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Abstract

In this paper we present some fixed point results for contractive map-
pings in complete cone metric spaces. Under special conditions, our
results are generalizations of the results of Huang Long-Guang and
Zhang Xian (Cone metric spaces and fixed point theorems of contrac-

tive mappings, J. Math. Anal. Appl. 332, 1468–1476, 2007), and Sh.
Rezapour and R. Hamlbarani (Some notes on the paper ”Cone met-

ric spaces and fixed point theorems of contractive mappings”, J. Math.
Anal. Appl. 345, 719–724, 2008).
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1. Introduction

It is well known that the classic contraction mapping principle of Banach is a fun-
damental result in fixed point theory. Several authors have obtained various extensions
and generalizations of Banach’s theorem by considering contractive mappings on many
different metric spaces. For example, [2, 4, 5, 6, 7, 8, 9, 11], and others. Recently, Guang
and Xian [3] introduced the notion of cone metric spaces and proved some fixed point
theorems in cone metric spaces for mappings satisfying various contractive conditions. In
[10], Rezapour and Hamlbarani generalized some results of [3] by omitting the assumption
of normality in the results.

The main purpose of this paper is to present some fixed point results for contractive
mappings in complete cone metric spaces.
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2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set
of real numbers.

2.1. Definition. Let E be a real Banach space and P a subset of E. Then P is called
a cone if and only if:

(i) P is closed, nonempty and satisfies P 6= {0},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax + by ∈ P ,
(iii) x ∈ P and −x ∈ P implies x = 0.

Given a cone P ⊆ E, we define a partial ordering ≤ with respect to P by x ≤ y if and
only if y − x ∈ P . We shall write x < y if x ≤ y and x 6= y, and x ≪ y if y − x ∈ intP ,
where intP is the interior of P .

The cone P is called normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.

The least positive number satisfying the above is then called the normal constant of P .

2.2. Lemma. ([12]) Let E be a real Banach space with a cone P . Then:

(i) If x ≤ y and 0 ≤ a ≤ b, then ax ≤ by,

(ii) If x ≤ y and u ≤ v, then x + u ≤ y + v,
(iii) If xn ≤ yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y, then x ≤ y.

2.3. Lemma. If P is a cone, x ∈ P, α ∈ R, 0 ≤ α < 1, and x ≤ αx, then x = 0.

Proof. If x ≤ αx, then αx − x = (α − 1)x ∈ P . Since x ∈ P and 0 ≤ α < 1, we have,
from Definition 2.1. (ii), (1−α)x ∈ P . It follows from Definition 2.1. (iii) that x = 0. �

In the following definition, we suppose that E is a real Banach space, P a cone in E
with intP 6= ∅ and that ≤ is the partial ordering with respect to P .

2.4. Definition. Let X be a non-empty set. Suppose the mapping d : X × X → E
satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(d2) d(x, y) = d(y, x) for all x, y ∈ X,
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. This
definition is more general than that of a metric space.

2.5. Example. Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R

2, X = R
2 and suppose

that d : X × X → E is defined by

d(x, y) = d((x1, x2), (y1, y2)) = ( |x1 −y1|+ |x2 −y2|, α max{|x1 −y1|, |x2 −y2|}),

where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

3. Definitions and lemmas

In this section we shall give some definitions and lemmas.

3.1. Definition. [3] Let (X, d) be a cone metric space. A sequence {xn} in X is said to
be:

(a) A convergent sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N such
that for all n ≥ N , d(xn, x) ≪ c for some fixed x in X. We denote this by
limn→∞ xn = x or xn → x, n → ∞.
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(b) A Cauchy sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N such that for
all n, m ≥ N , d(xn, xm) ≪ c.

A cone metric space (X, d) is said to be complete if every Cauchy sequence is convergent
in X.

The following lemma was recently proved without assuming normality in [1].

3.2. Lemma. Let (X, d) be a cone metric space. If {xn} is a convergent sequence in X,

then the limit of {xn} is unique. �

The proof of the following lemma is straightforward, and is omitted.

3.3. Lemma. Let (X, d) be a cone metric space, {xn} a sequence in X. If {xn} converges

to x and {xnk
} is any subsequence of {xn}, then {xnk

} converges to x. �

3.4. Lemma. Let (X, d) be a cone metric space and {xn} a sequence in X. If there

exists a sequence {an} in R with an > 0 for all n ∈ N and
∑

an < ∞, which satisfies

d(xn+1, xn) ≤ anM for all n ∈ N and for some M ∈ E with M ≥ 0, then {xn} is a

Cauchy sequence in (X, d).

Proof. Let n > m. Then

(1)

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

≤ (an−1 + an−2 + · · · + am)M

= M

n−1
∑

k=m

ak.

Take c ∈ E with 0 ≪ c. Choose ε > 0 such that c + Nε(0) ⊆ P , where

Nε(0) = {y ∈ E : ‖y‖ < ε}.

Since
∑

∞

n=1 an < ∞, we can choose a sufficiently large natural number N such that
∣

∣

∣

∣

n−1
∑

k=m

ak

∣

∣

∣

∣

‖M‖ =

∥

∥

∥

∥

M

n−1
∑

k=m

ak

∥

∥

∥

∥

< ε,

for all n > m ≥ N . Therefore, we have M
∑n−1

k=m
ak ∈ Nε(0) and −M

∑n−1
k=m

ak ∈ Nε(0),

for all n > m ≥ N . Hence c − M
∑n−1

k=m ak ∈ c + Nε(0) and so c − M
∑n−1

k=m ak ∈ intP ,

for all n > m ≥ N . Thus, M
∑n−1

k=m
ak ≪ c, for all n > m ≥ N . Then from inequality

(1), we have d(xn, xm) ≪ c, for all n > m ≥ N . Therefore, {xn} is a Cauchy sequence
in (X, d). �

4. Fixed points on complete cone metric spaces

The following theorems were proved in [3].

4.1. Theorem. Let (X, d) be a complete cone metric space with normal cone P and

normal constant K. Suppose the mapping T : X → X satisfies the contractive condition

(2) d(Tx, Ty) ≤ k(d(Tx, x) + d(Ty, y)),

for all x, y ∈ X, where k ∈ [0, 1
2
) is a constant. Then, T has a unique fixed point in X.

For each x ∈ X, the iterative sequence {T nx} converges to the fixed point. �

4.2. Theorem. Let (X, d) be a complete cone metric space with normal cone P and

normal constant K. Suppose the mapping T : X → X satisfies the contractive condition

(3) d(Tx, Ty) ≤ k(d(Tx, y) + d(x, Ty)),

for all x, y ∈ X, where k ∈ [0, 1
2
) is a constant. Then, T has a unique fixed point in X.

For each x ∈ X, the iterative sequence {T nx} converges to the fixed point. �
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Note that there are cones which are not normal, see [10]. In [10], Rezapour and
Hamlbarani proved Theorem 4.1 and Theorem 4.2 without the normality condition.

Now suppose that E is a Banach space and P a cone in E. For a, b, c ∈ E we will
denote the proposition (a ≤ b) ∨ (a ≤ c) by a ≤ b

∨

c. Moreover, for r ∈ R, a ≤ r(b
∨

c)
will denote (a ≤ rb) ∨ (a ≤ rc).

This notation is convenient because we do not have to repeat the left-hand element,
but it must be stressed that b

∨

c has no meaning outside these expressions. In particular
the only case where there exists an element d of E for which a ≤ b

∨

c is equivalent to
a ≤ d for all a is when b and c are comparable and d = b ∨ c = max{b, c}.

We now note that if d(Tx, x) and d(Ty, y) are comparable, then

d(Tx, x) + d(Ty, y) ≤ 2[d(Tx, x) ∨ d(Ty, y)].

Similarly, if d(Tx, y) and d(Ty,x) are comparable, then

d(Tx, y) + d(Ty, x) ≤ 2[d(Tx, y) ∨ d(Ty, x)].

In this case, if inequalities (2) and (3) hold, then we obtain, respectively, the inequalities

d(Tx, Ty) ≤ k[d(Tx, x) ∨ d(Ty, y)]

and

d(Tx, Ty) ≤ k[d(Tx, y) ∨ d(Ty, x)]

where k ∈ [0, 1). These inequalities can hold for some k ∈ [0, 1) even if (2) or (3),
respectively, do not hold for some k ∈ [0, 1

2
) (see Examples 5.1, 5.2 below). Moreover,

replacing ∨ by
∨

in the above inequalities gives us two more general conditions that are
well defined even when d(Tx, x), d(Ty, y) (resp. d(Tx, y), d(Ty,x)) are not comparable.
It is these conditions that form the basis of the following theorems.

4.3. Theorem. Let T be a mapping on the complete cone metric space X into itself that

satisfies the inequality

d(Tx, Ty) ≤ k
[

d(Tx, x)
∨

d(Ty, y)
]

,(4)

for all x, y ∈ X, where 0 ≤ k < 1. Then T has a unique fixed point in X. For each

x ∈ X, the iterative sequence {T nx} converges to the fixed point.

Proof. Let x be an arbitrary point X. If T n+1x = T nx for some n, then T has a fixed
point. Assume T n+1x 6= T nx for each n. Using inequality (4), we have

d(T n+1x, T nx) ≤ k
[

d(T n+1x, T nx)
∨

d(T nx, T n−1x)
]

.

If d(T n+1x, T nx) ≤ kd(T n+1x, T nx), then from Lemma 2.3 we have d(T n+1x, T nx) = 0,
since k < 1, which contradicts our hypothesis. Therefore we have

d(T n+1x, T nx) ≤ kd(T nx, T n−1x).

In general

d(T n+1x, T nx) ≤ knd(Tx, x)

for all n ∈ N. Since
∑

∞

n=1 kn < ∞, it follows from Lemma 3.4 that {T nx} is a Cauchy
sequence in the complete cone metric space (X, d) and so has a limit z in X.

Now let c ∈ E with 0 ≪ c. Choose a natural number N such that d(T nx, z) ≪ c(1−k)
and d(T nx, T n−1x) ≪ c for all n ≥ N . From condition (d3) we have

(5) d(Tz, z) ≤ d(Tz, T nx) + d(T nx, z)
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for all n ≥ N , and from condition (4),

d(Tz, T nx) ≤ k
[

d(Tz, z)
∨

d(T nx, T n−1x)
]

.

Now we have to consider, for each n ≥ N , the following two cases:

Case 1. If d(Tz, T nx) ≤ kd(Tz, z), then from (5), we have

d(Tz, z) ≤
1

1 − k
d(T nx, z) ≪ c.

Case 2. If d(Tz, T nx) ≤ kd(T nx, T n−1x), then from (5), we have

d(Tz, z) ≤ d(T nx, z) + kd(T nx, T n−1x) ≪ c(1 − k) + ck = c.

It now follows from Cases 1 and 2 that d(Tz, z) ≪ c. For fixed 0 ≪ c, we have 0 ≪ c

m

for all m ∈ N. Thus d(Tz, z) ≪ c

m
, for all m ∈ N. So, c

m
− d(Tz, z) ∈ P , for all m ∈ N.

Since c

m
→ 0, as m → ∞, and P is closed, it follows that −d(Tz, z) ∈ P . Also we have

d(Tz, z) ∈ P . Hence d(Tz, z) = 0 and so Tz = z.

Now suppose that T has a second fixed point z′. Then from inequality (4) we have

d(z, z′) = d(Tz, T z′) ≤ k
[

d(Tz, z)
∨

d(Tz′, z′)
]

,

which is equivalent to d(z, z′) ≤ k[d(Tz, z)∨d(Tz′, z′)] = 0 since d(Tz, z) = 0 = d(Tz′, z′)
are comparable. It follows that z = z′. So z is the unique fixed point of T . �

4.4. Theorem. Let T be a mapping on the complete cone metric space X into itself that

satisfies the inequality

d(Tx, Ty) ≤ k
[

d(Tx, y)
∨

d(Ty, x)
]

,(6)

for all x, y ∈ X, where 0 ≤ k < 1. Then T has a unique fixed point in X. For each

x ∈ X, the iterative sequence {T nx} converges to the fixed point.

Proof. Let x be an arbitrary point X. Then using inequality (6) for d(T n+1x, T nx) and
noting that d(T nx, T nx) = 0 is comparable with d(T n−1x, T n+1x) we have

d(T n+1x, T nx) ≤ k[d(T n+1x, T n−1x) ∨ d(T nx, T nx)] = kd(T n+1x, T n−1x).

Again using (6) we have

d(T n+1x, T nx) ≤ k2
[

d(T n+1x, T n−2x)
∨

d(T n−1x, T nx)
]

,

and then

d(T n+1x, T nx) ≤ k3
[

d(T n+1x, T n−3x)
∨

d(T nx, T n−2x)
]

.

Continuing this process we have

d(T n+1x, T nx) ≤ kn
∨

{

d(T n+1−sx, T sx) : s = 0, 1, 2, . . . , m
}

(7)

where

m =

{

1
2
n n even,

1
2
(n − 1) n odd,

and a ≤
∨

{ai : i = 1, 2, . . . , n} if and only if a ≤ ai for some i.

Similarly, this process applies to the terms d(T n+1−sx, T sx) for s > 0, so from in-
equality (7) we have

d(T n+1x, T nx) ≤ kn
∨

{

ksd(T n+1−sx, x) : s = 0, 1, 2, . . . , n − 1
}

.(8)
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Using (8) and the inequality

(9) d(T n+1x, x) ≤ d(T n+1x, T nx) + d(T nx, x)

we will now show by induction that

(10) d(T n+1x, x) ≤
n

∏

i=1

1

1 − ki
d(Tx, x)

for n = 1, 2, . . ..

It is trivial from (8) and (9) that inequality (10) holds for n = 1.

Now assume that

d(T j+1x, x) ≤

j
∏

i=1

1

1 − ki
d(Tx, x)

holds for j = 1, 2, . . . , n − 1. Taking s = 0 in (8) we may suppose first that

d(T n+1x, T nx) ≤ knd(T n+1x, x).

Then from inequality (9), we get

d(T n+1x, x) ≤ knd(T n+1x, x) + d(T nx, x)

and so

d(T n+1x, x) ≤
1

1 − kn
d(T nx, x)

≤
n

∏

i=1

1

1 − ki
d(Tx, x)

by our assumption.

Now taking s = m, 1 ≤ m ≤ n − 1 in (8) we suppose that

d(T n+1x, T nx) ≤ kn+md(T n+1−mx, x).

Then from inequality (9) we have that

d(T n+1x, x) ≤ kn+md(T n+1−mx, x) + d(T nx, x)

≤ kn+m

n−m
∏

i=1

1

1 − ki
d(Tx, x) +

n−1
∏

i=1

1

1 − ki
d(Tx, x),

by our assumption. Thus, we get

d(T n+1x, x) ≤
n

∏

i=1

1

1 − ki
(kn+m + 1 − kn)d(Tx, x)

≤
n

∏

i=1

1

1 − ki
d(Tx, x),

since kn+m < kn. Thus, in either case we obtain inequality (10). It therefore follows by
induction that inequality (10) holds for n = 1, 2, . . ..

Put
∞
∏

i=1

1

1 − ki
= r.

Then we have r < ∞ and also
n

∏

i=1

1

1 − ki
< r,
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since
∞
∏

i=1

1

1 − ki
= e

∑

∞

i=1
ln

(

1

1−ki

)

and
∞

∑

i=1

ln(
1

1 − ki
) < ∞.

Using inequalities (8) and (10) we have

d(T n+1x, T nx) ≤ knrd(Tx, x)

for all n = 1, 2, . . ., since k < 1. Since
∑

∞

n=1 kn < ∞, It follows from Lemma 3.4 that
{T nx} is a Cauchy sequence in the complete cone metric space (X, d) and so has a limit
z in X.

Now let c ∈ E with 0 ≪ c. Choose a natural number N such that d(T nx, z) ≪ c(1−k)
2

for all n ≥ N . From condition (d3) we have

(11) d(Tz, z) ≤ d(Tz, T nx) + d(T nx, z)

for all n ≥ N , and from condition (6),

d(Tz, T nx) ≤ k
[

d(Tz, T n−1x)
∨

d(T nx, z)
]

.

Now we have to consider, for each n ≥ N , the following two cases:

Case 1. If

d(Tz, T nx) ≤ kd(Tz, T n−1x),

then from (11), we have

d(Tz, z) ≤ d(T nx, z) + kd(Tz, T n−1x)

≤ d(T nx, z) + k[d(Tz, z) + d(z, T n−1x)]

and so

d(Tz, z) ≤
1

1 − k
d(T nx, z) +

k

1 − k
d(z, T n−1x)

≤
1

1 − k
[d(T nx, z) + d(z, T n−1x)]

≪
c

2
+

c

2
= c.

Case 2. If

d(Tz, T nx) ≤ kd(T nx, z),

then from (11), we have

d(Tz, z) ≤ d(T nx, z) + kd(T nx, z) ≪
c

2
+

c

2
= c.

It now follows from cases 1 and 2 that d(Tz, z) ≪ c. For fixed 0 ≪ c, we have 0 ≪ c

m

for all m ∈ N. Thus d(Tz, z) ≪ c

m
, for all m ∈ N. So c

m
− d(Tz, z) ∈ P , for all m ∈ N.

Since c

m
→ 0, as m → ∞, and P is closed, it follows that −d(Tz, z) ∈ P . Also we have

d(Tz, z) ∈ P . Hence d(Tz, z) = 0 and so Tz = z.

Now suppose that T has a second fixed point z′. Then from inequality (6) we have

d(z, z′) = d(Tz, T z′) ≤ k
[

d(Tz, z′)
∨

d(Tz′, z)
]

,
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which is equivalent to d(z, z′) ≤ k[d(z, z′)
∨

d(z′, z)]. However, d(z, z′) = d(z′, z) are
comparable so

d(z, z′) ≤ k[d(z, z′) ∨ d(z′, z)] = kd(z, z′).

It follows from Lemma 2.3 that d(z, z′) = 0, since k < 1, so that the fixed point is
unique. �

5. Some examples

The following examples show that if the elements of the sets {d(Tx, x) | x ∈ X}
and {d(Tx, y) | x, y ∈ X} are comparable then Theorem 4.3 and Theorem 4.4 are more
general than Theorem 4.1 and Theorem 4.2, respectively.

5.1. Example. Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R

2, X = [0, 1] and the
mapping d : X ×X → E defined by d(x, y) = ( |x−y|, |x−y|). Then (X, d) is a complete
cone metric space.

Define T : X → X by Tx = x/3. Then we have

d(Tx, Ty) =
(

∣

∣

∣

x

3
−

y

3

∣

∣

∣
,
∣

∣

∣

x

3
−

y

3

∣

∣

∣

)

,

d(Tx, x) =
(

∣

∣

∣

x

3
− x

∣

∣

∣
,
∣

∣

∣

x

3
− x

∣

∣

∣

)

=
(2x

3
,
2x

3

)

,

d(Ty, y) =
(

∣

∣

∣

y

3
− y

∣

∣

∣
,
∣

∣

∣

y

3
− y

∣

∣

∣

)

=
(2y

3
,
2y

3

)

.

Since x, y ∈ R, either d(Tx, x)−d(Ty,y) ∈ P or d(Ty, y)−d(Tx,x) ∈ P . Hence d(Tx, x)
and d(Ty, y) are comparable and we have

d(Tx, x) ∨ d(Ty, y) =
(2x

3
,
2x

3

)

∨
(2y

3
,
2y

3

)

and

d(Tx, x) + d(Ty, y) =
( 2

3
(x + y),

2

3
(x + y)

)

.

Clearly, the inequality (4) is satisfied for 1
2
≤ k < 1. However, the inequality (2) is not

satisfied for 0 ≤ k < 1
2
.

5.2. Example. Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R

2, X = [0, 1] and the
mapping d : X × X → E defined by d(x, y) = ( |x − y|, |x − y|). Define T : X → X by

Tx =

{

0 if 0 ≤ x ≤ 1
2

3
7

if 1
2

< x ≤ 1

Then we have,

d(Tx, Ty) = (0, 0), d(Tx, y) = (y, y) and d(Ty, x) = (x, x) for 0 ≤ x, y ≤ 1
2

and

d(Tx,Ty) = (0, 0), d(Tx, y) = ( 3
7
, y) and d(Ty, x) = ( 3

7
, x) for 1

2
< x, y ≤ 1.

Thus, d(Tx, y) and d(Ty, x) are comparable and also inequality (6) is satisfied for
0 ≤ x, y ≤ 1

2
or 1

2
< x, y ≤ 1.

Let 0 ≤ x ≤ 1
2

and 1
2

< y ≤ 1. Then,

d(Tx, Ty) = d
(

0,
3

7

)

=
(3

7
,

3

7

)

,

d(Tx, y) = d(0, y) = (y, y),

d(Ty, x) = d
(3

7
, x

)

=
(

∣

∣

∣

3

7
− x

∣

∣

∣
,
∣

∣

∣

3

7
− x

∣

∣

∣

)

.
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If d(Tx, y) = (y, y) ≤
(

∣

∣

∣

3
7
− x

∣

∣

∣
,
∣

∣

∣

3
7
− x

∣

∣

∣

)

= d(Ty,x), then
∣

∣

∣

3
7
− x

∣

∣

∣
− y ≥ 0 and

so
∣

∣

∣

3
7
− x

∣

∣

∣
> y > 1

2
. Since 0 ≤ x ≤ 1

2
, we have

∣

∣

∣

3
7
− x

∣

∣

∣
≤ 3

7
, a contradiction. But

d(Tx, y) ≥ d(Ty, x). Thus, we have

d(Tx, Ty) =
(3

7
,

3

7

)

≤ k(y, y) = kd(Tx, y) = k[d(Tx, y) ∨ d(Ty, x)],

for all 0 ≤ x ≤ 1
2

and 1
2

< y ≤ 1 where 6
7
≤ k < 1.

Similarly, it is easy to see that the inequality (6) is satisfied for all 1
2

< x ≤ 1 and

0 ≤ y ≤ 1
2

where 6
7
≤ k < 1.

Thus, d(Tx, y) and d(Ty, x) are comparable and also inequality (6) is satisfied, for all
x, y ∈ [0, 1].

Now let x = 3
7
, y = 6

7
. Then the inequality (3) is not satisfied for 0 ≤ k < 1

2
. In fact,

if the inequality (3) holds for x = 3
7
, y = 6

7
where 0 ≤ k < 1

2
, then we have

d(Tx, Ty) = d
(

0,
3

7

)

=
(3

7
,
3

7

)

,

d(Tx, y) = d
(

0,
6

7

)

=
(6

7
,
6

7

)

,

d(Ty, x) = d
( 3

7
,

3

7

)

= (0, 0)

and
( 3

7
,
3

7

)

≤ k
( 6

7
,
6

7

)

,

and so k ≥ 1
2
. This is a contradiction because of 0 ≤ k < 1

2
.
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