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Abstract

In this paper Bayes estimators of the shape parameter of the general-
ized Pareto distribution have been obtained by taking quasi, inverted
gamma and uniform prior distributions using the linex, precautionary
and entropy loss functions. These are compared with the corresponding
Bayes estimators under the squared error loss function.
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1. Introduction

Let us consider the generalized Pareto distribution (GPD) whose cumulative distri-
bution function is defined by

(1.1) F (x; σ, θ) = 1 − (1 −
x

σ
)

1
θ ; θ > 0, 0 < x < σ,

see E. Castillo and A.S. Hadi [5]. Thus the probability density function (pdf) of the
GPD is given by

(1.2) f(x; σ, θ) =
1

σθ
(1 −

x

σ
)

1
θ
−1; θ > 0, 0 < x < σ,

where σ and θ are the scale and shape parameters, respectively.

The object of the present paper is to obtain a Bayes estimator of θ under various loss
functions using a number of prior distributions.

A commonly used loss function is the squared error loss function (SELF)

(1.3) L(θ̂, θ) = (θ̂, θ)2,
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which is a symmetrical loss function that assigns equal losses to over estimation and
underestimation. The Bayes estimator under the above loss function is the posterior
mean given by

(1.4) θ̂s = Eπ(θ),

where Eπ denotes the posterior expectation.

The SELF is often used also because it does not lead to extensive numerical com-
putation, but several authors (Canfield [4], Varian [10], Berger [2], Zellner [11], Basu
and Ebrahimi [1], Dey and Liu [7], Calabria and Pulcini [3], and Norstrom [8]) have
recognized the inappropriateness of using a symmetric loss function in several estimation
problems. They use various asymmetric loss functions, given as follows:

(a) The Linex loss function:

Basu and Ebrahimi [1] considered the linex (linear-exponential) loss function L(∆)
given by

(1.5) L(∆) = b[ea∆
− a∆ − 1], a 6= 0, b > 0,

where

∆ =
θ̂

θ
− 1,

and studied Bayesian estimation under this asymmetric loss function for an exponential
lifetime distribution. This loss function is suitable for situations where overestimation of
θ is more costly than its underestimation.

This Bayes estimator under asymmetric loss (∆), denoted by θ̂A, is the solution of
the following equation

(1.6) Eπ

[1
θ

exp(
aθ̂A

θ
)
]

= eaEπ(
1

θ
).

(b) The precautionary loss function:

Norstrom [8] introduced an alternative asymmetric precautionary loss function, and
also presented a general class of precautionary loss functions as a special case. These
loss functions approach infinitely near the origin to prevent underestimation, thus giving
conservative estimators, especially when low failure rates are being estimated. These
estimators are very useful when underestimation may lead to serious consequences. A
very useful and simple asymmetric precautionary loss function is

(1.7) L(θ̂, θ) =
(θ̂ − θ)2

θ̂
.

The Bayes estimator under a precautionary loss function is denoted by θ̂p, and is given
by the following equation.

(1.8) θ̂p = [Eπ(θ2)]
1
2 .

(c) The entropy loss function:

In many practical situations, it appears to be more realistic to express the loss in terms

of the ratio θ̂
θ
. In this case, Calabria and Pulcini [3] point out that a useful asymmetric

loss function is the entropy loss function:

L(δ) ∝ [δP
− p loge(δ) − 1],
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where

δ =
θ̂

θ
,

whose minimum occurs at θ̂ = θ. Also, the loss function L(δ) has been used in Dey et al

[6] and Dey and Liu [7], in the original form having p = 1. Thus, L(δ) can be written as:

(1.9) L(δ) = b[δ − loge(δ) − 1]; b > 0.

The Bayes estimator under the entropy loss function is denoted by θ̂e, and is given by
the following equation:

(1.10) θ̂e =
[
Eπ(

1

θ
)
]
−1

.

Let us obtain the Bayes estimators of the shape parameter of GPD under three prior
distributions of θ.

(i) The quasi-prior: For the situation where the experimenter has no prior infor-
mation about the parameter θ, one may use the quasi density as given by

(1.11) g1(θ) =
1

θd
; θ > 0, d > 0.

Here d = 0 leads to a diffuse prior and d = 1 to a non-informative prior.
(ii) The inverted gamma prior: The most widely used prior distribution of θ

is the inverted gamma distribution with parameters α and β(> 0) with p.d.f.
given by

(1.12) g2(θ) =






βα

Γ(α)
θ−(α+1)e−

β
θ , if θ > 0, (α, β) > 0,

0, otherwise.

The main reason for its general acceptability is the mathematical tractability
resulting from the fact that the inverted gamma distribution is the conjugate
prior for θ.

(iii) The uniform prior: It frequently happens that the life tester knows in advance
that the probable values of θ lies over a finite range [α, β], but he does not have
any strong opinion about any subset of values over this range. In such a case a
uniform distribution over[α, β] may be a good approximation:

(1.13) g2(θ) =






1

β − α
, if θ < α ≤ θ ≤ β,

0, otherwise.

2. The Bayes estimator under g1(θ)

Let us suppose that n items are put to a life test and that the experiment is terminated
when r(< n) items have failed. If x1, . . . , xr denote the first r observations having a
common density function as given in (1.2), where σ is known, then the joint probability
density function is given by

(2.1) f(x/θ) =
n!

(n − r)!

( 1

σθ

)r

e−( 1
θ
−1)Tr ,

where

Tr = −

r∑

i=1

log
(
1 −

xi

σ

)
+ (n − r) log

(
1 −

x(r)

σ

)



72 H. Pandey, A. K. Rao

The maximum likelihood estimator (MLE) of θ is given by

θ̂ =
Tr

r
.

The posterior pdf of θ is obtained as

(2.2) f(θ/x) =
T r+d−1

r

Γ(r + d − 1)
θ−(r+d)e−(Tr)/θ; θ > 0, r + d > 1.

The Bayes estimator under the squared error loss function is given by

(2.3) θ̂s =
Tr

r + d − 2
; r + d > 2,

and the Bayes estimator under the linex loss function by

(2.4) θ̂A =

(
1 − e−a/(r+d)

a

)
Tr

(Srivastava [9]). Using (1.8), the Bayes estimator under the precautionary loss function
comes out to be

(2.5) θ̂P =
T

[(r + d − 2)(r + d − 3)]1/2
.

Also, using (1.10), the Bayes estimator under the entropy loss function is obtained as

(2.6) θ̂e =
Tr

(r + d − 1)
.

2.1. The Risk Functions: The risk functions of the estimators θ̂S, θ̂A, θ̂P and θ̂e

relative to SELF are denoted by RS(θ̂S), RS(θ̂A), RS(θ̂P ) and RS(θ̂e), respectively, and
are given by Basu and Ebrahimi [1] as:

RS(θ̂S) = θ2

[
r(r + 1)

(r + d − 2)2
−

2r

(r + d − 2)
+ 1

]
,(2.7)

RS(θ̂A) = θ2

[
r(r + 1)

a2

(
1 − e−a/(r+d))2

−
2r

a
(1 − e−a/(r+d)) + 1

]
,(2.8)

RS(θ̂P ) = θ2

[
r(r + 1)

[(r + d − 2)(r + d − 3)]
−

2r
[
(r + d − 2)(r + d − 3)

]1/2
+ 1

]
,(2.9)

RS(θ̂e) = θ2

[
r(r + 1)

[(r + d − 1)]2
−

2r

(r + d − 1)
+ 1

]
.(2.10)

The risk functions of the estimators θ̂S, θ̂A, θ̂P and θ̂e, relative to the linex loss

function are denoted by RA(θ̂S), RA(θ̂A), RA(θ̂P ) and RA(θ̂e), respectively, and are
given by:

RA(θ̂S) = b

[
e−a

(
1 −

a

r + d − 2

)
−r

−
( ar

r + d − 2

)
+ a − 1

]
,(2.11)

RA(θ̂A) = b

[
e−ad/(r+d)

− r
(
1 − e−a/(r+d)

)
+ a − 1

]
,(2.12)

RA(θ̂P ) = b

[
e−a

(
1 −

a

[(r + d − 2)(r + d − 3)]1/2

)
−r

−
ar

[(r + d − 2)(r + d − 3)]1/2
+ a − 1

]
,

(2.13)

RA(θ̂e) = b

[
e−a

(
1 −

a

(r + d − 1)

)
−r

−
ar

(r + d − 1)
+ a − 1

]
(2.14)
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The risk functions of the estimators θ̂S, θ̂A, θ̂P and θ̂e, relative to the precautionary

loss function are denoted by RP (θ̂S), RP (θ̂A), RP (θ̂P ) and RP (θ̂e), respectively, and are
given by:

RP (θ̂S) = θ2

[
r(r + 1)

(r + d − 2)2
−

2r

(r + d − 2)
+ 1

]
,(2.15)

RP (θ̂A) = θ2

[
r(r + 1)

a2

(
1 − e−a/(r+d)

)2

−
2r

a

(
1 − e−a/(r+d)

)
+ 1

]
,(2.16)

RP (θ̂P ) = θ2

[
r(r + 1)

[(r + d − 2)(r + d − 3)]
−

2r

[(r + d − 2)(r + d − 3)]1/2
+ 1

]
,(2.17)

RP (θ̂e) = θ2

[
r(r + 1)

[(r + d − 1)]2
−

2r

(r + d − 1)
+ 1

]
(2.18)

The risk functions of the estimators θ̂S , θ̂A, θ̂P and θ̂e, relative to the entropy loss

function are denoted by Re(θ̂S), Re(θ̂A), Re(θ̂P ) and Re(θ̂e), respectively, and are given
by:

Re(θ̂S) = b

[
2 − d

(r + d − 2)
− Ee loge

( θ̂S

θ

)]
,(2.19)

Re(θ̂A) = b

[
r(1 − e−a/(r+d))

a
− Ee loge

( θ̂A

θ

)
− 1

]
,(2.20)

Re(θ̂P ) = b

[
r

[(r + d − 2)(r + d − 3)]1/2
− Ee loge

( θ̂P

θ

)
− 1

]
,(2.21)

Re(θ̂e) = b

[
1 − d

(r + d − 1)
− Ee loge

( θ̂e

θ

)]
.(2.22)

3. The Bayes estimator under g2(θ)

It can be easily verified that g2(θ), i.e. the inverted gamma family, is the natural
conjugate prior for the parameter θ with respect to GPD. Using (2.1), we obtain the
posterior distribution

(3.1) f(θ/x) =
(β + Tr)

r+α

Γ(r + α)
θ−(r+α+1)e−(β+Tr)/θ; θ > 0,

which is again an inverted gamma family of parameters (β +Tr, r +α). Thus, the Bayes
estimator of θ under the squared error loss function is given by:

(3.2) θ̂S =
β + Tr

(r + α − 1)
.

The Bayes estimator under the linex loss function is given by:

(3.3) θ̂A =
1 − e−a/(r+α+1)

a
(β + Tr).

Using (1.8), the Bayes estimator under the precautionary loss function comes out to be:

(3.4) θ̂P =
β + Tr

[(r + α − 1)(r + α − 2)]1/2
.

Using (1.10), the Bayes estimator under the entropy loss function is obtained as

(3.5) θ̂e =
β + Tr

(r + α)
.
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3.1. The Risk Functions: The risk functions of the estimators θ̂S , θ̂A, θ̂P and θ̂e,

relative to SELF are denoted by RS(θ̂S), RS(θ̂A), RS(θ̂P ) and RS(θ̂e), respectively and
are given by:

RS(θ̂S) = θ2

[(
r(r + 1) + 2rβ

θ
+ β2

θ2

(r + α − 1)2

)
−

2
(
r + β

θ

)

(r + α − 1)
+ 1

]
,(3.6)

RS(θ̂A) = θ2

[
C2

{
r(r + 1) +

2rβ

θ
+

β2

θ2

}
− 2C

(
r +

β

θ

)
+ 1

]
,(3.7)

RS(θ̂P ) = θ2

[
K2

{
r(r + 1) + 2r

(β

θ

)
+
(β

θ

)2
}
− 2K

{
r +

(β

θ

)}
+ 1

]
,(3.8)

RS(θ̂e) = θ2

[ r(r + 1) + 2r
(

β
θ

)
+
(

β
θ

)2

[(r + α)]2
−

2(r + β
θ
)

(r + α)
+ 1

]
,(3.9)

where C = (
1 − e−a/(r+α+1)

a
), and K =

1

[(r + α − 1)(r + α − 2)]1/2
.

The risk functions of the estimators θ̂S, θ̂A, θ̂P and θ̂e, relative to the linex function

are denoted by RA(θ̂S), RA(θ̂A), RA(θ̂P ) and RA(θ̂e), respectively, and are given by

RA(θ̂S) = b

[(
e
−a(1− β

θ(r+α−1)
)
)(

1 −
a

r + α − 1

)
−r

−

(
a(r + β

θ
)

r + α − 1

)
+ a − 1

]
,(3.10)

RA(θ̂A) = b

[(
e−a(α+1)/(r+α+1)

)(
e

β
θ

(
1−e−a/(r+α+1)

))

−
(
1 − e−a/(r+α+1)

)(
r +

β

θ

)
+ a − 1

]
,

(3.11)

RA(θ̂P ) = b

[
(1 − aK)−re−a

(
1−

aβK
θ

)
− aK

(
r +

β

θ
+ a − 1

)]
,(3.12)

RA(θ̂e) = b

[(
1 −

a

r + α

)
−r

exp
{
− a
(
1 −

β

θ(r + α)

)}
−

a(r + β
θ
)

r + α
+ a − 1](3.13)

The risk functions of the estimators θ̂S , θ̂A, θ̂P and θ̂e, relative to the entropy loss

function are denoted by Re(θ̂S), Re(θ̂A), Re(θ̂P ) and Re(θ̂e), respectively, and are given
by:

Re(θ̂S) = b

[
r +

(
β
θ

)

(r + α − 1)
− Eθ loge

( θ̂S

θ

)
− 1

]
,(3.14)

Re(θ̂A) = b

[(
1 − e−a/(r+α+1)

)(
r + β

θ

)

a
− Eθ loge

( θ̂A

θ

)
− 1

]
,(3.15)

Re(θ̂P ) = b

[(
r +

β

θ

)
K − Eθ loge

( θ̂P

θ
− 1
)]

,(3.16)

Re(θ̂e) = b

[
r +

(
β
θ

)

(r + α)
− Eθ loge

( θ̂e

θ

)
− 1

]
(3.17)

3.2. The Bayes Risks: The Bayes risks for the estimators θ̂S , θ̂A, θ̂P and θ̂e are the
prior expectations of the risks obtained above. Thus, the Bayes risks relative to SELF

are denoted by rS(θ̂S), rS(θ̂A), rS(θ̂P ) and rS(θ̂e), respectively, and are given by:
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rS(θ̂S) =
β2

(α − 1)(α − 2)(r + α − 1)
,(3.18)

rS(θ̂A) = β2

[
r(r + 1)C2 − 2rC + 1

(α − 1)(α − 2)
+

2C(rC − 1)

(α − 1)
+ C2

]
,(3.19)

rS(θ̂P ) = β2

[
r(r + 1)K2 − 2rK + 1

(α − 1)(α − 2)
+

2K(rK − 1)

(α − 1)
+ K2

]
,(3.20)

rS(θ̂e) = β2

[
r(r + 1)B2 − 2rB + 1

(α − 1)(α − 2)
−

2B(rB − 1)

(α − 1)
+ B2

]
,(3.21)

where B = 1
(r+α)

.

Similarly, the Bayes risks for the estimators θ̂S, θ̂A, θ̂P and θ̂e relative to the linex

loss function are denoted by rA(θ̂S), rA(θ̂A), rA(θ̂P ) and rA(θ̂e), respectively, and are
given by:

rA(θ̂S) = b

[
e−a

(
1 −

a

r + α − 1

)
−(r+α)

−
(
1 −

a

r + α − 1

)]
,(3.22)

rA(θ̂A) = b
[
a − (r + α + 1)

(
1 − e−a/(r+α+1))],(3.23)

rA(θ̂P ) = b
[
e−a(1 − aK)−(r+α)

− aK(r + α) + a − 1
]
,(3.24)

rA(θ̂e) = b

[
e−a

(
1 −

a

r + α

)
−(r+α)

+
a(r + 1)

(r + α)
+ a − 1

]
.(3.25)

Also, the Bayes risks for the estimators θ̂S , θ̂A, θ̂P and θ̂e relative to the entropy loss

function are denoted by rA(θ̂S), rA(θ̂A), rA(θ̂P ) and rA(θ̂e), respectively, and are given
by:

re(θ̂S) = b

[
1

(r + α − 1)
− E

{
Ee

(
loge

θ̂S

θ

)}]
,(3.26)

re(θ̂A) = b

[(
r +

β2

α − 1

)(
1 − e−a/(r+α+1)

a

)
− E

{
Eθ(loge

θ̂A

θ
)

}
− 1

]
,(3.27)

re(θ̂P ) = b

[
K(r + α) − E

{
Ee

(
loge

θ̂P

θ

)}
− 1

]
,(3.28)

re(θ̂e) = −b

[
E

{
Eθ

(
loge

θ̂e

θ

)}]
.(3.29)

Under g2(θ), the risk functions and corresponding Bayes risks relative to the precaution-
ary loss function cannot be obtained in closed form.

4. The Bayes estimator under g3(θ)

Under g3(θ), using (2.1), the posterior distribution is given by

(4.1) f(θ/x) =
T r−1

r θ−reTr/θ

Ig(
Tr
α

, r − 1) − Ig(
Tr
β

, r − 1)
,

where

Ig(x, n) =

∫ x

0

e−ttn−1 dt.
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The Bayes estimator of θ under SELF is given by

(4.2) θ̂S =

(
Ig

(
Tr
α

, r − 2
)
− Ig

(
Tr
β

, r − 2
)

Ig

(
Tr
α

, r − 1
)
− Ig

(
Tr
β

, r − 1
)
)

T1.

Using (1.6), the Bayes estimator of θ under the linex loss function is θ̂A, where θ̂A is the
solution of the following equation:

(4.3) e−a

(
Ig

(
Tr
α

, r
)
− Ig

(
Tr
β

, r
)

Ig

(
T−a

r θ̂A
α

, r
)
− Ig

(
T−a

r θ̂A
β

, r
)

)

=

(
Tr

Tr − aθ̂A

)r

.

Using (1.8), the Bayes estimator of θ under the precautionary loss function turns out to
be

(4.4) θ̂P =

[
Ig

(
Tr
α

, r − 3
)
− Ig

(
Tr
β

, r − 3
)

Ig

(
Tr
α

, r − 1
)
− Ig

(
Tr
β

, r − 1
)
]1/2

Tr.

Using (1.10), the Bayes estimator of θ under the entropy loss function is obtained as

(4.5) θ̂e =

[
Ig

(
Tr
α

, r − 1
)
− Ig

(
Tr
β

, r − 1
)

Ig

(
Tr
α

, r
)
− Ig

(
Tr
β

, r
)

]

Tr.

In this case risk functions and the Bayes risks cannot be obtained in a closed form.

5. Conclusion

It is evident from Equations (2.3), (2.4), (2.5), (2.6), (3.2), (3.3), (3.4), (3.5), (4.2),
(4.3), (4.4) and (4.5) that the Bayes estimators of the shape parameter of the generalized
Pareto distribution, under the squared error, linex, precautionary and entropy loss func-
tion using quasi, inverted gamma and uniform priors, are given by different expressions.
The Bayes estimators are seen to depend upon the parameters of prior distributions.

In Figure 1 (a–d) we have plotted the ratio of the risk functions to θ2, i.e.

RS(θ̂S)

θ2
= B1,

RS(θ̂A)

θ2
= B2,

RS(θ̂P )

θ2
= B3, and

RS(θ̂e)

θ2
= B4

for the Bayes estimators θ̂S, θ̂A, θ̂P and θ̂e, respectively, under the squared error loss
function, as given in Equations (2.7) to (2.10), for a = 1, r = 5 (5) 20 and d = 0.5 (0.5) 5.0.
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Figure 1 (a). Ratio of the risk functions to θ
2 for r = 5

Legend: B1 ♦ B2 � B3 △ B4 ×

Figure 1 (b). Ratio of the risk functions to θ
2 for r = 10

Legend: B1 ♦ B2 � B3 △ B4 ×
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Figure 1 (c). Ratio of the risk functions to θ
2 for r = 15

Legend: B1 ♦ B2 � B3 △ B4 ×

Figure 1 (d). Ratio of the risk functions to θ
2 for r = 20

Legend: B1 ♦ B2 � B3 △ B4 ×

In Figure 2 (a–d) we have plotted the ratio of the risk functions to b i.e.

RA(θ̂S)

b
= C1,

RA(θ̂A)

b
= C2,

RA(θ̂P )

b
= C3 and

RA(θ̂e)

b
= C4
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for the Bayes estimators θ̂S, θ̂A, θ̂P and θ̂e, respectively, under the linex loss function
L(∆), as given in Equations (2.11) to (2.14), for a = 1, r = 5 (5) 20 and d = 0.5 (0.5) 5.0.

Figure 2 (a). Ratio of the risk functions to b for r = 5

Legend: C1 ♦ C2 � C3 △ C4 ×

Figure 2 (b). Ratio of the risk functions to b for r = 10

Legend: C1 ♦ C2 � C3 △ C4 ×
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Figure 2 (c). Ratio of the risk functions to b for r = 15

Legend: C1 ♦ C2 � C3 △ C4 ×

Figure 2 (d). Ratio of the risk functions to b for r = 20

Legend: C1 ♦ C2 � C3 △ C4 ×

In Figure 3 (a–d) we have plotted the ratio of the risk functions to θ i.e.

RP (θ̂S)

θ
= D1,

RP (θ̂A)

θ
= D2,

RP (θ̂P )

θ
= D3, and

RP (θ̂e)

θ
= D4
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for the Bayes estimators θ̂S , θ̂A, θ̂P and θ̂e, respectively, under the precautionary loss
function, as given in Equations (2.15) to (2.18), for a = 1, r = 5 (5) 20 and d =
0.5 (0.5) 5.0.

Figure 3 (a). Ratio of the risk functions to θ for r = 5

Legend: D1 ♦ D2 � D3 △ D4 ×

Figure 3 (b). Ratio of the risk functions to θ for r = 10

Legend: D1 ♦ D2 � D3 △ D4 ×



82 H. Pandey, A. K. Rao

Figure 3 (c). Ratio of the risk functions to θ for r = 15

Legend: D1 ♦ D2 � D3 △ D4 ×

Figure 3 (d). Ratio of the risk functions to θ for r = 20

Legend: D1 ♦ D2 � D3 △ D4 ×

From Figures 1, 2 and 3 it is clear that no one of the estimators uniformly dominates any
other. We therefore recommend that the estimators be chosen according to the value of
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d when quasi-density is used as the prior distribution, and this choice in turn depends
on the situation at hand.

The risk functions under the inverted gamma prior are dependent on the population
parameter θ, which is not separable. Therefore, a comparison could only be made by
using numerical techniques.
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