ON THE NORMS OF TOEPLITZ MATRICES INVOLVING FIBONACCI AND LUCAS NUMBERS

Mehmet Akbulak* and Durmuş Bozkurt*

Received $06: 06: 2008$: Accepted 15:08:2008

Abstract

Let us define $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ as $n \times n$ Toeplitz matrices such that $a_{i j} \equiv F_{i-j}$ and $b_{i j} \equiv L_{i-j}$ where F and L denote the usual Fibonacci and Lucas numbers, respectively. We have found upper and lower bounds for the spectral norms of these matrices.

Keywords: Fibonacci numbers, Lucas numbers, Toeplitz matrix, Spectral norm, Euclidean norm.

2000 AMS Classification: 11 B 39, 15 A 60, 15 A 36.

1. Introduction

Let $\left\{t_{n}\right\}_{n=-\infty}^{\infty}$ be a doubly infinite sequence. A Toeplitz matrix is an $n \times n$ matrix

$$
T_{n}=\left[t_{i j}\right]_{i, j=0}^{n-1}
$$

where $t_{i j}=t_{i-j}$, i.e., a matrix of the form

$$
T_{n}=\left[\begin{array}{ccccc}
t_{0} & t_{-1} & t_{-2} & \cdots & t_{-(n-1)} \\
t_{1} & t_{0} & t_{-1} & \cdots & t_{-(n-2)} \\
t_{2} & t_{1} & t_{0} & \cdots & t_{-(n-3)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
t_{n-1} & t_{n-2} & t_{n-3} & \cdots & t_{0}
\end{array}\right] .
$$

The Fibonacci and Lucas sequences F_{n} and L_{n} are defined by the recurrence relations

$$
\begin{equation*}
F_{0}=0, \quad F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 2 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{0}=2, \quad L_{1}=1, \quad L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

[^0]If we start from $n=0$, then the Fibonacci and Lucas sequences are given by

n	0	1	2	3	4	5	6	7	\cdots
F_{n}	0	1	1	2	3	5	8	13	\cdots
L_{n}	2	1	3	4	7	11	18	29	\cdots.

The rules (1) and (2) can be used to extend the sequences backwards, thus

$$
\begin{array}{ll}
F_{-1}=F_{1}-F_{0}, & F_{-2}=F_{0}-F_{-1}, \\
L_{-1}=L_{1}-L_{0}, & L_{-2}=L_{0}-L_{-1}
\end{array}
$$

and so on [7]. These produce

$$
\begin{array}{crrrrrrrrr}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
F_{-n} & 0 & 1 & -1 & 2 & -3 & 5 & -8 & 13 & \cdots \\
L_{-n} & 2 & -1 & 3 & -4 & 7 & -11 & 18 & -29 & \cdots .
\end{array}
$$

Generally,

$$
F_{-n}=(-1)^{n+1} F_{n}
$$

and

$$
L_{-n}=(-1)^{n} L_{n}
$$

In [6], Solak has defined $n \times n$ circulant matrices with Fibonacci and Lucas numbers of the forms

$$
A=\left[F_{(\bmod (j-i, n))}\right]_{i, j=1}^{n}
$$

and

$$
B=\left[L_{(\bmod (j-i, n))}\right]_{i, j=1}^{n} .
$$

He has given lower and upper bounds for the spectral norms of these matrices.
In [2], Kayabaş has defined Toeplitz and Hankel matrices given by

$$
\begin{equation*}
T_{n}^{k}=\left(g_{r-s}^{k}\right)_{r, s=1}^{n} \tag{3}
\end{equation*}
$$

and

$$
H_{n}^{k}=\left(g_{r+s}^{k}\right)_{r, s=1}^{n},
$$

where g_{i}^{k} is the i th element of the k-Fibonacci sequence [1]. When $k=2$, the usual Fibonacci sequence is obtained. Moreover she has found upper bounds for the Euclidean norms of T_{n}^{2} and H_{n}^{2} as follows:

$$
\left\|T_{n}^{2}\right\|_{E} \leq \sqrt{n\left(F_{n} F_{n+1}-1\right)}
$$

and

$$
\left\|H_{n}^{2}\right\|_{E} \leq \sqrt{n\left(F_{2 n} F_{2 n+1}-F_{n+1} F_{n+2}\right)}
$$

In this study, we define Toeplitz matrices involving Lucas numbers of the form

$$
\begin{equation*}
B=\left[L_{i-j}\right]_{i, j=1}^{n} . \tag{4}
\end{equation*}
$$

We have found the Euclidean norms, and the upper and lower bounds for the spectral norms of the matrices (3) and (4).

2. Preliminaries

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix. The ℓ_{p} norm of the matrix A is defined by

$$
\|A\|_{p}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{p}\right)^{1 / p} \quad(1 \leq p<\infty)
$$

If $p=\infty$, then

$$
\|A\|_{\infty}=\lim _{p \rightarrow \infty}\|A\|_{p}=\max _{i, j}\left|a_{i j}\right|
$$

The well-known Frobenius (Euclidean) norm of the matrix A is

$$
\|A\|_{E}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

and also the spectral norm of the matrix A is

$$
\|A\|_{2}=\sqrt{\max _{1 \leq i \leq n}\left|\lambda_{i}\right|}
$$

where the numbers λ_{i} are the eigenvalues of the matrix $A^{H} A$ and the matrix A^{H} is the conjugate transpose of the matrix A.

The following inequality holds [8]:

$$
\begin{equation*}
\frac{1}{\sqrt{n}}\|A\|_{E} \leq\|A\|_{2} \leq\|A\|_{E} \tag{5}
\end{equation*}
$$

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices. Then, the Hadamard product of A and B is the entry-wise product given by [5]

$$
A \circ B=\left(a_{i j} b_{i j}\right)
$$

Define the maximum column length norm $c_{1}(\cdot)$ and maximum row length norm $r_{1}(\cdot)$ on $m \times n$ matrices $A=\left(a_{i j}\right)$ by

$$
c_{1}(A) \equiv \max _{j} \sqrt{\sum_{i}\left|a_{i j}\right|^{2}}=\max _{j}\left\|\left[a_{i j}\right]_{i=1}^{m}\right\|_{E}
$$

and

$$
r_{1}(A) \equiv \max _{i} \sqrt{\sum_{j}\left|a_{i j}\right|^{2}}=\max _{i}\left\|\left[a_{i j}\right]_{j=1}^{n}\right\|_{E}
$$

respectively. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$ be $m \times n$ matrices. If $C=A \circ B$ then [4]

$$
\begin{equation*}
\|C\|_{2} \leq r_{1}(A) c_{1}(B) \tag{6}
\end{equation*}
$$

The following sum formulae for the Fibonacci and Lucas numbers are well known [3, 7]:

$$
\begin{align*}
& \sum_{k=1}^{n-1} F_{k}^{2}=F_{n} F_{n-1}, \tag{7}\\
& \sum_{k=1}^{n-1} L_{k}^{2}=L_{n} L_{n-1}-2, \tag{8}
\end{align*}
$$

$\quad \sum_{k=1}^{n} F_{k} F_{k-1}= \begin{cases}F_{n}^{2} & n \text { even, } \\ F_{n}^{2}-1 & n \text { odd },\end{cases}$
and

$$
\sum_{k=1}^{n} L_{k} L_{k-1}= \begin{cases}L_{n}^{2}-4 & n \text { even } \tag{10}\\ L_{n}^{2}+1 & n \text { odd }\end{cases}
$$

3. Main results

3.1. Theorem. Let the $n \times n$ matrix $A=\left[a_{i j}\right]$ satisfy $a_{i j} \equiv F_{i-j}$ (as in (3) for $k=2$). Then,

$$
\|A\|_{2} \geq \begin{cases}\sqrt{\frac{2}{n} F_{n}^{2}} & n \text { even } \\ \sqrt{\frac{2}{n}\left(F_{n}^{2}-1\right)} & n \text { odd }\end{cases}
$$

and

$$
\|A\|_{2} \leq \sqrt{\left(1+F_{n} F_{n-1}\right)\left(F_{n} F_{n-1}\right)},
$$

where $\|\cdot\|_{2}$ is the spectral norm, and F_{n} denotes the nth Fibonacci number.
Proof. The matrix A is of the form

$$
A=\left[\begin{array}{cccccc}
F_{0} & F_{-1} & F_{-2} & \cdots & F_{2-n} & F_{1-n} \\
F_{1} & F_{0} & F_{-1} & \cdots & F_{3-n} & F_{2-n} \\
F_{2} & F_{1} & F_{0} & \cdots & F_{4-n} & F_{3-n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
F_{n-2} & F_{n-3} & F_{n-4} & \cdots & F_{0} & F_{-1} \\
F_{n-1} & F_{n-2} & F_{n-3} & \cdots & F_{1} & F_{0}
\end{array}\right] .
$$

We deduce from (7) that

$$
\begin{aligned}
\|A\|_{E}^{2} & =n F_{0}^{2}+2 \sum_{i=1}^{n-1} \sum_{k=1}^{i} F_{k}^{2} \\
& =2 \sum_{i=1}^{n-1} F_{i} F_{i+1} \\
& =2 \sum_{k=1}^{n} F_{k} F_{k-1} .
\end{aligned}
$$

We conclude from (9) that

$$
\|A\|_{E}= \begin{cases}\sqrt{2 F_{n}^{2}} & n \text { even } \\ \sqrt{2\left(F_{n}^{2}-1\right)} & n \text { odd }\end{cases}
$$

Using inequality (5) we obtain

$$
\|A\|_{2} \geq \begin{cases}\sqrt{\frac{2}{n} F_{n}^{2}} & n \text { even } \\ \sqrt{\frac{2}{n}\left(F_{n}^{2}-1\right)} & n \text { odd }\end{cases}
$$

On the other hand, let the matrices

$$
C=\left(c_{i j}\right)= \begin{cases}c_{i j}=1 & j=1 \\ c_{i j}=F_{i-j} & j \neq 1\end{cases}
$$

and

$$
D=\left(d_{i j}\right)= \begin{cases}d_{i j}=1 & j \neq 1, \\ d_{i j}=F_{i-j} & j=1,\end{cases}
$$

satisfy $A=C \circ D$. Then

$$
\begin{aligned}
r_{1}(C) & =\max _{i} \sqrt{\sum_{j}\left|c_{i j}\right|^{2}}=\sqrt{1+\sum_{k=1}^{n-1} F_{-k}^{2}} \\
& =\sqrt{1+\sum_{k=1}^{n-1} F_{k}^{2}}=\sqrt{1+F_{n} F_{n-1}}
\end{aligned}
$$

and

$$
\begin{aligned}
c_{1}(D) & =\max _{j} \sqrt{\sum_{i}\left|d_{i j}\right|^{2}}=\sqrt{\sum_{k=0}^{n-1} F_{k}^{2}} \\
& =\sqrt{\sum_{k=1}^{n-1} F_{k}^{2}}=\sqrt{F_{n} F_{n-1}} .
\end{aligned}
$$

From (6), we have

$$
\|A\|_{2} \leq \sqrt{\left(1+F_{n} F_{n-1}\right)\left(F_{n} F_{n-1}\right)} .
$$

Thus, the proof is completed.
3.2. Theorem. Let the $n \times n$ matrix $B=\left[b_{i j}\right]$ satisfy $b_{i j} \equiv L_{i-j}$. Then

$$
\|B\|_{2} \geq \begin{cases}\sqrt{\frac{2}{n}\left(L_{n}^{2}-4\right)} & n \text { even } \\ \sqrt{\frac{2}{n}\left(L_{n}^{2}+1\right)} & n \text { odd }\end{cases}
$$

and

$$
\|B\|_{2} \leq \sqrt{\left(L_{n} L_{n-1}-1\right)\left(L_{n} L_{n-1}+2\right)},
$$

where $\|\cdot\|_{2}$ is the spectral norm, and L_{n} denotes the nth Lucas number.
Proof. The matrix B is of the form

$$
B=\left[\begin{array}{cccccc}
L_{0} & L_{-1} & L_{-2} & \cdots & L_{2-n} & L_{1-n} \\
L_{1} & L_{0} & L_{-1} & \cdots & L_{3-n} & L_{2-n} \\
L_{2} & L_{1} & L_{0} & \cdots & L_{4-n} & L_{3-n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
L_{n-2} & L_{n-3} & L_{n-4} & \cdots & L_{0} & L_{-1} \\
L_{n-1} & L_{n-2} & L_{n-3} & \cdots & L_{1} & L_{0}
\end{array}\right] .
$$

We deduce from (8) that

$$
\begin{aligned}
\|B\|_{E}^{2} & =n L_{0}^{2}+2 \sum_{i=1}^{n-1} \sum_{k=1}^{i} L_{k}^{2} \\
& =4 n+2 \sum_{i=1}^{n-1}\left(L_{i} L_{i+1}-2\right) \\
& =2 \sum_{k=1}^{n} L_{k} L_{k-1}
\end{aligned}
$$

We conclude from (10) that

$$
\|B\|_{E}= \begin{cases}\sqrt{2\left(L_{n}^{2}-4\right)} & n \text { even } \\ \sqrt{2\left(L_{n}^{2}+1\right)} & n \text { odd }\end{cases}
$$

Using inequality (5) we obtain

$$
\|B\|_{2} \geq \begin{cases}\sqrt{\frac{2}{n}\left(L_{n}^{2}-4\right)} & n \text { even } \\ \sqrt{\frac{2}{n}\left(L_{n}^{2}+1\right)} & n \text { odd }\end{cases}
$$

On the other hand, let the matrices

$$
E=\left(e_{i j}\right)= \begin{cases}e_{i j}=1 & j=1 \\ e_{i j}=L_{i-j} & j \neq 1\end{cases}
$$

and

$$
F=\left(f_{i j}\right)= \begin{cases}f_{i j}=1 & j \neq 1, \\ f_{i j}=L_{i-j} & j=1\end{cases}
$$

satisfy $B=E \circ F$. Then

$$
\begin{aligned}
r_{1}(E) & =\max _{i} \sqrt{\sum_{j}\left|e_{i j}\right|^{2}}=\sqrt{1+\sum_{k=1}^{n-1} L_{-k}^{2}} \\
& =\sqrt{1+\sum_{k=1}^{n-1} L_{k}^{2}}=\sqrt{L_{n} L_{n-1}-1}
\end{aligned}
$$

and

$$
\begin{aligned}
c_{1}(F) & =\max _{j} \sqrt{\sum_{i}\left|f_{i j}\right|^{2}}=\sqrt{\sum_{k=0}^{n-1} L_{k}^{2}} \\
& =\sqrt{4+\sum_{k=1}^{n-1} L_{k}^{2}}=\sqrt{L_{n} L_{n-1}+2}
\end{aligned}
$$

From (6), we have

$$
\|B\|_{2} \leq \sqrt{\left(L_{n} L_{n-1}-1\right)\left(L_{n} L_{n-1}+2\right)} .
$$

Thus, the proof is completed.
Acknowledgment The authors thank the referees for their helpful suggestions concerning the presentation of this paper.

References

[1] Karaduman, E. An application of Fibonacci numbers in matrices, Applied Mathematics and Computation 147, 903-908, 2004.
[2] Kayabaş, H. The applications of k-Fibonacci sequences (Selçuk University Graduate School of Natural and Applied Science, Ms Thesis, 2006).
[3] Koshy, T. Fibonacci and Lucas Numbers with Applications (Wiley-Interscience Publications, 2001).
[4] Mathias, R. The spectral norm of nonnegative matrix, Linear Algebra and its Applications 131, 269-284, 1990.
[5] Reams, R. Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra and its Applications 288, 35-43, 1999.
[6] Solak, S. On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation 160, 125-132, 2005.
[7] Vajda, S. Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications (Ellis Horwood Ltd., 1989).
[8] Zielke, G. Some remarks on matrix norms, condition numbers and error estimates for linear equations, Linear Algebra and its Applications 110, 29-41, 1988.

[^0]: *Department of Mathematics, Faculty of Arts and Science, Selçuk University, Konya, Turkey. E-mail: makbulak@selcuk.edu.tr
 *Material based on part of the PhD thesis of the first author

