
Hacettepe Journal of Mathematics and Statistics
Volume 37 (2) (2008), 97 – 106

COMMON FIXED POINT THEOREMS

IN FUZZY METRIC SPACES

UNDER IMPLICIT RELATIONS

K.P. R. Rao∗, G. Ravi Babu∗ and B. Fisher†

Received 12 : 06 : 2008 : Accepted 21 : 10 : 2008

Abstract

In this paper we introduce the notion of a pair (f, g) being weakly f -
compatible and obtain a common fixed point theorem for self maps in
fuzzy metric spaces which modifies and generalizes some known results.
We also give a common fixed point theorem for self maps in sequentially
compact fuzzy metric spaces.
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1. Introduction and Preliminaries

The concept of a fuzzy set was introduced by Zadeh [18]. In the last two decades
there has been a tremendous development and growth in fuzzy mathematics. George
and Veeramani [7] modified the concept of fuzzy metric space which was introduced by
Kramosil and Michalek [11]. Grabiec [8] extended the well known fixed point theorems
of Banach [1] and Edelstein [4] to fuzzy metric spaces in the sense of [11]. Later many
authors, for example, [2, 3, 5, 7, 8, 10, 11, 13, 16, 17] proved fixed and common fixed
point theorems in fuzzy metric spaces. In this paper we formulate the definition of the
pair (f, g) being weakly f -compatible or weakly g-compatible, and obtain a common
fixed point theorem for such pairs of maps under an implicit relation, which generalizes
[17, Theorem 3.1], [10, Corollary 1], [2, Theorems 3.1 and 3.5] and [13, Corollary 2].
We also prove a common fixed point theorem for pairs of weakly compatible maps in a
sequentially compact fuzzy metric space using an implicit relation.

First of all we give some known definitions and lemmas.
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1.1. Definition. [15] A binary operation ∗ : [0, 1]2 → [0, 1] is called a continuous t-norm,
if ([0, 1], ∗ ) is an abelian topological monoid with a unit 1 such that a∗b ≤ c∗d, whenever
a ≤ c, b ≤ d ∀ a, b, c, d ∈ [0, 1].

Two examples of t-norms are a ∗ b = ab and a ∗ b = min{a, b}.

1.2. Definition. [7] The 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an
arbitrary set, ∗ a continuous t - norm and M a fuzzy set on X2 × (0,∞) satisfying the
following conditions:

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞) → [0, 1] is continuous, for all x, y, z ∈ X and t, s > 0.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with center
x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}.

Now let (X,M, ∗) be a fuzzy metric space and τ the set of all A ⊂ X with x ∈ A if and
only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then τ is a topology on
X induced by the fuzzy metric M .

1.3. Definition. [8] A sequence {xn} in a fuzzy metric (X,M, ∗) is said to be convergent
to a point x ∈ X if limn→∞M(xn, x, t) = 1. The sequence {xn} is said to be Cauchy if
limn,m→∞M(xn, xm, t) = 1. The space (X,M, ∗) is said to be complete if every Cauchy
sequence in X is convergent in X.

1.4. Lemma. [8] Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t) is non-decreasing
for all x, y ∈ X. �

1.5. Lemma. [12] Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous
function on X2 × (0,∞). �

Throughout this paper, we now assume that limt→∞M(x, y, t) = 1 and that N is the
set of all natural numbers.

1.6. Lemma. [13] Let {yn} be a sequence in (X,M, ∗). If there exists a positive number
k < 1 such that

M(yn+2, yn+1, kt) ≥ M(yn+1, yn, t), t > 0, n ∈ N,

then {yn} is a Cauchy sequence in X. �

1.7. Lemma. [13] If there exists k ∈ (0, 1) such that M(x, y, kt) ≥ M(x, y, t) for all
x, y ∈ X and t > 0, then x = y. �

1.8. Definition. [13] Let f and g be self maps on a fuzzy metric space (X,M, ∗). The
pair (f, g) is said to be compatible if limn→∞M(fgxn, gfxn, t) = 1, whenever {xn} is a
sequence in X such that limn→∞ fxn = limn→∞ gxn = z, for some z ∈ X.

1.9. Definition. [9] Let f and g be self mappings on a fuzzy metric space (X,M, ∗).
Then the mappings are said to be weakly compatible if they commute at their coincidence
point, that is, fx = gx implies that fgx = gfx.

Now we give:

1.10. Definition. [14] The pair (f, g) is said to be weakly f-compatible if either limn→∞ gfxn =
fz or limn→∞ ggxn = fz, whenever {xn} is a sequence in X such that limn→∞ fxn =
limn→∞ gxn = z and limn→∞ fgxn = limn→∞ ffxn = fz, for some z ∈ X.
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Similarly, we can define weak g-compatibility of the pair (f, g).

Clearly, both Definition 1.8 and 1.10 imply that the pair (f, g) is coincidentally com-
muting or a weakly compatible pair.

We observe that Definition 1.8 implies Definition 1.10. We also note that a weakly
f -compatible pair (f, g) need not be compatible in view of the following example.

1.11. Example. Let X = [0, 1], a ∗ b = min{a, b} and

M(x, y, t) =
t

t+ |x− y|
.

Define

fx = 1 − x, gx =

{

x if 0 ≤ x ≤ 1/2,

1 if 1/2 < x ≤ 1.

Let {xn} be a sequence in X such that xn < 1/2 ∀n and limn→∞ xn = 1/2. Then

lim
n→∞

fxn = lim
n→∞

1 − xn = 1/2, lim
n→∞

gxn = lim
n→∞

xn = 1/2,

lim
n→∞

fgxn = lim
n→∞

1 − xn = 1/2 = f(1/2),

lim
n→∞

ffxn = lim
n→∞

xn = 1/2 = f(1/2)

and

lim
n→∞

gfxn = 1, lim
n→∞

ggxn = lim
n→∞

xn = 1/2 = f(1/2).

Since

lim
n→∞

fxn = lim
n→∞

gxn = 1/2, lim
n→∞

fgxn = f(1/2), lim
n→∞

ffxn = f(1/2)

implies

lim
n→∞

ggxn = f(1/2),

it follows that (f, g) is weakly f -compatible.

Since

lim
n→∞

M(fgxn, gfxn, t) = lim
n→∞

t

t+ xn

=
t

t+ 1/2
6= 1,

the pair (f, g) is not compatible.

1.12. Definition. [14] The pair (f, g) is said to be f-continuous if

lim
n→∞

ffxn = lim
n→∞

fgxn = fz,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = z,

for some z ∈ X.

Recently Seong Hoon Cho [2] fallaciously proved the following theorem:

1.13. Theorem. [2, Theorem 3.1] Let (X,M, ∗) be a complete fuzzy metric space with
t ∗ t ≥ t, ∀ t ∈ [0, 1], and let f, g, S and T be self maps on X such that

(1) f(X) ⊂ T (X), g(X) ⊂ S(X),
(2) S and T are continuous,
(3) The pairs (f, S) and (g, T ) are compatible,
(4) There exists k ∈ (0, 1) such that for every x, y ∈ X and t > 0,

M(fx, gy, kt) ≥M(Sx, Ty, t) ∗M(fx, Sx, t) ∗M(gy, Ty, t) ∗M(fx, Ty, t),
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(5) limt→∞M(x, y, t) = 1, ∀x, y ∈ X.

Then f, g, S and T have a unique common fixed point in X.

We observe that this theorem is not valid in view of the following example of Fisher
[6] in metric spaces, even when S = T = I , the identity map.

1.14. Example. Let X = {0, 1, 2, . . .}, a ∗ b = min{a, b} and

M(x, y, t) =
t

t+ d(x, y)
,

where d(n, n) = 0, ∀n ∈ X and for n 6= m,

d(m,n) =

{

1 if m+ n is odd,

2 if m+ n is even.

Define f, g, S, T : X → X by S = T = I , the identity map, and

f(2n) = f(2n+ 1) = 2n+ 2, g(2n) = 2n+ 1, g(2n+ 1) = 2n+ 3,

for n = 0, 1, 2, 3, . . .. Then all the conditions of Theorem 1.13 are satisfied with k = 1/2,
but neither f nor g has a fixed point in X.

2. Implicit relations

Let Φ6 denote the set of all continuous functions φ : [0, 1]6 −→ R satisfying the
conditions

(φ1): φ is decreasing in t2, t3, t4, t5 and t6,
(φ2): φ(u, v, v, v, v, v) ≥ 0 implies u ≥ v for all u, v ∈ [0, 1].

2.1. Example. φ(t1, t2, t3, t4, t5, t6) = t1 − min{t2, t3, t4, t5, t6}.

2.2. Example. φ(t1, t2, t3, t4, t5, t6) = t21 − min{titj : i, j ∈ {2, 3, 4, 5, 6}}.

2.3. Example. φ(t1, t2, t3, t4, t5, t6) = t31 − min{titjtk : i, j, k ∈ {2, 3, 4, 5, 6}}.

3. Main result

3.1. Theorem. Let f, g, S and T be self maps on a complete fuzzy metric space (X,M, ∗)
with t ∗ t ≥ t ∀ t ∈ [0, 1] such that

(3.1.1) f(X) ⊆ T (X), g(X) ⊆ S(X),

(3.1.2) φ

(

M(fx, gy, kt), M(Sx, Ty, t), M(fx, Sx, t),

M(gy, Ty, t), M(fx, Ty,αt), M(gy, Sx, (2 − α)t)

)

≥ 0,

for all x, y ∈ X, ∀ t > 0 and ∀α ∈ (0, 2), where k ∈ (0, 1) and φ ∈ Φ6.

Further assume that

(3.1.3) (f, S) is weakly S-compatible, (g, T ) is weakly T -compatible and either (f, S) is
S-continuous or (g, T ) is T -continuous,

or

(3.1.4) (f, S) is weakly f-compatible, (g, T ) is weakly g-compatible and either (f, S) is
f-continuous or (g, T ) is g-continuous.

Then f, g, S and T have a unique common fixed point z ∈ X, and z is the unique common
fixed point of f and S and of g and T .
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Proof. Let x0 ∈ X be an arbitrary point. By (3.1.1), we can choose a sequence {xn} in
X such that y2n = fx2n = Tx2n+1, y2n+1 = gx2n+1 = Sx2n+2 for n = 0, 1, 2, . . ., Let
dm(t) = M(ym, ym+1, t), ∀ t > 0.

Step 1. Putting x = x2n, y = x2n+1, α = 1 − q1 in (3.1.2), where q1 ∈ (k, 1), we have

0 ≤ φ

(

M(y2n, y2n+1, kt), M(y2n, y2n−1, t), M(y2n, y2n−1, t),

M(y2n+1, y2n, t), M(y2n, y2n, (1 − q1)t), M(y2n+1, y2n−1, (1 + q1)t)

)

≤ φ

(

M(y2n, y2n+1, kt), M(y2n, y2n−1, t), M(y2n, y2n−1, t),

M(y2n+1, y2n, t), 1, M(y2n, y2n−1, t) ∗M(y2n+1, y2n, q1t)

)

and so

(i) φ(d2n(kt), d2n−1(t), d2n−1(t), d2n(t), 1, d2n−1(t) ∗ d2n(q1t)) ≥ 0.

If d2n(t) < d2n−1(t), then

d2n(q1t) ∗ d2n−1(t) ≥ d2n(q1t) ∗ d2n(q1t) ≥ d2n(q1t)

and from (φ1), we have

φ(d2n(kt), d2n(q1t), d2n(q1t), d2n(q1t), d2n(q1t), d2n(q1t)) ≥ 0.

Then again from (φ2), we have

d2n(kt) > d2n(q1t),

a contradiction. Hence d2n(t) ≥ d2n−1(t) for every n ∈ N and ∀t > 0.

Now from (i) and (φ1) we have

φ(d2n(kt), d2n−1(q1t), d2n−1(q1t), d2n−1(q1t), d2n−1(q1t), d2n−1(q1t) ≥ 0

and from (φ2), we have

(ii) d2n(kt) > d2n−1(q1t).

Step 2. Similarly, putting x = x2n, y = x2n−1, α = 1 − q2 in (3.1.2), where q2 ∈ (k, 1),
we can show that

(iii) d2n−1(kt) ≥ d2n−2(q2t),

Now let q = min{q1, q2} so that q ∈ (k, 1). Then from (ii) and (iii) we have

dn(kt) ≥ dn−1(qt)

for every n ∈ N, and so

M(yn, yn+1, t) ≥M(yn−1, yn, (q/k)t)

≥M(yn−2, yn−1, (q/k)
2t)

· · · · · · · · · · · · · · · · · · · · ·

≥M(y0, y1, (q/k)
nt).

Hence, by Lemma 1.6, {yn} is a Cauchy sequence and from the completeness of X, {yn}
converges to some point z in X.

Now suppose that the conditions in (3.1.3) are true.

Step 3. Suppose that (f, S) is S-continuous. Then Sfx2n → Sz and SSx2n → Sz as
n→ ∞. Since (f, S) is weakly S-compatible we have either fSx2n → Sz or ffx2n → Sz
as n→ ∞.

Case 1. Suppose that fSx2n → Sz as n→ ∞. Then putting x = Sx2n, y = x2n+1, α =
1 in (3.1.2), we get

φ

(

M(fSx2n, gx2n+1, kt), M(SSx2n, Tx2n+1, t), M(fSx2n, SSx2n, t),

M(gx2n+1, Tx2n+1, t), M(fSx2n, Tx2n+1, t), M(gx2n+1, SSx2n, t)

)

≥ 0.
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Letting n→ ∞, we have

0 ≤ φ(M(Sz, z, kt), M(Sz, z, t), 1, 1, M(Sz, z, t), M(z, Sz, t))

≤ φ

(

M(Sz, z, kt), M(Sz, z, t), M(Sz, z, t),

M(Sz, z, t), M(Sz, z, t), M(z, Sz, t)

)

.

From (φ2), we haveM(Sz, z, kt) ≥M(Sz, z, t), which implies by Lemma 1.7 that Sz = z.

Case 2. Suppose ffx2n → Sz as n → ∞. Putting x = fx2n, y = x2n+1, α = 1 in
(3.1.2), we get

φ

(

M(ffx2n, gx2n+1, kt), M(Sfx2n, Tx2n+1, t), M(ffx2n, Sfx2n, t),

M(gx2n+1, Tx2n+1, t), M(ffx2n, Tx2n+1, t), M(gx2n+1, Sfx2n, t)

)

≥ 0.

Letting n→ ∞, we have

0 ≤ φ(M(Sz, z, kt), M(Sz, z, t), 1, 1, M(Sz, z, t), M(z, Sz, t))

≤ φ

(

M(Sz, z, kt), M(Sz, z, t), M(Sz, z, t),

M(Sz, z, t), M(Sz, z, t), M(z, Sz, t)

)

.

From (φ2), we have M(Sz, z, kt) ≥M(Sz, z, t), which implies that Sz = z.

Step 4. Putting x = z, y = x2n+1, α = 1 in (3.1.2) we have

φ

(

M(fz, gx2n+1, kt), M(Sz, Tx2n+1, t), M(fz, Sz, t),

M(gx2n+1, Tx2n+1, t), M(fz, Tx2n+1, t), M(gx2n+1, Sz, t)

)

≥ 0.

Letting n→ ∞, we have

φ(M(fz, z, kt), 1, M(fz, z, t), 1, M(fz, z, t), 1) ≥ 0.

From (φ1) and (φ2), we have M(fz, z, kt) ≥M(fz, z, t), which implies that fz = z.

Step 5. Since f(X) ⊆ T (X), there exists w ∈ X such that z = fz = Tw. Putting
x = x2n, y = w, α = 1 in (3.1.2), we have

φ

(

M(fx2n, gw, kt), M(Sx2n, Tw, t), M(fx2n, Sx2n, t),

M(gw, Tw, t), M(fx2n, Tw, t), M(gw,Sx2n, t)

)

≥ 0.

Letting n→ ∞, we have

φ(M(z, gw, kt), 1, 1, M(gw, z, t), 1, M(gw, z, t)) ≥ 0.

From (φ1) and (φ2), we have M(z, gw, kt) ≥ M(z, gw, t), which implies that gw = z.
Thus Tw = gw.

Since (g, T ) is weakly T -compatible it follows that (g, T ) is a weakly compatible pair.
Hence Tgw = gTw, so that Tz = gz.

Step 6. Putting x = x2n, y = z, α = 1 in (3.1.2) we have

φ

(

M(fx2n, gz, kt), M(Sx2n, T z, t), M(fx2n, Sx2n, t),

M(gz, T z, t), M(fx2n, T z, t), M(gz, Sx2n, t)

)

≥ 0.

Letting n→ ∞,we have

φ(M(z, T z, kt), M(z, T z, t), 1, 1, M(z, T z, t), M(Tz, z, t)) ≥ 0.

From (φ1) and (φ2), we have M(z, T z, kt) ≥ M(Tz, z, t), which implies that Tz = z.
Hence gz = Tz = z and so z is a common fixed point of f, g, S and T .

Step 7. Suppose that z0 is another common fixed point of f, g, S and T . Putting
x = z, y = z0, α = 1 in (3.1.2), we have

φ(M(z, z0, kt), M(z, z0, t), 1, 1, M(z, z0, t), M(z0, z, t)) ≥ 0.
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From (φ1) and (φ2), we have M(z, z0, kt) ≥M(z, z0, t), which implies that z = z0. Hence
z is the unique common fixed point of f, g, S and T .

Step 8. Suppose that z1 is another common fixed point of f and S. Putting x = z1, y =
z, α = 1 in (3.1.2), we have

φ(M(z1, z, kt), M(z1, z, t), 1, 1, M(z1, z, t), M(z, z1, t)) ≥ 0.

From (φ1) and (φ2), we have M(z1, z, kt) ≥M(z, z1, t), which implies that z1 = z. Hence
z is the unique common fixed point of f and S.

Similarly we can show that z is the unique common fixed point of g and T .

Similarly we can prove the theorem if (g, T ) is T -continuous.

Also we can prove the theorem if the conditions in (3.1.4) are true. �

3.2. Example. Let X = [0, 1], a ∗ b = min{a, b} and

M(x, y, t) =
t

t+ |x− y|
.

Define fx = gx = 1 and

Sx = Tx =

{

1+x

2
if 0 ≤ x < 1,

1 if x = 1,

for all x ∈ X. Then all the conditions of Theorem 3.1 are satisfied with

φ(t1, t2, t3, t4, t5, t6) = t1 − min{t2, t3, t4, t5, t6}.

Clearly 1 is the unique common fixed point of f, g, S and T .

Now we give another implicit relation which is useful for the next theorem.

4. An implicit relation.

Let Ψ6 be the set of all functions ψ : [0, 1]6 −→ R such that

(ψ1): ψ(v, u, u, v, w, 1) > 0 or ψ(v, u, v, u, 1, w) > 0 implies u < v for all u, v ∈ [0, 1)
and w ≤ 1,

(ψ2): ψ(v, 1, 1, v, v, 1) ≤ 0, ψ(v, v, 1, 1, v, v) ≤ 0 and ψ(v, 1, v, 1, 1, v) ≤ 0 for all v ∈
[0, 1).

4.1. Example. ψ(t1, t2, t3, t4, t5, t6) = t1 − min{t2, t3, t4} − b(t5 + t6), where b ≥ 0.

4.2. Example. ψ(t1, t2, t3, t4, t5, t6) = t21 − min{t22, t3t4} − bt5t6, where b ≥ 0.

4.3. Example. ψ(t1, t2, t3, t4, t5, t6) = t31 − t2t3t4 − b(t25t6 + t5t
2
6), where b ≥ 0.

4.4. Definition. (X,M, ∗) is said to be a sequentially compact fuzzy metric space if
every sequence in X has a convergent sub-sequence.

4.5. Theorem. Let f, g, S and T be self-mappings of a sequentially compact fuzzy metric
space (X,M, ∗) such that

(1) S(X) ⊆ g(X) and T (X) ⊆ f(X),

(2) ψ

(

M(Sx, Ty, t), M(fx, gy, t), M(fx, Sx, t),

M(gy, Ty, t), M(fx, Ty, t), M(Sx, gy, t)

)

> 0

for every x, y ∈ X with one of fx 6= gy, fx 6= Sx and gy 6= Ty and for all t > 0,
where ψ ∈ Ψ6,

(3) The pairs (f, S) and (g, T ) are weakly compatible,
(4) Either f and S are continuous or g and T are continuous.
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Then f, g, S and T have a unique common fixed point p in X . Further p is the unique
common fixed point of f and S and of g and T .

Proof. Suppose that f and S are continuous and for any t > 0, let

m = sup{M(fx, Sx, t) : x ∈ X}.

Since f and S are continuous on a sequentially compact fuzzy metric space, there exists
u ∈ X such that m = M(fu, Su, t).

Since S(X) ⊆ g(X), there exists v ∈ X such that

(5) Su = gv.

Since T (X) ⊆ f(X), there exists w ∈ X such that

(6) Tv = fw.

Suppose neither f and S nor g and T have a coincidence point in X. Then

m = M(fu, Su, t) < 1, M(gv, T v, t) < 1 and M(fw, Sw, t) < 1.

We have

0 < ψ

(

M(Su, Tv, t), M(fu, gv, t), M(fu, Su, t),

M(gv, T v, t), M(fu, Tv, t), M(Su, gv, t)

)

= ψ(M(Tv, gv, t), m, m, M(gv, T v, t), M(fu, Tv, t), 1),

and by (ψ1), we have

(7) m < M(gv, T v, t).

Now from (2), we have

0 < ψ

(

M(Sw, Tv, t), M(fw, gv, t), M(fw, Sw, t),

M(gv, T v, t), M(fw, Tv, t), M(Sw, gv, t)

)

= ψ

(

M(fw, Sw, t), M(gv, T v, t), M(fw, Sw, t),

M(gv, T v, t), 1, M(Sw, gv, t)

)

.

By (ψ1), we have

(8) M(gv, T v, t) < M(fw, Sw, t).

Now from the definition of m and the inequalities (7) and (8) we have

m ≥M(fw, Sw, t) > M(gv, T v, t) > m,

a contradiction. Hence there exists α ∈ X such that fα = Sα or gα = Tα.

Case (a): Suppose that fα = Sα. Since S(X) ⊆ g(X), there exists α ∈ X such that
Sα = gβ. Suppose that M(gβ, Tβ, t) < 1. Then from (2) we have

0 < ψ

(

M(Sα, Tβ, t), M(fα, gβ, t), M(fα, Sα, t),

M(gβ, Tβ, t), M(fα, Tβ, t), M(Sα, gβ, t)

)

= ψ(M(gβ, Tβ, t), 1, 1, M(gβ, Tβ, t), M(gβ, Tβ, t), 1).

By (ψ2), we have M(gβ, Tβ, t) = 1, so that gβ = Tβ. Thus

(9) fα = Sα = gβ = Tβ = p, say.

Since the pair (f, S) is weakly compatible we have

(10) fp = fSα = Sfα = Sp.
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Suppose that M(Sp, p, t) < 1. From (2), we have

0 < ψ

(

M(Sp, Tβ, t), M(fp, gβ, t), M(fp, Sp, t),

M(gβ, Tβ, t), M(fp, Tβ, t), M(Sp, gβ, t)

)

= ψ(M(Sp, p, t), M(Sp, p, t), 1, 1, M(Sp, p, t), M(Sp, p, t)).

Hence from (ψ2), we have Sp = p. Thus

(11) fp = Sp = p.

Since the pair (g, T ) is weakly compatible we have

gp = gTβ = Tgβ = Tp.

Using (2) with x = α, y = p and (ψ2) we can show that Tp = p. Thus,

(12) gp = Tp = p.

Hence p is a common fixed point of f, g, S and T .

Case (b): Suppose that gα = Tα. Since T (X) ⊆ f(X), there exists β ∈ X such that
Tα = fβ.

Suppose that M(fβ, Sβ, t) < 1. From (2), we have

0 < ψ

(

M(Sβ, Tα, t), M(fβ, gα, t), M(fβ, Sβ, t),

M(gα, Tα, t), M(fβ, Tα, t), M(Sβ, gα, t)

)

= ψ(M(Sβ, fβ, t), 1, M(fβ, Sβ, t), 1, 1, M(Sβ, fβ, t)).

Hence from (ψ2), we have fβ = Sβ. Thus Sβ = fβ = Tα = gα = p, say. Now as in
case(a), we can show that p is a common fixed point of f, g, S and T .

Suppose that p0 is another common fixed point of f, g, S and T . Using (2) with
x = p, y = p0 and (ψ2), we can show that p0 = p. Thus p is the unique common fixed
point of f, g, S and T .

Now suppose that p1 is another common fixed point of f and S. Using (2) with
x = p1, y = p and (ψ2) we can show that p1 = p. Thus p is the unique common fixed
point of f and S.

Similarly we can show that p is the unique common fixed point of g and T .

Similarly the theorem holds when g and T are continuous. �

4.6. Remark. Theorem 4.5 holds if the inequality (2) is replaced by one of the following
inequalities:

(a) M(Sx, Ty, t) > min{M(fx, gy, t), M(fx, Sx, t), M(gy, Ty, t)},
(b) M2(Sx, Ty, t) > min{M2(fx, gy, t), M(fx, Sx, t)M(gy, Ty, t)},
(c) M3(Sx, Ty, t) > M(fx, gy, t)M(fx, Sx, t)M(gy,Ty, t).

4.7. Example. Let X = [0, 1], a ∗ b = min{a, b} and

M(x, y, t) =
t

t+ |x− y|
.

Define Sx = Tx = 1, fx = x+1

2
and gx = 2+x

3
for all x ∈ X. Then all the conditions of

Theorem 4.5 are satisfied with

ψ(t1, t2, t3, t4, t5, t6) = t1 − min{t2, t3, t4}.

Clearly 1 is the unique common fixed point of S, T, f and g.
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