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Abstract

The famous Knopp Core of a single sequence was extended to the P -

core of a double sequence by R.F. Patterson. Recently, the MR-core

and σ-core of real bounded double sequences have been introduced
and some inequalities analogues to those for Knoop’s Core Theorem
have been studied. The aim of this paper is to characterize a class
of four-dimensional matrices, and so to obtain necessary and sufficient
conditions for a new inequality related to the P - and σ-cores.
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1. Introduction

A double sequence x = [xjk]∞j,k=0 is said to be convergent to a number l in the sense

of Pringsheim, or to be P-convergent, if for every ε > 0 there exists N ∈ N, the set of
natural numbers, such that |xjk − l| < ε whenever j, k > N , [11]. In this case, we write
P -limx = l. In what follows, we will write [xjk] in place of [xjk]∞j,k=0.

A double sequence x is said to be bounded if there exists a positive number M such
that |xjk| < M for all j, k, i.e.,

‖x‖ = sup
j,k

|xjk| < ∞.

We note that in contrast to the case for single sequences, a convergent double sequence
need not be bounded. By c∞2 , we mean the space of all P-convergent and bounded double
sequences.
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E-mail: (C. Çakan) ccakan@inonu.edu.tr (B. Altay) baltay@inonu.edu.tr (H. Coşkun)
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Let A = [amn
jk ]∞j,k=0 be a four dimensional infinite matrix of real numbers for all

m,n = 0, 1, . . . . The sums

ymn =
∞
∑

j

∞
∑

k=0

amn
jk xjk

are called the A-transforms of the double sequence x. We say that a sequence x is A-

summable to the limit l if the A-transform of x exists for all m,n = 0, 1, . . . and are
convergent in the sense of Pringsheim, i.e.,

lim
p,q→∞

p
∑

j=0

q
∑

k=0

amn
jk xjk = ymn

and

lim
m,n→∞

ymn = l.

Moricz and Rhoades [6] have defined the almost convergence of a double sequence as
follows:

A double sequence x = [xjk] of real numbers is said to be almost convergent to a limit

l if

lim
p,q→∞

sup
s,t≥0

∣

∣

∣

1

pq

p
∑

j=0

q
∑

k=0

xj+s,k+t − l
∣

∣

∣
= 0.

Note that a convergent single sequence is also almost convergent but for a double sequence
this is not the case. That is, a convergent double sequence need not be almost convergent.
However, every bounded convergent double sequence is almost convergent. We denote
by f2 the set of all almost convergent and bounded double sequences.

Let σ be a one-to-one mapping from N into itself. The almost convergence of double
sequences has been generalized to the σ-convergence in [2] as follows:

A bounded double sequence x = [xjk] of real numbers is said to be σ-convergent to a

limit l if

lim
p,q→∞

sup
s,t≥0

1

pq

p
∑

j=0

q
∑

k=0

xσj(s),σk(t) = l.

In this case we write σ-lim x = l. We denote by V 2
σ the set of all σ-convergent and

bounded double sequences.

One can see that in contrast to the case for single sequences, a convergent double
sequence need not be σ-convergent. But every bounded convergent double sequence is
σ-convergent. So, c∞2 ⊂ V 2

σ . In the case where σ(i) = i+1, the σ-convergence of a double
sequence reduces to its almost convergence.

Let B = (bnk) (n, k = 1, 2, ...) be an infinite matrix of real numbers and x = (xk) a
sequence of real numbers. We write Bx = ((Bx)n) if Bn(x) =

∑

k
bnkxk converges for

each n. Let E and F be any two sequence spaces. If x ∈ E implies that Bx ∈ Y , then we
say that the matrix B maps E into F . We denote by (E, F ) the class of matrices B which
map E into F . If E and F are equipped with the limits E− lim and F − lim, respectively,
B ∈ (E, F ) and F − lim Bx = E − lim x for all x ∈ E, then we write B ∈ (E, F )reg. The
matrix B is then said to be regular if B ∈ (c, c)reg. The conditions for regularity are
well-known, [3, p.4].

The concept of regularity has been defined for four-dimensional matrices in the same
way, (see [4] and [12]). Moricz and Rhoades [6] have determined necessary and sufficient
conditions for a four-dimensional matrix A to be strongly regular. In [9], necessary and
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sufficient conditions have been given for a four dimensional matrix A to belong to the
class (c∞2 , f2)reg.

Recall that Knopp’s Core of a bounded sequence x is the closed interval [lim inf x, lim sup x],
[3, p. 138]. Recently, on analogy with Knopp’s Core, the P -core of a double sequence
was introduced by Patterson as the closed interval [−L(−x), L(x)], where −L(−x) =
P − lim inf x and L(x) = P − lim sup x, [10]. Some inequalities related to the these
concepts have been studied in [10] and [1].

Let us write

L⋆(x) = lim sup
p,q→∞

sup
s,t

1

pq

p
∑

j=0

q
∑

k=0

xj+s,k+t

and

Cσ(x) = lim sup
p,q→∞

sup
s,t

1

pq

p
∑

j=0

q
∑

k=0

xσj(s),σk(t).

Then the MR- and σ-core of a double sequence have been introduced as the closed
intervals [−L∗(−x), L∗(x)] and [−Cσ(−x), Cσ(x)], and the inequalities

L(Ax) ≤ L∗(x), L∗(Ax) ≤ L(x), L∗(Ax) ≤ L∗(x), L(Ax) ≤ Cσ(x)

have also been studied for all x ∈ ℓ2∞ in [8], [9], [7] and [2], respectively; where ℓ2∞ is the
space of all bounded double sequences.

In this paper, we investigate necessary and sufficient conditions for the inequality

(1.1) Cσ(Ax) ≤ L(x)

for all x ∈ ℓ2∞. We should note that in the case σ(i) = i + 1, the inequality in (1.1)
reduces to L∗(Ax) ≤ L(x).

2. The Main Results

One can expect that in order for (1.1) to be satisfied, first of all A = [amn
jk ] must

be in the class (c∞2 , V 2
σ )reg. So, we need to characterize this class of four dimensional

matrices. For convenience, a matrix A ∈ (c∞2 , V 2
σ )reg will be called a σ-regular matrix in

what follows.

2.1. Theorem. A matrix A = [amn
jk ] is σ-regular if and only if

‖A‖ = sup
m,n

∑

j

∑

k

∣

∣amn
jk

∣

∣ < ∞,(2.1)

lim
p,q→∞

α(p, q, j, k, s, t) = 0,(2.2)

lim
p,q→∞

∑

j

∑

k

α(p, q, j, k, s, t) = 1,(2.3)

lim
p,q→∞

∑

j

∣

∣α(p, q, j, k, s, t)| = 0, (k ∈ N),(2.4)

lim
p,q→∞

∑

k

∣

∣α(p, q, j, k, s, t)| = 0, (j ∈ N),(2.5)

lim
p,q→∞

∑

j

∑

k

∣

∣α(p, q, j, k, s, t)| exists,(2.6)

where the limits are uniform in s, t and

α(p, q, j, k, s, t) =
1

pq

p
∑

m=0

q
∑

n=0

a
σm(s),σn(t)
jk .



54 C. Çakan, B. Altay, H. Coşkun

Proof. Firstly, suppose that the conditions (2.1)-(2.6) hold. Take a sequence x ∈ c∞2
with P − limj,k xjk = L, say. Then, by the definition of P -limit, for any given ε > 0,
there exists a N > 0 such that |xjk| < |L| + ε whenever j, k > N .

Now, we can write

∑

j

∑

k

α(p, q, j, k, s, t)xjk =

N
∑

j=0

N
∑

k=0

α(p, q, j, k, s, t)xjk

+
∞
∑

j=N

N−1
∑

k=0

α(p, q, j, k, s, t)xjk

+

N−1
∑

j=0

∞
∑

k=N

α(p, q, j, k, s, t)xjk

+
∞
∑

j=N+1

∞
∑

k=N+1

α(p, q, j, k, s, t)xjk.

Hence,

∣

∣

∣

∑

j

∑

k

α(p, q, j, k, s, t)xjk

∣

∣

∣
≤ ‖x‖

N
∑

j=0

N
∑

k=0

∣

∣α(p, q, j, k, s, t)
∣

∣

+ ‖x‖

∞
∑

j=N

N−1
∑

k=0

∣

∣α(p, q, j, k, s, t)
∣

∣

+ ‖x‖

N−1
∑

j=0

∞
∑

k=N

∣

∣α(p, q, j, k, s, t)
∣

∣

+ (|L| + ε)
∣

∣

∣

∑

j

∑

k

α(p, q, j, k, s, t)
∣

∣

∣
.

Therefore, by letting p, q → ∞ and considering the conditions (2.1)-(2.6), we have
∣

∣

∣
lim

p,q→∞

∑

j

∑

k

α(p, q, j, k, s, t)xjk

∣

∣

∣
≤ |L| + ε,

i.e., |σ− lim Ax| ≤ |L|+ε. Since ε is arbitrary, this implies the σ-regularity of A = [amn
jk ].

For the converse, suppose that A is σ-regular. Then, by the definition, the A-transform
of x exists and Ax ∈ V 2

σ for each x ∈ c∞2 . Therefore, Ax is also bounded. So, there exists
a positive number M such that

(2.7) sup
m,n

∑

j

∑

k

∣

∣amn
jk xjk

∣

∣ < M < ∞

for each x ∈ c∞2 . Now, let us choose a sequence y = [yjk] with

yjk =

{

sgn amn
jk , 0 ≤ j ≤ r, 0 ≤ k ≤ r,

0, otherwise.
(m,n = 1, 2, . . .).

Then, the necessity of the condition (2.1) follows by considering the sequence y in (2.7).

For the necessity of (2.6), define a sequence v = [vjk] by y = [yjk], with α(p, q, j, k, s, t)
in place of amn

jk . Then, P − lim Av implies (2.6).

Let us define the sequence eil as follows:

(2.8) eil
jk =

{

1, if (j, k) = (i, l),

0, otherwise;
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and denote the pointwise sums by sl =
∑

i
eil (l ∈ N) and ri =

∑

l
eil (i ∈ N). Then, the

necessity of the condition (2.2) follows from σ − lim Aeil. Also,

σ − lim Arj = lim
p,q→∞

∑

j

∣

∣α(p, q, j, k, s, t)| = 0, (k ∈ N)

and

σ − lim Ask = lim
p,q→∞

∑

k

∣

∣α(p, q, j, k, s, t)| = 0, (j ∈ N).

To verify the conditions (2.4) and (2.5), we need to prove that these limits are uniform
in s, t. So, let us suppose that (2.5) does not hold, i.e., for any jo ∈ N,

lim
p,q

sup
s,t

∑

k

|α(p, q, j0, k, s, t)| 6= 0.

Then, there exists an ε > 0 and index sequences (pi), (qi) such that

sup
s,t

∑

k

|α(pi, qi, j0, k, s, t)| ≥ ε (i ∈ N).

Therefore, for every i ∈ N, we can choose si, ti ∈ N such that

∑

k

|α(pi, qi, j0, k, si, ti)| ≥ ε.

Since

∑

k

|α(pi, qi, j0, k, si, ti)| ≤ sup
m,n

∑

j,k

|amn
jk | < ∞,

and (2.2) holds, we may find an index sequence (ki) such that

ki
∑

k=1

|α(pi, qi, j0, k, si, ti)| ≤
ε

8

and

∞
∑

k=ki+1+1

|α(pi, qi, j0, k, si, ti)| ≤
ε

8
, (i ∈ N).

So,

ki+1
∑

k=ki+1

|α(pi, qi, j0, k, si, ti)| ≥
3ε

4
, (i ∈ N).

Now, define a sequence x = [xjk] by

xjk =

{

(−1)iα(pi, qi, j0, k, si, ti), if ki + 1 ≤ k ≤ ki+1 (i ∈ N); j = j0,

0, if j 6= j0.
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Then, clearly x ∈ c∞2 with ‖x‖∞ ≤ 1. But, for even i, we have

1

piqi

si+pi−1
∑

m=si

ti+qi−1
∑

n=ti

(Ax)mn =
∑

k

α(pi, qi, j0, k, si, ti)xj0k

≥

ki+1
∑

k=ki+1

α(pi, qi, j0, k, si, ti)xj0k

−

ki
∑

k=1

|α(pi, qi, j0, k, si, ti)|

−

∞
∑

k=ki+1+1

|α(pi, qi, j0, k, si, ti)|

≥

ki+1
∑

k=ki+1

|α(pi, qi, j0, k, si, ti)| −
ε

8
−

ε

8

≥
3ε

4
−

ε

4
=

ε

2
.

Analogously, for odd i, one can show that

1

piqi

si+pi−1
∑

m=si

ti+qi−1
∑

n=ti

(Ax)mn ≤ −
ε

2
.

Hence, the sequence
(

1

pq

s+p−1
∑

m=s

t+q−1
∑

n=t

(Ax)mn

)

does not converge uniformly in s, t ∈ N as p, q → ∞. This means that Ax /∈ V 2
σ , which is

a contradiction. So, (2.5) holds. In the same way, we get the necessity of (2.4).

On the other hand, for the necessity of the condition (2.3) it is enough to take the
sequence ejk = 1 for each j, k.

This completes the proof of the theorem. �

We should mention that in the case σ(i) = i+1, Theorem 2.1 gives a characterization
of the class (c∞2 , f2)reg.

Now, we are ready to formulate our main theorem.

2.2. Theorem. The inequality in (1.1) holds for all x ∈ ℓ2∞ if and only if the matrix

A = [amn
jk ] is σ-regular and

(2.9) lim sup
p,q→∞

sup
s,t

∑

j

∑

k

∣

∣α(p, q, j, k, s, t)
∣

∣ ≤ 1.

Proof. Firstly, let (1.1) hold for all x ∈ ℓ2∞. Then, since c∞2 ⊂ ℓ2∞, (1.1) also holds
for any convergent sequence x = [xjk] with limj,k xjk = L, say. In this case, since
−L(−x) = L(x) = limj,k xjk = L, by (1.1) one has that

(2.10) L = −L(−x) ≤ −Cσ(−Ax) ≤ Cσ(Ax) ≤ L(x) = L,

where

−Cσ(−Ax) = lim inf
p,q→∞

sup
s,t

∑

j

∑

k

α(p, q, j, k, s, t)xjk.
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Therefore, it follows from (2.10) that −Cσ(−Ax) = Cσ(Ax) = σ − lim Ax = L, which
gives the σ-regularity of A.

To show the necessity of (2.9) we note first that, by Patterson [10, Lemma 3.1], there
exists a y ∈ ℓ2∞ with ‖y‖ ≤ 1 such that

Cσ(Ay) = lim sup
p,q→∞

sup
s,t

∑

j

∑

k

∣

∣α(p, q, j, k, s, t)
∣

∣.

Now, let us consider the sequence eil defined by (2.8). Then, since ‖eil‖ ≤ 1, we have
from (1.1) that

Cσ(Aeil) = lim sup
p,q→∞

sup
s,t

∑

j

∑

k

∣

∣α(p, q, j, k, s, t)
∣

∣ ≤ L(eil) ≤ ‖eil‖ ≤ 1,

which is the condition (2.9).

Conversely, suppose that A is σ-regular and (2.9) holds. Let x = [xjk] be an arbitrary
bounded sequence. Then, for any ε > 0, there exists M, N > 0 such that xjk ≤ L(x) + ε
whenever j, k ≥ M, N .

Now, we can write

∑

j

∑

k

α(p, q, j, k, s, t)xjk ≤

∣

∣

∣

∣

∑

j

∑

k

(

∣

∣α(p, q, j, k, s, t)
∣

∣+ α(p, q, j, k, s, t)

2

+

∣

∣α(p, q, j, k, s, t)
∣

∣ − α(p, q, j, k, s, t)

2

)

xjk

∣

∣

∣

∣

≤ ‖x‖
M
∑

j=0

N
∑

k=0

∣

∣α(p, q, j, k, s, t)
∣

∣

+
∣

∣

∣

∞
∑

j=M+1

∞
∑

k=N+1

α(p, q, j, k, s, t)xjk

∣

∣

∣

+ ‖x‖
∑

j

∑

k

(
∣

∣α(p, q, j, k, s, t)
∣

∣− α(p, q, j, k, s, t)
)

≤ ‖x‖
M
∑

j=0

N
∑

k=0

∣

∣α(p, q, j, k, s, t)
∣

∣

+ (L(x) + ε)
∑

j

∑

k

∣

∣α(p, q, j, k, s, t)
∣

∣

+ ‖x‖
∑

j

∑

k

(
∣

∣α(p, q, j, k, s, t)
∣

∣− α(p, q, j, k, s, t)
)

.

Applying the operator lim supp,q→∞ sups,t and taking the conditions into consideration,
we get that Cσ(Ax) ≤ L(x) + ε, which is the inequality in (1.1) since ε is arbitrary. �

Here, we should note that our Theorem 2.2 is an extension of [5, Theorem 2] to the
double sequences.
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58 C. Çakan, B. Altay, H. Coşkun
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