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ABSTRACT  

 

This work aims to reveal the correlation of the boiling point 

values of phenolic compounds with their molecular structures 

using a quantitative structure-property relationship (QSPR) 

approach. A large number of molecular descriptors have been 

calculated from molecular structures by the DRAGON 

software. In this study, all 56 phenolic compounds were divided 

into two subsets: one for the model formation and the other for 

external validation, by using the Kennard and Stone algorithm. 

A four-descriptor model was constructed by applying a multiple 

linear regression based on the ordinary least squares regression 

method and genetic algorithm/variables subsets selection. The 

good of fit and predictive power of the proposed model were 

evaluated by different approaches, including single or multiple 

output cross-validations, the Y-scrambling test, and external 

validation through prediction set. Also, the applicability domain 

of the developed model was examined using Williams plot. The 

model shows R² = 0.876, Q²LOO = 0.841, Q²LMO = 0.831 and 

Q²EXT = 0.848. The results obtained demonstrate that the model 

is reliable with good predictive accuracy. 

 

 

 

Keywords: Phenolic compounds, boiling point, QSPR, MLR, 

prediction set. 

 
 

Fenolik bileşiklerin kaynama noktalarının 

belirlenmesi için kantitatif modelleme 

 
ÖZ 

Bu çalışma, kantitatif yapı-özellik ilişkisi (QSPR) yaklaşımı 

kullanarak fenolik bileşiklerin kaynama noktası değerlerinin  

moleküler yapıları ile korelasyonunu ortaya koymayı 

amaçlamaktadır. DRAGON yazılımı ile moleküler yapılardan 

çok sayıda moleküler tanımlayıcı hesaplanmıştır. Bu çalışmada, 

56 fenolik bileşik Kennard ve Stone algoritması kullanılarak 

biri model oluşumu için diğeri dış doğrulama için iki alt gruba 

ayrılmıştır. Sıradan en küçük kareler regresyon yöntemi ve 

genetik algoritma / değişken altkümeleri seçimine dayanan 

çoklu bir doğrusal regresyon uygulanarak dört tanımlayıcı 

model oluşturulmuştur. Önerilen modelin iyi uyum ve tahmin 

gücü, tahmin seti aracılığıyla tekli ya da çoklu çıkış çapraz 

validasyonları, Y-kombinasyon testi ve dış doğrulamayı içeren 

farklı yaklaşımlarla değerlendirilmiştir. Ayrıca, geliştirilen 

modelin uygulanabilirlik alanı Williams plot kullanılarak 

incelenmiştir. Model R² = 0.876, Q²LOO = 0.841, Q²LMO = 

0.831 ve Q²EXT = 0.848'i göstermektedir. Elde edilen sonuçlar, 

modelin iyi bir tahmin doğruluğu ile güvenilir olduğunu 

göstermektedir. 

 

 

Anahtar Kelimeler: Fenolik bileşikler, kaynama noktası, 

QSPR, MLR, tahmin seti.  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1. INTRODUCTION  

 

Lipi phenolic compounds are aryl alcohols in which 

the hydroxyl group (-OH) is attached carbon atom that is 

part of an aromatic ring, in which phenol is the simplest 

of these compounds. Anthropogenic produced phenols 

exist in the environment due to the activity of the 

chemical, petrol or industrial processes. The entry of 

phenolic compounds into ecosystems results from the 

industrial sewage drainage or the municipal and 

agricultural activities to surface water.
1
 The transport and 

fate of phenols in the environment depends, in part, on 

their physicochemical properties, and their relative 

distributions between different environmental 

compartments.  
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As is known, the boiling point is an important 

physical property that has practical value in chemistry, 

environmental studies and the pharmaceutical industry,
2
 

defined as the temperature at which the vapor pressure of 

a pure saturated liquid is 1.013 x 10
5
 Pa.

3
 It is also an 

indicator of the physical state of organic chemicals (e.g., 

liquid or gaseous). Furthermore, critical temperatures,
4
 

flash points,
5
 and enthalpies of vaporization

6
 can be 

predicted or estimated by using boiling point. The boiling 

point of a molecule depends on two main factors. The 

first factor includes intermolecular forces, such as 

Coulomb interactions and dipole dipoles. The second 

explains the size and structure of the molecule as a 

whole, that is, how the energy supplied by the heater is 

distributed in rotation and vibration modes.
7
 However, 

the boiling point data is often not available in the 

literature and therefore needs to be estimated 

theoretically. Bp estimation methods have been widely 

explored
4-13

 using the topology of the molecule and/or 

quantum chemistry parameters calculated for the 

optimized structure of the molecule.  

There has been a remarkable increase in the use of 

quantitative structure property relationships (QSPR) 

methodology, which used to predict the physical and 

chemical properties of organic chemicals.
14

 In 

consequence, the QSPR method attempts to correlate the 

properties of chemicals with relevant properties and 

molecular structure descriptors by establishing a simple 

mathematical relationship.
15

  
The purpose of this study is to found a model for the 

prediction of the boiling point of various phenolic 

compounds. Many statistical techniques have been used 

to develop the model to draw attention to the structural 

requirements for an exact boiling point value. The three 

objectives of the present paper have been: first, to 

explore the structure-property relationships of the boiling 

point; second, to select the best predictive model from 

among all developed models for the property, and third, 

verification of the performance and stability of the 

obtained model. The model obtained shows which 

descriptors play a significant role in boiling point 

variation of phenolic compounds.  

 

2. MATERIAL AND METHODS 

 

2.1. Data set 

  

 In the present study, the experimental Bp data listed 

in Table 1 and 2 were received from the Handbook of 

Physical-Chemical Properties and Environmental Fate 

for Organic Chemicals.
16 

The reported Bp values ranged 

from 174.9 to 305°C. The database was divided into two 

molecular subsets by using Kennard and Stone 

algorithm,
17

 the training set consists of 39 compounds 

and 17 compounds for the prediction set. 

 

 

 

2.2. Modeling and molecular descriptor calculation 

 

 All numerical calculations were done by a computer 

with 
®
 Core

TM
 processor and 4Gb RAM. The molecular 

structure of each compound was sketched using the 

Hyperchem software
18

 and pre-optimized using MM+ 

molecular mechanics method (Polak-Ribiere algorithm). 

The minimal energy conformations of molecules were 

then fully optimized and calculated with the semi-

empirical PM3 method at the restricted Hartree-Fock 

level with no configuration interaction,
19

 applying a 

gradient norm limit of 0.001 kcal Å
−1

mol
−1

 as a stopping 

criterion. Lastly, the final geometries with the minimal 

energy were used as input for the generation of 1664 

descriptors using the Dragon software (Version 5.4).
20

 

Type and information of molecular descriptor calculated 

are available in Dragon software user‟s guide.
20

   

 
2.2. Model development and validation 

 

For the model development, by applying multiple 

linear regression based ordinary least square (OLS), and 

genetic algorithm-variable subset selection
21

 (GA/VSS) 

implemented in Mobydigs software
22

 using the Ordinary 

Least Squares (OLS) method and GA-VSS (Genetic 

Algorithm-Variable Subset Selection). This „variable 

selection‟ procedure generates a „population‟ of models, 

ranked according to decreasing Q² values. The best 

models were chosen by using Q² leave-one-out (Q²LOO) 

as the optimization value and taking into account the 

parsimony principle regarding the complexity of the 

models, which should be as small as possible. 

Furthermore, the correlation between the modeling 

descriptors and the modeled response was checked by the 

QUIK rule (Q Under Influence of K), to exclude models 

with high predictor collinearity and exclude chance 

correlation.
23

  
The goodness of the model was reached by verifying 

the model fitting and the model robustness, using  the 

squared correlation coefficient R2 (Eq. (1)) and the 

cross-validation by the leave-one-out technique (Q
2

LOO) 

(Eq. (2)). 

 

         
∑ ( ̂      )

  
      

∑ (     ̅)
  

     

       (1) 

    
        

∑ ( ̂        )
  

      

∑ (      ̅)
  

      

     (2)  

 
Where    is the observed dependent variable (the 

experimental response),  ̂  is the calculated value by the 

model,  ̅ is the mean value of the studied property, n is 

the number of compounds in the training set, and  ̂    is 

the value predicted by the model built without the 

compound i. 
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   Table 1. Molecular descriptors and Bp values for phenols in training set 

 

No Name Exp.BP/°C PW5 Hy X5A R6m Pred. Bp/°C 

1 2-Methylphenol 191.04 0.057 -0.16 0.102 0.001 184.104 

2 4-Methylphenol 201.98 0.08 -0.16 0.109 0.016 211.419 

3 2,6-Dimethylphenol 201.07 0.054 -0.21 0.089 0.005 203.393 

4 3,4-Dimethylphenol 227 0.071 -0.21 0.095 0.015 221.586 

5 2,4,6-Trimethylphenol 220 0.065 -0.26 0.082 0.018 236.418 

6 2-Propylphenol 220 0.082 -0.26 0.104 0.048 226.094 

7 4-Propylphenol 232.6 0.085 -0.26 0.1 0.051 240.189 

8 2-Isopropylpheonol 213.5 0.062 -0.26 0.096 0.022 203.141 

9 4-Isopropylphenol 230 0.072 -0.26 0.091 0.073 242.831 

10 4-Butylphenol 248 0.088 -0.29 0.1 0.068 246.757 

11 2-sec-Butylphenol 228 0.073 -0.29 0.096 0.068 230.179 

12 2-tert-Butylphenol 223 0.059 -0.29 0.091 0.029 207.716 

13 3-tert-Butylphenol 240 0.076 -0.29 0.093 0.058 238.970 

14 4-sec-Butylphenol 241 0.074 -0.29 0.09 0.092 250.322 

15 4-tert-Butylphenol 237 0.066 -0.29 0.084 0.095 250.308 

16 4-tert-Octylphenol 279 0.076 -0.4 0.085 0.161 274.000 

17 1-Naphthol 288 0.094 -0.29 0.084 0.013 276.601 

18 2-Naphthol 285 0.101 -0.29 0.084 0.036 293.926 

19 2-Phenylphenol 286 0.095 -0.35 0.087 0.099 289.135 

20 4-Phenylphenol 305 0.095 -0.35 0.087 0.093 287.652 

21 2-Allylphenol 220 0.082 -0.26 0.104 0.037 223.375 

22 4-Chlorophenol 220 0.08 -0.04 0.109 0.01 218.370 

23 2,3-Dichlorophenol 206 0.054 -0 0.089 0 217.182 

24 3,4,5-Trichlorophenol 275 0.065 0.031 0.082 0.01 254.852 

25 4-Nitrophenol 279 0.072 0.031 0.091 0.103 270.657 

26 1,2-Dihydroxybenzenene 245 0.057 0.846 0.102 0.001 255.259 

27 1,3-Dihydroxybenzene 276.5 0.06 0.846 0.097 0.001 270.704 

28 Hydroquinone 285 0.08 0.846 0.109 0.007 280.349 

29 2-Methoxyphenol 205 0.063 -0.11 0.101 0.015 203.248 

30 3-Methoxyphenol 244 0.074 -0.11 0.102 0.028 222.661 

31 2,6-Dimethoxyphenol 261 0.075 -0.12 0.09 0.051 254.253 

32 3-Methylphenol 202.27 0.06 -0.16 0.097 0.002 199.797 

33 3,5-Dimethylphenol 221.74 0.058 -0.21 0.082 0.007 225.178 

34 2,3,5-Trimethylphenol 233 0.065 -0.26 0.082 0.016 235.924 

35 3,4,5-Trimethylphenol 248.5 0.065 -0.26 0.082 0.016 235.924 

36 2-Ethylphenol 204.5 0.063 -0.21 0.101 0.013 195.241 

37 4-Ethylphenol 217.9 0.078 -0.21 0.098 0.04 233.131 

38 2,5-Dichlorophenol 211 0.071 -0 0.095 0 232.903 

39 2,4,6-Trichlorophenol 246 0.065 0.031 0.082 0.01 254.852 
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   Table 2. Molecular descriptors and Bp values for phenols in prediction set 

No Name Exp.BP/°C PW5 Hy X5A R6m Pred. Bp/°C 

1 3-Ethylphenol 218.4 0.074 -0.213 0.102 0.023 213.913 

2 Phenol 181.87 0.062 -0.088 0.113 0 174.129 

3 2-Chlorophenol 174.9 0.057 -0.039 0.102 0 192.291 

4 3,4-Dichlorophenol 253 0.071 -0.001 0.095 0.01 235.375 

5 4-Chloro-3-methyphenol 235 0.071 -0.107 0.095 0.011 228.110 

6 2-Nitrophenol 216 0.062 0.031 0.096 0.008 220.091 

7 4-Methoxyphenol 243 0.078 -0.107 0.098 0.036 239.655 

8 4-Hydroxy-3-methoxybenzaldehyde 285 0.086 -0.119 0.09 0.088 281.690 

9 2,3-Dimethylphenol 216.9 0.054 -0.213 0.089 0.003 202.899 

10 2,4-Dimethylphenol 210.98 0.071 -0.213 0.095 0.016 221.833 

11 2,5-Dimethylphenol 211.1 0.071 -0.213 0.095 0.014 221.339 

12 2,4,5-Trimethylphenol 232 0.076 -0.257 0.088 0.025 243.892 

13 3-Chlorophenol 214 0.06 -0.039 0.097 0 207.736 

14 2,4-Dichlorophenol 210 0.071 -0.001 0.095 0.01 235.375 

15 2,6-Dichlorophenol 220 0.054 -0.001 0.089 0 217.182 

16 3,5-Dichlorophenol 233 0.058 -0.001 0.082 0 238.472 

17 2,4,5-Trichlorophenol 247 0.076 0.031 0.088 0.01 260.596 

 

 

 

 

 

       

Besides, the Root Mean Squared of Error (RMSE) that 

resume the overall error of the model, which used to 

measure and compare prediction accuracy in the training 

(RMSEtr) and  the prediction (RMSEp) sets defined in 

Eq. (3).  

 

 

       ( )  √
 

   (   )
 ∑ (    ̂ )

 
    (   ) 

     
                 (3) 

 

 

A stronger internal validation is performed by using 

the LMO (leave-many-out) procedure. By design, model 

validation by LMO employs smaller training sets than 

the LOO procedure and can be repeated many more 

times due to the possibility of larger combinations in 

leaving many compounds out from the training set, it is 

common to choose 5-40% of the entire number 

molecules in the training set to be left . The premise is 

that if a QSPR model has a high average in Q
2

LMO 

validation, we can reasonably conclude that the obtained 

model is robust.
24 

Obtaining a robust model does not give real 

information about its prediction power. This is evaluated 

by predicting the compounds included in the test set. The 

external for the test set is determined by using Eq. (4): 

 

    
        

∑ ( ̂         )
 
      

     
     

∑  (      ̅)
      

   
     

     (4) 

 

Here next and ntr are the number of objects in the external 

set and the number of training set objects, respectively. 

In order to exclude the possibility of a chance 

correlation between the selected descriptors and the 

studied response, Y-scrambling as an internal validation 

method was used. In this method, the dependent-variable 

vector, Y-vector, are randomly permuted and a new 

QSPR model is developed using the selected descriptor 

in the model.
25

  
 A successful QSPR model should be validated with the 

test set and satisfies criteria in Equations (5-9).
24, 25 

 

Q²LOO  >  0.5       (5) 

 

Q²ext > 0.5       (6) 

 

R² > 0.6                     (7) 

 

(R² - R²0) / R² < 0.1 or (R² - R′²0) / R² < 0.1                 (8) 

 

0.85 ≤  k ≤ 1.15     or    0.85 ≤  k′  ≤ 1.15    (9) 
 

Where R²0 (predicted versus observed values) and R′²0 

(observed versus predicted values) are coefficients of 

determination, k and k′ are slopes of regression lines 

through the origin of predicted versus observed and 

observed versus predicted respectively. Mathematical 

definitions of parameters (R²0, R′²0, k, and k′) can be 

found in the literature.
24,26
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2.3. Applicability Domain (AD) 

 

  Williams plot, the plot of standardized residuals 

versus the leverage (hii)
27,28  

is  always  used  to verify the 

applicability domain (AD) of the developed QSPR 

model. The structural AD is quantified by applying the 

leverage approach, this approach is based on the 

calculation of the Hat matrix for the structural domain. 

Leverage indicates a compounds distance from the 

centroid of X. The leverage of a compound in the 

original variable space is defined as in Eq. (10):
27

 

 

       
 (   )        (10) 

 

Where xi is the descriptor vector of the considered 

compound and X is the descriptor matrix derived from 

the training set descriptor values. The warning leverage 

h* was calculated according to Eq. (11)
29

  
 

    (     )                      (11) 

 

Where   is the number of independent variables used and 

  is the number of compounds in the training set. 

The leverages approach was used to estimate the 

degree of extrapolation for the predictions obtained in the 

training and prediction sets and for compounds without 

experimental data. The chemicals with a leverage hii > 

h* are outside the structural domain of the training set. 

therefore, their predictions are extrapolations and could 

be less reliable. 

 

3. RESULTS AND DISCUSSION 

 

 The hybrid method genetic algorithm/Multiple linear 

Regression (GA/MLR) included in MOBYDIGS 

software was used to select the best descriptors able to 

explicating property variation in the training set. Finally, 

a 4-variables model was chosen as the best model. The 

regression equation of the developed model defined as 

follows:  

                               

                                                  (12) 

Ntr = 39, Npr = 17, S = 11.111°C, RMSEtr = 10.375, 

RMSEpr = 11.4928. F = 60.4552 

R²  = 0.876, Q²LOO = 0.841, Q² LMO = 0.848, Q²ext = 

0.848. 

The statistical parameters that evaluate the model are 

listed in Table 3, from this table we can conclude that the 

statistical parameters of the developed model have very 

good predictive performance and that the descriptors in 

which it is involved describe well the boiling point.  The  

 

 

developed model satisfies the above accept conditions 

(Equations (5-9)). 

Statistical parameters and the meanings of descriptors 

are grouped in Table 4. The probability (P) that the 

descriptor is there by chance, should usually be less than 

0.05 (i.e., 5%) to be considered statistically significant; 

otherwise this descriptor should be thrown out, the P-

values suggests that all the descriptors in each model are 

significant. The high absolute t-values means that the 

regression coefficients of the descriptors introduced in 

the model are significantly larger than the standard 

deviation, values of VIF less than 5 indicate that the 

descriptors are not strongly correlated with each other.
30

  
Another proof of the model quality is the strong 

correlation between observed and predicted Bp values for 

both training and prediction sets. Figure 1 illustrates the 

predicted values of the boiling point versus the 

experimental values, the correlation coefficient (R² = 

0.876) of this plot indicates the good agreement between 

these values, which prove the reliability of the model. 

 

 
 
Figure 1. Scatter  plot  of  experimental  and  predicted  boiling 

point. 

 
     
Figure 2. The respective Williams plot of standardized residual 

versus leverages for the model. 
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          Table 3. Evaluation results of the developed model 

Training set Prediction set 

R² Q²LOO Q² LMO Q²ext (R²-R²0) / R² (R²-R’²0) / R² k k’ 

0.8767 0.841 0.831 0.848 0.0059 0.0244 0.9907 1.0068 

 

 
          Table 4. Characteristics of the selected descriptors in the model 

Predictor Descriptors  signification Coefficient SE Coef T P VIF 

Constant      313.58 22.68 13.83 0.000  

PW5          Path/walk 5 - Randic shape index 1662.9 173.3 9.59 0.000 1.358 

Hy           Hydrophilic factor 70.871 6.910 10.26 0.000 1.364 

X5A        Average connectivity index of order 5 -2091.3 235.5 -8.88 0.000 1.222 

R6m          
R autocorrelation of lag 6 / weighted by 

mass 
247.16 57.83 4.27 0.000 1.471 

 

 

Figure 2 shows the Williams plot. As can be seen in 

this figure, all residuals were situated on the range of ±3 

standard deviations (horizontal lines) and also there is no 

structural influential compound both for training and 

prediction sets (here, the leverage value hi of all data sets 

are lower than the warning value h* = 0.38), which 

means that the model has a good predictive ability. So, 

the developed model could be used to predict the boiling 

point of phenolic compounds just from their molecular 

structure.   

The Y-scrambling tests between the original and 

permuted response data indicate the robustness of the 

model. The significant low values of R²Yscr and Q²Yscr 

(black circle) obtained for 100 iterations confirm the 

robustness of the developed model (asterisk). Figure 3 

shows that in the case of all randomized models, the 

values of R²Yscr and Q²Yscr were < 0.5 this insure that the 

good results of the original model have a real basis, not 

due to chance correlation. 

 

 
 
Figure 3.   Randomization  test:   R²   and  Q²  of   Y-scrambled 

models compared with the original model.  

3.1. Descriptor contribution and interpretation  

 

In order to verify the relative contributions of the four 

descriptors in the developed model, they are illustrated in 

Figure 4. The importance of the descriptors included in 

the model decreases in the following order: Hy 

(28.155%) > PW5 (27.476%) > X5A (26.844%) > R6m 

(17.524%). 

The most significant descriptor is a hydrophilic factor 

(Hy), which gives a correlation with Bp of 0.196 and 

explains 28.155% of the contributions. The hydrophilic 

factor is a simple empirical index related to the 

hydrophilicity of compounds based on count 

descriptors.
31

 It is a measure of the number of 

hydrophilic functional groups (-OH,-SH,-NH).
32

 The 

Molecular property descriptor here digitizes the 

hydrophilic properties of the molecules caused by the 

group “OH”.
31

 
 

 

 
 
Figure 4.   Relative  contributions  of   the   descriptors   in   the 

developed model. 
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The second significant descriptor is PW5, which gives a 

correlation with Bp of 0.566 and explains 27.47% of the 

contributions. PW5 is a topological index that considers 

the shape of molecules as molecular properties in the 

variations of compounds.
33 

The shape of molecules with 

a specific kind of branching was also selected as a 

significant descriptor in the QSAR model developed by 

Mitra and co-workers.
34 

The variation in branching 

structural features has also been considered by Ray and 

co-workers
35

 to develop the specific QSAR model. PW5 

refers to the proportions of path/walk-in length 5 from 

the molecular Randic shape index. Randic
36

 characterizes 

shape index for a molecular graph by considering both 

paths and walks of different lengths within a graph and 

then making the proportions of the number of path and 

the number of walks the same length. The third 

descriptor is X5A, this descriptor belongs to Connectivity 

indices descriptors; X5A is the fifth-order average 

connectivity index appearing in the MLR model mainly 

shows the topological characteristics. Topological indices 

are numerical quantifiers of molecular topology and an 

H-depleted molecular graph. They involve one or more 

structural features of the molecule such as the size, 

shape, symmetry, and branching and can also codify 

chemical information about atom type and bond 

multiplicity.
37

 The last descriptor is R6m belongs to 

GETAWAY descriptor, and provides information on the 

molecular leverage autocorrelation of lag 6 weighted by 

atomic mass. R6m is a geometrical descriptor encoding 

information on the real position of substituent and 

fragments in the molecular space.
38,39

 

 

4. CONCLUSIONS 

 

 In this work, quantitative relationships between the 

boiling point and some phenolic compounds, and their 

molecular descriptors were investigated by using 

multiple linear regression techniques.  Genetic algorithm 

is a powerful method used to reduce the number of 

descriptors in the development of the models. The 

selected descriptor in this study gives a good estimate for 

boiling point, indicated by several calculated metrics, R
2
 

for the goodness of fit, Q
2

LOO and Q²LMO for robustness, 

and Q²ext for the predictive power of the model. Also, 

the applicability domain of the MLR model is verified by 

the leverage approach. In conclusion, the model proposed 

in this work provides a feasible, effective and practical 

tool to predict the boiling point of phenolic compounds. 
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