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 Model Predictive Control (MPC) is an advanced method of controllers, explicitly uses of model 

to obtain control signal. MPC is popular in industry and academia because it is capable to deals 

with non-minimum phase, unstable, dead time and multivariable processes, and solves the 

problem of constraints. MPC with integral action method is used in this study for the quadruple 

tank system by taking the lower two tanks into account. The objective of this work is to design 

and study the MPC method for controlling the level of tanks in a quadruple tank process 

depending on type of constrained problems. However, to solve the problem of constraints is not 

easy way. The methods based on the quadratic programming function and ‘if-else’ technique are 

presented to solve the problem of the process constraints in MPC. A comparative study is 

performed with the quadratic programming function and ‘if-else’ technique. The performance of 

the proposed method is tested for reference tracking and disturbance rejection behavior. 

Simulation results are presented and discussed to show the performance of the controller. 
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1. Introduction 

Developing effective control methods for the control of 

industrial processes in many areas of engineering is 

difficult because of the long and tedious identification of 

models [1]. 

The Model Predictive Control, MPC, has been the 

most used technique in more than 30 years and has 

become an important tool in many industrial process 

applications [2].  

The predictive control applications that have been used 

successfully are [3]: 

− Clinical anesthesia.  

− Robotic.  

− Chemical engineers. 

− Cement industry.  

− Electric servo motor, etc.   

Predictive control is an effective strategy for solving 

constraints and dynamics of nonlinear systems, when the 

analytical computation of the control signal is difficult [4, 

5]. This methodology is very used in industries, where 

the dynamics of the system are slow enough to allow its 

implementation [6]. 

The powerful of MPC controllers are its ability to 

manage constraints, non-minimal phase processes, 

changes in system parameters and its great applicability 

to the Multi Input Multi Output (MIMO) processes [7], 

[8]. 

Model Predictive Control, MPC, also known as 

receding horizon control, uses the range of control 

methods, making the use of the process model to predict 

the output and the control signal obtained by minimizing 

the quadratic cost function [9]. The effectiveness of the 

controller depends on the quality of the system dynamics 

captured by the input-output model used for controller 

design [10].  

Constraints of different types are ubiquitous in the 

control of industrial processes; how to deal with them in 

the design of the control system is an important issue. 

Ignore the constraints or impose them on the control 

signal in a heuristically can lead to a deterioration of the 

performances, or even instability, in particular for the 

predictive control of the unstable systems. 
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Taking constraints into consideration in the design 

phase inherently leads to solving the constrained 

optimization problem. The quadratic programming (QP) 

techniques can be applied to the resolution of various 

types of constrained predictive control problems [11, 12]. 

The MPC algorithms usually assume that all signals 

have an unlimited range, although real processes have 

constraints (input constraint, input rate constraint, 

constrained output, etc). For this reason, it is necessary to 

use MPC controllers to cope with constrained inputs. In 

this work, constrained MPC is applied to the state space 

model of the four tank system after linearization. The 

MPC under constraints is given in more detail and 

constraint optimization techniques discussed here are 

based on ‘quadprog’ function and ‘if-else’ loop. 

Quadratic programming (QP) methods are widely used in 

constraint predictive control applications; see for example 

the comments given in [13] and [14]. 

In the previous paper given in [15], a comparative 

study of unconstrained and constrained control system 

behavior is developed and the method based on the 

Quadratic Programming (QP) technique are used to solve 

the constrained optimization problem. The aim of this 

work is to design and study the predictive controller for 

controlling the level of tanks in a quadruple tank process 

depending on type of constrained problems. However, 

there is no easy way to solve the problem of constraints. 

This study presents a comparison between the both 

named quadratic programming function and ‘if-else’ 

technique. The purpose of the tests will be to check if one 

of the two proposed methods is able to solve the 

problems of constraints with less calculation and lead 

MPC to best performance in term of good tracking and 

perturbation rejection capacity. 

The paper is organized as follows. The one classical 

formulation of constrained MPC controller algorithm is 

presented. A benchmark quadruple tank process is 

considered. The efficiency and the superiority of MPC 

under constraints are illustrated by an example of 

simulation. Some concluding remarks and future 

prospects complete the paper. 

 

2. MPC Algorithm  

The general strategy of the MPC is shown in Figure 1 [16, 

17]. 
 

1) Definition of a numerical model of the system to 

calculate the predicted future outputs ŷ . These 

depend upon the known values up to instance k, 

taking the current y(k)  into consideration and 

calculate the future control signals u(k + i), i =
1…p − 1. 

2) The sequence of future control signals is 

computed to minimize the objective function.  

 
Figure 1. The receding horizon strategy of MPC [17] 

 

3) Only the current control signal u(k)  is applied to 

the system. Next time, measure y(k + 1) , repeat 

step 1  and all sequences are updated. And the 

control signal u(k + 1)  is then calculated using 

the concept of moving horizon. 

In MPC, the model used to analyze the behavior of the 

system [17] is linear or nonlinear. The future moves of the 

variables studied are obtained by minimizing the quadratic 

cost function. 
 

2.1 Performance Criterion 

The quadratic cost function to be minimized is:   
 

 J = (yk+1/L − wk+1/L)
T
Q(yk+1/L − wk+1/L

k/L
TPuk/L + Duk/L

TRDuk/L                                    (1)    

                                    

Where 𝐰 is the reference signal, 𝐲 is the output signal, D𝐮 

is the input changes, and 𝐮 is the input signal. Q, R and P 

are the weight matrices. 𝐋 prediction horizon. 

The control law minimizing the cost is, [18]: 

 

                          𝑢𝑘/𝐿
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐽𝑘(𝑢𝑘/𝐿)                       (2)  

                                                                       

The purpose of the quadratic cost function is to reduce 

the difference (yk+1/L − wk+1/L) and at the same time 

reduce the control 𝑢𝑘/𝐿 [19]. 
 

3. Constraints Implementation 

A constraint is a limitation; in practice all processes have 

constraints. In MPC one normally defines these constraints 

to minimize inequalities [20], 
 

                               CDuk/L ≤ b                                      (3) 
 

Where 𝐶 ∈ 𝑅𝑚×𝑛 is a matrix and 𝑏 ∈ 𝑅𝑚 is a vector.  

 

The input constraints are given in linear inequality form 

as: 

 

[
S
−S
] ∆uk/L ≤ [

uk/L
max − cuk−1

−uk/L
min + cuk−1

]                     (4) 

 

The input rate constraint written in linear inequality 

form as: 

) +

u

k
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                     [
I
−I
] ∆uk/L ≤ [

∆uk/L
max

−∆uk/L
min

 

The output constraint in linear inequality form, defined 

as, 
 

[
GL
∆

−GL
∆] ∆uk/L ≤ [

ymax − FL
∆

−ymin + FL
∆]                       (6)                                                                                                                       

 

Input, rate and output constraints from Equations (4), (5) 

and (6) can be given as CDuk/L ≤ b respectively. 

 

[
 
 
 
 
 
S
−S
I
−I
GL
∆

−GL
∆]
 
 
 
 
 

∆uk/L ≤

[
 
 
 
 
 
 
 
uk/L
max − cuk−1

−uk/L
min + cuk−1

∆uk/L
max

−∆uk/L
min

ymax − FL
∆

−ymin + FL
∆ ]
 
 
 
 
 
 
 

                     (7)                                                                                            

 

Where 

        C =

[
 
 
 
 
 
S
−S
I
−I
GL
∆

−GL
∆]
 
 
 
 
 

 and b= 

[
 
 
 
 
 
 
 
uk/L
max − cuk−1

−uk/L
min + cuk−1

∆uk/L
max

−∆uk/L
min

ymax − FL
∆

−ymin + FL
∆ ]
 
 
 
 
 
 
 

 

 

4. MPC with Integral Action 

Model predictive control has many different algorithms, 

depending on the numerical model of the process used for 

the objective function. These formulations have some 

problems with offset. To solve this, using the integral action 

it is an effective approach [21], [22]. 

Consider discrete-time state space model with 

disturbance.  

                      
xk+1 = Axk + Buk + ζ

yk = Cxk + ϵ
                          (8)  

  

Where A, B and C are system matrices, 𝑥𝑘 ∈ 𝑅
𝑛  is a 

state vector, 𝑢𝑘 ∈ 𝑅
𝑟  is input vector, 𝑦𝑘 ∈ 𝑅

𝑚  is output 

vector. 𝜁   is process disturbance vector and 𝜖  is 

measurement noise vector.                                                                                                                  

In order to solve the problem of optimal control of the 

MPC, Firstly, a model without unknown perturbations is 

considered. 

From the Equation (8), the state space model becomes, 

                      
∆xk+1 = A∆xk + B∆uk
yk = yk−1 + C∆xk

                         (9)                                                                                                                                                   

 

Where, 

∆xk+1 = xk+1 − xk       

∆xk = xk − xk−1     

∆uk = uk − uk−1     

The augmented form of the model shown below is 

obtained using the model of Equation (15), 

[
∆𝑥𝑘+1
𝑦𝑘

]
⏟    
𝑥𝑘+1

= [
𝐴 0
𝐶 𝐼

]
⏟    

𝐴

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟  
𝑥𝑘

+ [
𝐵
0
]

⏟
�̃�

∆𝑢𝑘

𝑦𝑘 = [𝐶 𝐼]⏟   
𝐶

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟  
𝑥𝑘

               (10)                                                                                                       

A strictly proper state model written as, 

                      
�̃�𝑘+1 = �̃��̃�𝑘 + �̃�∆𝑢𝑘

𝑦𝑘 = �̃��̃�𝑘
                            (11)                                                                                                                                           

�̃�, 𝐵,̃ �̃�: Augmented model matrices 

The predicted value of the output along the horizon will 

be; 

                    yk+1/L = FL + GLuk/L
 

Where 

                                    FL = OLÃL                                    (13) 

                                                                                                                                              

                               GL = [OLB̃ HL
d]                               (14)                                                                                                     

 

Where OL is extended observability matrix for the (C̃, Ã) , 

and HL
d is a Toeplitz matrix for (C̃, Ã, B̃) matrices [19].  

The cost index Equation (1) with the model prediction 

Equation (12) can be given as quadratic objective function 

on standard for as, 

 Jk = ∆uk/L
T HDuk/L + 2fk

T
Duk/L + J0           (15)                                                                                                                        

Where 

H = GL
TQGL + R                                                    (16)                                                                                                                                       

fk = GL
TQ(FL − wk+1/L)                                      (17)                                                                                                                        

𝐽0 = (𝐹𝐿 −𝑤𝑘+1/𝐿)
𝑇𝑄(𝐹𝐿 − 𝑤𝑘+1/𝐿)                (18)                                                                                                    

The optimal control deviation vector written as, 

∆uk/L
∗ = −H−1fk                                                  (19)                                                                                                                                                     

 

Note that, the first element of ∆uk/L
∗  is ∆uk/L  and the 

current control uk/L  is calculated as uk = ∆uk + uk−1 [19]. 
 

5. Process Description 
Quadruple tank process contains four interconnected 

water tanks and two pumps as given in Figure 2 [23], [24]. 

The process inputs are u1 and u2 and the outputs are 𝑦1 =

𝑘𝑐𝑙1 and 𝑦2 = 𝑘𝑐𝑙2.  
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Figure 2. Schematic of the quadruple tank process [23] 

 

The mathematical model of four tank systems is as 

follows [25], [26]: 

dl1

dt
= −

a1

A1
√2gl1 +

a3

A1
√2gl3 +

γ1k1

A1
u1              (20)                                                                                                                       

dl2

dt
= −

a2

A2
√2gl2 +

a4

A2
√2gl4 +

γ2k2

A2
u2              (21)                                                                                                                     

dl3

dt
= −

a3

A3
√2gl3 +

(1−γ2)k2

A3
u2                            (22)                                                                                                                                

dl4

dt
= −

a4

A4
√2gl4 +

(1−γ1)k1

A4
u1                            (23)                                                                                                                            

Where; 

Ai: Surface of cross section of the tank i; 

ai: Surface of cross section of the exit hole i; 

li: Level of water in the tank i; 

ui: Voltage of the pump i; 

γi: Constant of valve i; 

ki: Constant of pump i; 

g: Acceleration due tothe gravity; 

kc: Pump gain. 
 

The linearized state space model is [25], [26]: 

dl

dt
=

[
 
 
 
 
 
 −

1

T1
0

0 −
1

T2

A3

A1T1
0

0
A4

A2T2

0 0
0 0

−
1

T3
0

0 −
1

T4]
 
 
 
 
 
 

l   +

[
 
 
 
 
 
 

γ1k1

A1
0

0
γ2k2

A2

0
(1−γ2)k2

A3
(1−γ1)k1

A4
0 ]

 
 
 
 
 
 

u       (24) 

                       y = [
kc 0
0 kc

0 0
0 0

] l                        (25)                                                                                                           

 

The discrete four-tank plant model is as: 

 

                                   
xk+1 = Axk + Buk

yk = Cxk
                        (26)                                                                                                               

 

Where; 
 

      A = [

0.9984 0
0 0.9989

0.0026 0
0 0.0018

0 0
0 0

0.9974 0
0 0.9982

]; 

      B =  [

 0.0048
0
0

0.0056

0
0.0035
 0.0077
0

]; C = [
1 0
0 1

0 0
0 0

] 

6. Simulation Analysis 

In this paper, the MPC method under imposed 

constraints is implemented in the state space model after 

linearization of the quadruple tank in the non-minimum 

phase region. A comparative study is performed with the 

quadratic programming function and ‘if-else’ technique. 

The constant weight matrices Q and R are chosen in 

terms to obtain the better performances respectively, 

 Q = [
200 0
0 200

], and R = [
0.1 0
0 0.1

]. 

The initial levels in tanks 1 and 2 are 9.5 and 10.5 [cm]. 

The prediction horizon L of 16 is used. 

The control action amplitude constraints 0 ≤ u ≤ 5  is 

applied. 

The reference is chosen as a square wave. 

Simulation results are developed with Matlab® codes 

written to simulate a quadruple tank process. 

 

6.1 Constrained MPC with ‘quadprog’ Function 

The main advantages of MPC method are its capability 

to handle constraints [1]. Here the constraints are provided 

on both the input voltages to the pumps at the amplitude 

constraints 0 ≤ u ≤ 5 . The process outputs and control 

input signal, under constrained MPC method with 

‘quadprog’ function, are shown in Figure 3.  

 

Figure 3. Quadruple tank process responses and control input 

signal using ‘quadprog’ function  
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From the responses it is clearly shown that the output 

variables are able to track the set points given with no 

over/undershoots in both the tanks 1 and 2. When the load 

disturbance is applied as given in Figure 4, it can be seen 

that the proposed method allows guaranteeing the 

disturbance rejection and the tracking performance is 

achieved successfully. The running time of the simulation is 

9.97 seconds due to complex calculation. 

 

6.2 Constrained MPC with “if-else” Technique 

The constraints are handled using “if-else” technique 

such as:  

𝑢𝑚𝑖𝑛 = 0 

𝑢𝑚𝑎𝑥 = 5 
 

if       𝑢 < 𝑢𝑚𝑖𝑛  

           𝑢 = 𝑢𝑚𝑖𝑛 ; 
elseif 𝑢 > 𝑢𝑚𝑎𝑥 

           𝑢 = 𝑢𝑚𝑎𝑥  

end 

 

 

The results are plotted and are given in Figure 5. From 

the responses it is clearly shown that the output variables 

are able to track the set points given with a small 

undershoots and overshoots in both responses of the system. 

When a random disturbance is applied to the system as seen 

in Figure 6, it can be observed that the disturbance is 

rejected, and the tracking performance is achieved 

successfully. The running time of the simulation is 2.13 

seconds. 
 

6.3 Comparison Results 

In the presented Figures, it can be seen the comparative 

results between MPC under imposed constraints using the 

function ‘quadprog’ and the technique “if-else”. The output 

levels for tanks 1 and 2, and the control input signal for 

pumps 1 and 2, under constrained MPC method with the 

function ‘quadprog’ and with the technique ‘if-else’ without 

and with the random disturbance, are shown, respectively, 

in Figures 3, 4, 5 and 6. Best performance is characterized 

by good set point tracking, robustness, lower or no 

over/undershoots. Based on this, it can be observed that the 

constrained MPC method with the function ‘quadprog’ 

produces the good response in terms of tracking and 

overshoot, and the effect of disturbance is well rejected. But 

the running time of simulation with the technique “if-else” 

is reduced compared to the case with the function 

‘quadprog’. As a result, the calculation time can be 

shortened and for the process with rapid dynamic, the ‘if-

else’ technique is most interesting. 
 

7. Conclusion 

In this paper, a model predictive controller under 

constraints was designed using a linearized state-space 

model of the quadruple tank process in the non-minimum 

phase region. From the simulation results, it is clear that, 

the constrained MPC controller with ‘quadprog’ function 

has a good set point tracking and the effect of disturbance is 

well rejected. The running time of simulation is reduced 

with ‘if-else’ technique compared to ‘quadprog’ function. 

For the process with rapid dynamic, the ‘if-else’ technique 

is most interesting, this is particularly important in real 

times application.  

 

Table 1. Comparison of Constrained MPC using ‘quadprog’ 
function and Constrained MPC using ‘if-else’ technique. 
 

 

Parameters 

Constrained 

MPC using 

‘quadprog’ 

function 

Constrained 

MPC using 

“if-else” 

technique 

∑(y(k) − r(k))2   in tank 1 2.6336e−004 3.4953e−004 

∑(u(k))2       in tank 1 8.6946 8.7327 

∑(y(k) − r(k))2   in tank 2 3.6109e−004 5.3257e−004 

∑(u(k))2       in tank 2 7.5232 7.6158 

Execution time  9.97 seconds 2.13 seconds 
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Figure 4. Quadruple tank process responses and control input 

signal using ‘quadprog’ function with a random disturbance 
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Figure 5.  Quadruple tank process responses and control 

input signal using ‘if-else’ technique  

 

 

 
Figure 6.  Quadruple tank process responses and control input 

signal using ‘if-else’ technique with a random disturbance 
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