(2) (a) P (A) =
∨

{[Ps] | A 6⊆ Qs}.
(b) A is called pseudo closed if P (A) = [A].

3.11. Lemma. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S. Then

(1) ]A[⊆ Q(A) ⊆ A.
(2) A ⊆ P (A) ⊆ [A].

Proof. (1) Suppose that ]A[ 6⊆ Q(A). Then there exists s ∈ S with ]A[ 6⊆]Qs[ and Ps 6⊆ A.
From Ps 6⊆ A we have A ⊆ Qs, and so ]A[⊆ ]Qs[, which is a contradiction. Hence
]A[⊆ Q(A). On the other hand, Q(A) =

⋂

{ ]Qs[ | Ps 6⊆ A} ⊆
⋂

{Qs | Ps 6⊆ A} = A by
[5, Theorem 1.2 (6)].

(2) A =
∨

{Ps | A 6⊆ Qs} ⊆
∨

{[Ps] | A 6⊆ Qs} = P (A) by [5, Theorem 1.2 (7)]. On
the other hand, suppose that P (A) 6⊆ [A]. Then there exists s ∈ S with [Ps] 6⊆ [A] and
A 6⊆ Qs. From A 6⊆ Qs we have Ps ⊆ A, and so [Ps] ⊆ [A], which is a contradiction.
Hence P (A) ⊆ [A]. �

3.12. Corollary. Let (S, S, τ, κ) be a ditopological texture space.

(1) Every set A ∈ τ is pseudo open.
(2) Every set A ∈ κ is pseudo closed.

Proof. (1) If A ∈ τ then A = ]A[ so by Lemma 3.11 (1) we have ]A[⊆ Q(A) ⊆ ]A[, whence
Q(A) = ]A[ which means that A is pseudo open.

(2) If A ∈ κ then A = [A] so by Lemma 3.11 (2) we have [A] ⊆ P (A) ⊆ [A], whence
P (A) = [A] which means that A is pseudo closed. �

On the other hand not every pseudo open set need be open, and not every pseudo
closed set need be closed, as the following examples show.

3.13. Examples. Consider again the texture (L, L).
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(1) Consider a ditopology (τ, κ) on (L, L) for which κ = {∅, (0, 1/2], L}. Put, for
example, A = (0, 1/4] ∈ L. Clearly, A /∈ κ so A is not closed. However,

P (A) =
∨

{[(0, s]] | (0, 1/4] 6⊆ (0, s]} =
∨

{[(0, s]] | s < 1/4} = (0, 1/2] = [A],

so A is pseudo closed.
(2) Consider a ditopology (τ, κ) on (L, L) for which τ = {∅, (0, 1/2], L}. Put, for

example, A = (0, 3/4] ∈ L. Clearly, A /∈ τ so A is not open. However

Q(A) =
⋂

{](0, s][ | (0, s] 6⊆ (0, 3/4]} =
⋂

{](0, s][ | s > 3/4} = (0, 1/2] = ]A[,

so A is pseudo open.

3.14. Theorem. Let (S, S, τ, κ) be a ditopological texture space.

(1) Suppose that (τ, κ) is compact, stable and R0. Then every pseudo closed set
A ∈ S is compact.

(2) Suppose that (τ, κ) is cocompact, costable and co-R0. Then every pseudo open
set A ∈ S is cocompact.

Proof. (1) Let A ∈ S be pseudo closed. We must prove that A is compact. To this end,
let Gi ∈ τ , i ∈ I satisfy the condition A ⊆

∨

i∈I Gi. We prove first that

P (A) ⊆
∨

i∈I

Gi.

Assume P (A) 6⊆
∨

Gi. By the definition of P (A) there exists s ∈ S with A 6⊆ Qs and
[Ps] 6⊆

∨

Gi. Now A 6⊆ Qs =⇒
∨

Gi 6⊆ Qs =⇒ [Ps] ⊆
∨

Gi since
∨

Gi ∈ τ and (τ, κ)
is R0. So our supposition is wrong and P (A) ⊆

∨

Gi. As A is pseudo closed we have
P (A) = [A] and so [A] ⊆

∨

Gi. There are two cases to consider.

Case 1. [A] = S. As S is compact, we have [A] is compact. Then there exists i1, i2, . . . in
such that [A] ⊆ Gi1 ∪ Gi2 ∪ . . . ∪ Gin . Since A ⊆ [A] we have A ⊆ ∪n

i=1Gi which shows
that A is compact.

Case 2. [A] 6= S. Again [A] is compact, this time because (τ, κ) is stable. Exactly as in
Case 1 we see that A is compact.

(2) Dual to (1), and hence omitted.
�

3.15. Theorem. Let (S, S, τ, κ) be a ditopological texture space.

(1) Suppose (τ, κ) is co-R1. Then if A is compact it is pseudo closed.
(2) Suppose (τ, κ) is R1. Then if A is cocompact it is pseudo open.

Proof. (1) Let (τ, κ) be co-R1 and A ∈ S compact. We must prove that P (A) = [A]. By
Lemma 3.11 (2) we know that P (A) ⊆ [A], so it is sufficient to prove that

(3.1) [A] ⊆ P (A).

Assume [A] 6⊆ P (A). Then we have s ∈ S satisfying [A] 6⊆ Qs and Ps 6⊆ P (A). Take any
u ∈ S with A 6⊆ Qu. Then, since P (A) =

∨

{[Pu] | A 6⊆ Qu}, we have Ps 6⊆ [Pu] ∈ κ. If
we take any t ∈ S with [Pu] 6⊆ Qt we may apply the co-R1 axiom [7, Definition 3.1 (d)]
to give a set Ku

t ∈ κ satisfying Ps 6⊆ Ku
t and ]Ku

t [ 6⊆ Qt. Let us prove that

(3.2) A ⊆
∨

{]Ku
t [ | A 6⊆ Qu and [Pu] 6⊆ Qt}.

Suppose that (3.2) is false. Then there exists w ∈ S with A 6⊆ Qw and Pw 6⊆
∨

{]Ku
t [ |

A 6⊆ Qu and [Pu] 6⊆ Qt}. Hence we have v ∈ S satisfying Pw 6⊆ Qv and Pv 6⊆
∨

{]Ku
t [ |

A 6⊆ Qu and [Pu] 6⊆ Qt}. Applying the above argument with u = w we have Ps 6⊆ [Pw ],
and if we note that [Pw ] 6⊆ Qv we have Kw

v ∈ κ with Ps 6⊆ Kw
v and ]Kw

v [ 6⊆ Qv. We now
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obtain Pv ⊆ ]Kw
v [⊆

∨

{]Ku
t [ | A 6⊆ Qu and [Pu] 6⊆ Qt}, which is a contradiction. Hence

(3.2) is proved.

Since ]Ku
t [∈ τ for all A 6⊆ Qu, [Pu] 6⊆ Qt, and A is compact we have u1, u2, . . . , un

∈ S and t1, t2, . . . , tn ∈ S so that [Pui
] 6⊆ Qti

, i = 1, 2, . . . , n and

A ⊆ ]Ku1

t1
[∪ ]Ku2

t2
[∪ . . .∪ ]Kun

tn
[ ⊆ Ku1

t1
∪ Ku2

t2
∪ . . . ∪ Kun

tn
∈ κ,

from which we deduce [A] ⊆ Ku1

t1
∪ Ku2

t2
∪ . . . ∪ Kun

tn
. But [A] 6⊆ Qs implies Ps ⊆ [A],

so Ps ⊆ Kuk
tk

for some k, 1 ≤ k ≤ n, since Ps is a molecule. However this contradicts

Ps 6⊆ Kui
ti

for all i = 1, 2, . . . , n, and (3.1) is proved. Hence A is pseudo closed.

(2) Dual to (1), and we omit the details. �

If we assume the stronger bi-T2 axiom we obtain the following improved result.

3.16. Theorem. Let (S, S, τ, κ) be bi-T2. Then every compact set in S is closed and
every cocompact set in S is open.

Proof. We prove the first result, leaving the dual proof of the second result to the in-
terested reader. Hence, let A ∈ S be compact. Take s ∈ S with Ps 6⊆ A. Then
for any t ∈ S satisfying A 6⊆ Qt we have Qs 6⊆ Qt, so by the bi-T2 axiom we have
Ht ∈ τ , Kt ∈ κ so that Ht ⊆ Kt, Ht 6⊆ Qt and Ps 6⊆ Kt [7, Theorem 4.17 (2)]. Now
A ⊆

∨

A6⊆Qt
Ht, so by compactness we have t1, t2, . . . tn ∈ S with A 6⊆ Qtk

, k = 1, 2, . . . , n

and A ⊆
⋃n

k=1 Htk ⊆
⋃n

k=1 Ktk ∈ κ. Since Ps 6⊆
⋃n

k=1 Ktk this establishes that A ∈ κ
by [6, Theorem 3.2 (4)] applied to β = κ. �

Let us now investigate the preservation of stability and costability under surjective
difunctions.

3.17. Theorem. Let (S1, S1, τ1, κ1), (S2, S2, τ2, κ2) be ditopological texture spaces with
(S1, S1, τ1, κ1) stable, and (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) a bicontinuous surjec-
tive difunction. Then (S2, S2, τ2, κ2) is stable.

Proof. Take K ∈ κ2 with K 6= S2. Since (f, F ) is cocontinuous, f←K ∈ κ1. Let us prove
that f←K 6= S1. Assume the contrary. Since f←S2 = S1 by [5, Lemma 2.28 (1 c)] we
have f←S2 ⊆ f←K, whence S2 ⊆ K by [5, Corollary 2.33 (1 ii)] as (f, F ) is surjective.
This is a contradiction, so f←(K) 6= S1. Hence f←(K) is compact in (S1, S1, τ1, κ1) by
stability. As (f, F ) is continuous, f→(f←K) is compact for the ditopology (τ2, κ2) by
Theorem 2.5, and by [5, Corollary 2.33 (1)] this set is equal to K. This establishes that
(S2, S2, τ2, κ2) is stable. �

3.18. Theorem. Let (S1, S1, τ1, κ1), (S2, S2, τ2, κ2) be ditopological texture spaces with
(S1, S1, τ1, κ1) costable, and (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) a bicontinuous sur-
jective difunction. Then (S2, S2, τ2, κ2) is costable.

Proof. Dual to the proof of Theorem 3.16, and we omit the details. �

In view of Lemma 2.11 the following is an immediate consequence of Theorem 3.17
and Theorem 3.18.

3.19. Corollary. Let (Si, Si, τi, κi), i ∈ I, be non-empty ditopological texture spaces and
(S,S, τ, κ) their product.

(1) If (S, S, τ, κ) is stable then (Sk, Sk, τk, κk) is stable for each k ∈ I.
(2) If (S, S, τ, κ) is costable then (Sk, Sk, τk, κk) is costable for each k ∈ I. �

It is currently an open question as to whether the converse implications hold or not.

Finally we have the following.
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3.20. Theorem. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be a difunction and
(S2, S2, τ2, κ2) bi-T2. Then:

(1) If (f, F ) is continuous, (S1, S1, τ1, κ1) compact and stable then (f, F ) is closed.
(2) If (f, F ) is cocontinuos, (S1, S1, τ1, κ1) cocompact and costable then (f, F ) is

co-open

Proof. (1) Any K ∈ κ1 is (τ1, κ1)-compact, whence f→K is (τ2, κ2)-compact by Theo-
rem 2.5. By Theorem 3.16 we deduce that f→K ∈ κ2, so (f, F ) is closed.

(2) Dual to (1). �

4. Dicompactness

In the previous sections we have considered compact and cocompact, stable and
costable ditopological texture spaces. The notion of dicompacness combines all four
of these properties.

4.1. Definition. A ditopological texture space (S, S, τ, κ) is called dicompact if it is
compact, cocompact, stable and costable.

We may state at once:

4.2. Proposition. Let (τ1, κ1) be a dicompact ditopology on the texture (S1, S1). Then
if (S2, S2, τ2, κ2) is a second ditopological texture space for which there is a surjective
bicontinuous difunction (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) the ditopology (τ2, κ2) is
dicompact.

Proof. The compactness, cocompactness, stability and costability of (τ2, κ2) follow at
once from Proposition 2.6, Proposition 2.9, Theorem 3.17 and Theorem 3.18, respectively.
Hence (τ2, κ2) is dicompact by Definition 4.1. �

4.3. Proposition. Let (S, S, τ, κ) be a dicompact ditopological texture space.

(1) If (τ, κ) is R1 then (τ, κ) is regular.
(2) If (τ, κ) is co-R1 then (τ, κ) is coregular.
(3) If (τ, κ) is regular then (τ, κ) is normal.
(4) If (τ, κ) is coregular then (τ, κ) is normal.

Proof. (1) This follows by Theorem 3.7 since a dicompact space is costable.

(2) This follows from Theorem 3.8 since a dicompact space is stable.

(3) This follows from Theorem 3.5 since a dicompact space is stable.

(4) This follows from Theorem 3.6 since a dicompact space is costable. �

4.4. Proposition. Let (S, S, τ, κ) be a dicompact ditopological texture space.

(1) If (τ, κ) is R0 then every pseudo closed set A ∈ S is compact.
(2) If (τ, κ) is co-R0 then every pseudo open set A ∈ S is cocompact.

Proof. (1) Since a dicompact space is compact and stable this is a consequence of Theo-
rem 3.14 (1).

(2) Since a dicompact space is cocompact and costable this is a consequence of The-
orem 3.14 (2). �

The following result is now immediate from Theorem 3.20.

4.5. Theorem. Let (S1, S1, τ1, κ1) be dicompact, (S2, S2, τ2, κ2) bi-T2 and (f, F ) : (S1, S1, τ1, κ1) →
(S2, S2, τ2, κ2) bicontinuous. Then (f, F ) is closed an co-open. �
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4.6. Corollary. Let (S1, S1, τ1, κ1) be dicompact, (S2, S2, τ2, κ2) bi-T2 and (f, F ) : (S1, S1, τ1, κ1) →
(S2, S2, τ2, κ2) a bicontinuous bijection. Then (f, F ) is a dihomeomorphism.

Proof. This follows at once from Theorem 4.5 and [1, Proposition 4.4]. �

Applying this to the identity difunction (iS , IS) : (S, S, τ1, κ1) → (S, S, τ2, κ2), where
(S,S, τ1, κ1) is dicompact, (S, S, τ2, κ2) bi-T2 and τ2 ⊆ τ1, κ2 ⊆ κ1 we obtain (τ1, κ1) =
(τ2, κ2). This shows that a bi-T2 dicompact ditopological texture space is minimally
bi-T2 and maximally dicompact, so generalizing the well known result that a Hausdorff
compact topological space is minimally Hausdorff and maximally compact.

The unit interval ditopological texture space (I, I, τI, κI) of Examples 1.1 (2) is an
important example of a bi-T2 dicompact space. The reader is referred to [17] for some
interesting results on bi-T2 dicompact spaces obtained from quite a different perspective.

Work on this notion of ditopological compactness in the literature has used various
different characterizations. To describe these we need the following concepts.

4.7. Definition. Let (τ, κ) be a ditopology on (S, S).

(1) A set D ⊆ S×S is called a difamily on (S, S). A difamily D satisfying D ⊆ τ ×κ
is open and co-closed, one satisfying D ⊆ κ × τ is closed and co-open.

(2) A difamily D has the finite exclusion property (fep) if whenever (Fi, Gi) ∈ D,
i = 1, 2, . . . , n we have

⋂n
i=1 Fi 6⊆

⋃n
i=1 Gi.

(3) A closed, co-open difamily D with
⋂

{F | F ∈ dom D} 6⊆
∨

{G | G ∈ ran D} is
said to be bound in (S, S, τ, κ).

(4) A difamily D = {(Gi, Fi) | i ∈ I} is called a dicover of (S, S) if for all partitions
I1, I2 of I (including the trivial partitions) we have
⋂

i∈I1

Fi ⊆
∨

i∈I2

Gi.

(5) A difamily D is called finite (co-finite) if dom D (resp. ranD) is finite.

4.8. Theorem. The following are equivalent for (S, S, τ, κ).

(1) (S, S, τ, κ) is dicompact.
(2) Every closed, co-open difamily with the finite exclusion property is bound.
(3) Every open, co-closed dicover has a sub-dicover which is finite and co-finite. �

The non-trivial proof of this theorem may be found in [2]. In view of the characteri-
zation in terms of dicovers, dicompactness has also been known as dicover bicompactness
in the literature. On the other hand the characterization in terms of difamilies with the
finite exclusion property enables us to state and prove a dual version of the Alexander
subbase theorem (cf. [9]) for dicompactness.

4.9. Theorem. Let sτ be a subbase for τ and sκ a subbase for κ. Then (τ, κ) is dicompact
if and only if every difamily B ⊆ sκ × sτ with the finite exclusion property is bound.

Proof. =⇒. Clear.

⇐=. Suppose that the condition is satisfied but that (τ, κ) is not dicompact. Then,
by Theorem 4.8, we have B ⊆ κ × τ with the fep which satisfies

⋂

dom B ⊆
∨

ran B.
The set of all such families B, ordered by inclusion, is easily seen to be inductive so by
Zorn’s Lemma there exists a maximal element B0 in this set. We establish the following
properties of B0.

(1) For A ∈ κ, B ∈ τ , if

A ∩
n
⋂

i=1

Ai 6⊆ B ∪
n
⋃

i=1

Bi ∀ (A1, B1), . . . , (An, Bn) ∈ B0, n ∈ N
+,
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then (A, B) ∈ B0.

Indeed, under the given conditions it is trivial to verify that B
′ = B0 ∪

{(A, B)} ⊆ κ× τ has the fep and so (A,B) ∈ B
′ = B0 by the maximality of B0.

(2) B0 = domB0 × ran B0.

If we take C1 ∈ dom B0 and D2 ∈ ran B0 then we have (C1, D1), (C2, D2)
∈ B0 for some D1 ∈ τ, C2 ∈ κ. If (C1, D2) /∈ B0 then by (1) we have (Ai, Bi) ∈
B0, i = 1, 2, . . . , n for which

C1 ∩
n
⋂

i=1

Ai ⊆ D2 ∪
n
⋃

i=1

Bi.

From this we deduce C1 ∩C2 ∩
⋂n

i=1 Ai ⊆ D1 ∪D2 ∪
⋃n

i=1 Bi, which contradicts
the fep for B0.

(3) (A1, B1), (A2, B2) ∈ B0 =⇒ (A1 ∩ A2, B1 ∪ B2) ∈ B0.

This follows trivially from (1).
(4) (A, B) ∈ B0, A ⊆ A′ ∈ κ, B ⊇ B′ ∈ τ =⇒ (A′, B′) ∈ B0.

Clear from (1).
(5) F = dom B0 is a filter in κ and G = ran B0 a dual filter in τ .

Immediate from (3), (4) and the evident fact that (∅, S) /∈ B0.
(6) For A1, . . . , An ∈ κ and B1, . . . , Bm ∈ τ ,

( n
⋃

i=1

Ai,
m
⋂

j=1

Bj

)

∈ B0 =⇒ ∃ i, j with (Ai, Bj) ∈ B0.

First we prove that (
⋃n

i=1 Ai, B) ∈ B0 =⇒ ∃ i with (Ai, B) ∈ B0. If (Ai, B) /∈

B0, i = 1, 2, . . . , n then by (1) for each i we have (Ci
k, Di

k) ∈ B0 for k =
1, 2, . . . , ni with

Ai ∩

ni
⋂

k=1

Ci
k ⊆ B ∪

ni
⋃

k=1

Di
k.

From this we obtain

(A1 ∪ . . . ∪ An) ∩
n
⋂

i=1

ni
⋂

k=1

Ci
k ⊆ B ∪

n
⋃

i=1

ni
⋃

k=1

Di
k,

which again contradicts the fep for B0. In the same way
(

A,
m
⋂

j=1

Bj

)

∈ B0 =⇒ ∃ j with (A, Bj) ∈ B0.

Applying these implications now gives the required result.
(7) F is a prime filter and G a prime dual filter.

To complete the proof let us now set B = B0 ∩ (sκ × sτ ) = (F ∩ sκ) × (G ∩ sτ ). Since
B ⊆ B0 it has the fep. For each A ∈ F, B ∈ G we may write

A =
⋂

α

(F α
1 ∪ . . . ∪ F α

nα
) B =

∨

β

(Gβ
1 ∩ . . . ∩ Gβ

mβ
)

where F α
i ∈ sκ and Gβ

j ∈ sτ . By (4) we have (F α
1 ∪ . . . ∪ F α

nα
, Gβ

1 ∩ . . . ∩ Gβ
mβ

) ∈ B0 for

all α and β. By (6) we have iα, jβ for which (F α
iα

, Gβ
jβ

) ∈ B0. But now (F α
iα

, Gβ
jβ

) ∈ B,
⋂

α F α
iα

⊆ A and B ⊆
∨

β Gβ
jβ

which gives
⋂

dom B ⊆
⋂

dom B0 ⊆
∨

ran B0 ⊆
∨

ran B.

This contradicts the hypothesis of the theorem. �

The following theorem is the Tychonoff Product Theorem for dicompactness.
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4.10. Theorem. A product of non-empty ditopological texture spaces is dicompact if and
only each of the spaces is dicompact.

Proof. Sufficiency. Consider dicompact ditopological texture spaces (Sα, Sα, τα, κα), α ∈
A, and let (S, S, τ, κ) be their product. Denote by sτ the subbase of τ consisting of the sets
E(α, Gα), α ∈ A, Gα ∈ τα and by sκ the subbase of κ consisting of the sets E(α, Kα),
α ∈ A, Kα ∈ κα. By Theorem 4.8, it will be sufficient to show that every difamily
B ⊆ sκ × sτ with the fep is bound. Suppose, on the contrary, that there is such a B with
the fep for which

⋂

dom B ⊆
∨

ran B. By hypothesis we may write

B = {(E(αi, F
i
αi

), E(βi, Gi
βi

)) | i ∈ I},

where αi, βi ∈ A, F i
αi

∈ καi
and Gi

βi
∈ τβi

. Now
⋂

i∈I

E(αi, F
i
αi

) =
∏

α∈A

Yα,

where

Yα =

{

⋂

{F i
αi

| αi = α}, if ∃ i with αi = α,

Sα otherwise,

and
∨

i∈I

E(βi, G
i
βi

) =
⋃

β∈{βi|i∈I}

E(β,
∨

{Gi
βi

| βi = β}).

by [3, Lemma 2.3]. Now
⋂

dom B ⊆
∨

ran B and the form of the sets involved gives
β ∈ {βi | i ∈ I} satisfying Yβ ⊆

∨

{Gi
βi

| βi = β}.

There are two cases to consider:

(1) ∃ i ∈ I with αi = β. In this case
⋂

{F i
αi

| αi = β} ⊆
∨

{Gi
βi

| βi = β}.

If we define

Bβ = {(F i
αi

, ∅) | αi = β, βi 6= β} ∪ {(F i
αi

, Gi
βi

) | αi = βi = β}

∪ {(Sβ , Gi
βi

) | βi = β, αi 6= β} ⊆ κβ × τβ,

then
⋂

dom Bβ ⊆
∨

ran Bβ, and since (τβ , κβ) is dicompact ∃ i1, . . . , ip with
βik

= β, αik
6= β, k = 1, . . . , p; ip+1, . . . iq with αik

= βik
= β, k = p + 1, . . . , q

and iq+1, . . . , ir with αik
= β, βik

6= β, k = q + 1, . . . , r so that

q
⋂

k=1

F ik
αik

⊆
r

⋃

i=p+1

Gik
αik

.

But then
r

⋂

k=1

E(β, F ik
αik

) ⊆
r

⋃

k=1

E(β, Gik
αik

),

which contradicts the fact that B has the fep.
(2) αi 6= β ∀ i ∈ I . In this case

Sβ ⊆
∨

{Gi
αi

| αi = β},

and letting

Bβ = {(Sβ , Gi
αi

) | αi = β}

we obtain a contradiction to the fep for B as before.
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This completes the proof that (S, S, τ, κ) is dicompact.

Necessity. Suppose that (S, S, τ, κ) is dicompact and take k ∈ I . Then (S, S, τ, κ) is
compact, cocompact, stable and costable, whence by Corollary 2.12, (Sk, Sk, τk, κk) is
compact and cocompact, while by Corollary 3.19 it is stable and costable. This proves
that (Sk, Sk, τk, κk) is dicompact. �
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