
Hacettepe Journal of Mathematics and Statistics
Volume 37 (2) (2008), 107 – 114

INTRODUCING ISO-TILER 3D:

A 3D TILING VISUALIZER

Haşmet Gürçay∗

Received 01 : 07 : 2008 : Accepted 14 : 09 : 2008

Abstract

This paper introduces a Java applet called Iso-Tiler 3D that models
whole tiling in 3D by using a single unit tile, and stores the model
obtained in a 3D file.

Keywords: Tiling, Isohedral tiling, Tiling visualizer, JavaView, Periodic tiling.

2000 AMS Classification: Primary 52 C22, 52 C20; Secondary 68D 18, 68U 05.

1. Introduction

The history of tiles goes back to the prehistoric period. Coloured tiles can be seen in
every civilization and culture as the most ancient decorative art. For example, Figure 1
represents an example of tiling in the church of Saint Nicholas, Myra (Turkey) [12].
Mathematically, a tiling is a geometric pattern made up of one or more shapes which
fit together to completely cover an infinite plane region or surface without any gaps or
overlapping.

Tiles are important tools for tiling the floors and walls in Computer Graphics. Several
authors have explored the possibility of creating tilings in various forms by computer.
C. Kaplan and D.H. Salesin [8] introduce and present a solution for the “Escherization”
problem. They describe a representation for isohedral tilings that allows for highly inter-
active viewing and rendering. Later on, C. Kaplan and D.H. Salesin [10] showed how the
original Escherization algorithm can be adapted to the dihedral case, producing tilings
with two distinct shapes. In Kaplan [7] one procedure is described for constructing is-
lamic star patterns based on placing radially-symmetric motifs in a formation dictated
by a tiling of the plane.

∗Hacettepe University, Department of Mathematics, 06800 Beytepe, Ankara, Turkey.
E-mail gurcay@hacettepe.edu.tr



108 H. Gürçay

Figure 1. Church of Saint Nicholas of ancient Myra (6th century AD)

Recently, the number of studies regarding 3D tiles have increased. For example, Cohen
et.al [3] have focused on Wang tiles. Wang Tiles are squares in which each edge is
assigned a color. A valid tiling requires all shared edges between tiles to have matching
colors. They present a new stochastic algorithm to non-periodically tile the plane with
a small set of Wang Tiles at runtime. Furthermore, they present new methods to fill the
tiles with 2D texture, 2D Poisson distributions, or 3D geometry to efficiently create at
runtime as much non-periodic texture as needed. Their use of Wang Tiles as containers
for 3D geometry. Lu [11], extends the non-periodic tiling process of Wang Tiles to Wang
Cubes and modifies it for multipurpose tiling. They automatically generate isotropic
Wang Cubes consisting of 3D patterns or textures to simulate various illustrative effects.

Yen and Séquin [18] have developed an interactive program to design and manufacture
“Escher Spheres” - sets of tiles that can be assembled into spherical balls in 3D. We also
observe that various computer software systems for tiling have been developed. Some
software such as JavaKali [2], Tess [15] and ScienceU - Triangle Tiler [13] that create
the whole tiling by using a given unit tile have been produced. Tiling models that are
obtained by this software are 2D graphical models. We have succeeded in creating tiling
as a 3D graphical model and storing the model obtained in well known file types in 3D
format. Thus, this model can easily be used by 3D artists and game programmers.

2. Mathematical Background

In this section we present some background on that part of tiling theory which is
necessary for the implementations of our program Iso-Tiler 3D. The reader may obtain
more detailed information from [1, 4, 5, 9, 14].

According to the definition of Kaplan [9], a tiling is a countable collection T of tiles
{T1, T2, . . .}, such that:

• Every tile is a closed topological disk.
• Every point in the plane is contained in at least one tile.
• The intersection of every two tiles is empty, a point, or a simple closed curve.



Introducing ISO-TILER 3D 109

• The tiles are uniformly bounded; that is, there exist u, U > 0 such that every
tile contains a closed ball of radius u and is contained in a closed ball of radius
U .

When two tiles intersect in a curve, we may then refer to this well-defined curve as a tiling
edge. Every tiling edge begins and ends at a tiling vertex, a place where three or more
tiles meet. If every tile in a tiling is congruent to some shape T , we say that the tiling
is monohedral, and that T is the prototile of the tiling. More generally, a k-hedral tiling
is one in which every tile is congruent to one of k different prototiles. A tiling can be
symmetric. A periodic tiling is a tiling of the Euclidean plane with periodic symmetry.
That is, there exist two linearly independent directions of translational symmetry. In
addition to a fundamental region, every periodic tiling has a translational unit, which is
a fundamental region of the translational subgroup of the tiling’s symmetry group [10].

For two congruent tiles T1 and T2 in a tiling, there will be some rigid motion of the
plane that carries one onto the other (there may in fact be several). A somewhat special
case occurs when the rigid motion is also a symmetry of the tiling. In this case, when
T1 and T2 are brought into correspondence, the rest of the tiling will map onto itself as
well. We then say that the two tiles are transitively equivalent. Transitive equivalence is
an equivalence relation that partitions the tiles into transitivity classes.

When a tiling has only one transitivity class, we call the tiling isohedral. More gener-
ally, a k-isohedral tiling has k transitivity classes. An isohedral tiling is one in which a
single prototile can cover the entire plane through repeated application of rigid motions
from the tiling’s symmetry group. In an isohedral tiling, there is effectively no way to
tell any tile from any other. Hence in an isohedral tiling there is essentially just one
type of tile. An isohedral tiling is necessarily periodic. We now assume that we have
a periodic tiling and we wish to establish its automorphism group. It is a surprising
fact that there are only 17 different possible automorphism groups arising from periodic
tilings, the so-called (plane) crystallographic groups or wallpaper groups [10]. The reader
can see the 17 different wallpapers group on the web pages in Wikipedia [16].

3. Iso-Tiler 3D

Iso-Tiler 3D, written in Java, is software that uses the geometric software library of
JavaView [6]. Therefore, Iso-Tiler 3D can use prevailing 3D geometric viewer features of
JavaView. JavaView is a numerical software library with a 3D geometry viewer written
in Java which was developed at Berlin Technical University. It allows the addition of
interactive 3D geometries to any HTML document, and the presentation of numerical
experiments online. Our Iso-Tiler 3D classes are inherited from JavaView classes. Iso-
Tiler 3D is a Java applet that can model isohedral tiles that are deltahedral, tetrahedral,
octahedral, and hexahedral polygons as 3D depending on their symmetry groups. In
this 3D viewer (see Figure 2) program the user can be in a mutual interaction with the
model (scale, translate, rotate, triangularize). It is mostly designed for artists and game
programmers. The user can model an isohedral tile in 3D shape and store it in a file of
vrml, obj, mpl, byu, eps format. It is then possible to operate with these formats using
other programs.

3.1. Implementation. The Iso-Tiler 3D program uses the symmetry features of tiles.
If we know which element is included in the symmetry group of 17 different tiles, we
can form all the periodic tiles and consequently the tiling. Iso-Tiler 3D can form the
remaining tiling by using only one unit tile thanks to the required transformations. The
tiling pieces are formed from polygons as JavaView library uses the corner points in
forming the figures.



110 H. Gürçay

Figure 2. The interface of the Iso-Tiler 3D program

In our algorithm, prototile is actually a tiling piece. This tiling piece is transformed to
a unit tile following a process of rotation, reflection and glide reflection in conformance
with the periodical group of the tile. Then, the required shifts are performed to form a
tile depending on the pattern of the periodical group and the whole tile is formed by the
required transformations. See Figure 3.

Figure 3. Production of an sample unit tile

The coordinates of the vertices of the model to be formed on the viewer panel and
data array that has the information on the surfaces of each vertex have been used on
the basis of the algorithms used in Iso-Tiler 3D. JavaView basically needs two different
arrays to show a three dimentional model. The first one is the array that includes the
3D coordinates of the vertices of the required figure. The other array store the surface
information. Thanks to those two arrays, JavaView can form the required figure. The
main aim here is to form those two arrays that are needed by JavaView and to change
them, if required. JavaView will complete the mission.

It is clear that there are some variables to be defined to form a tile. The tiler3d.pa-
rameter program package has been formed for those variables. This package includes



Introducing ISO-TILER 3D 111

parameter classes that keep the features of each tile within its variables and operate on
them using some special methods. Each parameter class has been formed by developing
an abstract class called Unit which is included in the tiler3d.parameter package. This
class contains common features and variables for all parameter classes. Each parameter
class has been defined separately. Figure 4 presents the p4 15 parameter class.

Figure 4. The UML diagram of the Unit abstract class and the p4 15
parameter class

The tiler3d.transform package includes classes such as Rotate2, Rotate3, Rotate4, Rotate6
and Reflect in order to determine the coordinates of the vertices of the unit tile. The
first four of those classes are used to fulfill their π, 2π/3, π/2 and π/3 radiant rotations,
respectively. As any rotation except those rotations has not been defined for tiles, only
those four classes fulfill the rotation. The other class is the Reflect class, which is to be
used for reflection and glide reflection processes. Those transformation classes use the
PuReflect and PdMatrix classes that are included in the jv.vecmath package.

Figure 5. Obtaining a 3D model by using the depth factor



112 H. Gürçay

Following the formation of vertices in unit tile, the vertex points should be shifted through
the pattern structure that fits the tile. In this way, all the vertex points of the tile in 2D
format will be formed. The required size can be determined by repeating the shifting pro-
cess. The shifting process is carried out by an object formed from the engine.Translated
class within the tiler3d.engine package. This class is the basis class for the following
classes. That is, the Faced class is written by developing the Extruded class, which in
turn is written by developing Translated class.

The vertex points of the tile to be modeled is kept within an array called translated.
This array also stores the required information for Extruded, which is an upper class of
the Translated class. All the operations carried out up to the Extruded class are at the
z = 0 level. For a 3D figure, an array that has twice as many elements as the array called
translated is created. The contents of the translated array is copied to the first half of
this array. In the second half, the value of the depth variable is subtracted from the z
values of the terms and the estimation is copied. Thus, half of the points in the extruded
array are at the z = 0 level, the other half is at z = depth level. Following this process,
all the vertices of the 3D tiling are obtained (see Figure 6).

Figure 6. Determining the dead space for P4-15 tiles

The program leaves an dead space between the tiles in order to increase the artis-
tic effect of the tiles and to make it easier for the user to use the program. This is
achieved by zooming out the tile pieces to some extent. For this purpose, a class called
tiler3d.engine.Shrinker has been written. The dead space is determined by the factor
value that is given as an argument to the configuration of the parameter class (see Fig-
ure 6).

The Project and Show classes that enable the tiling to be seen on the screen have
been included in the tiler3d.display package. The Project class is derived from the
jv.project.PjProject class. The PjProject class is the main project class within Javaview.
The aim of the project class is to control the geometry that is to be formed.

The tiler3d.display.Show class is the main conveyor derived from the javax.swing.
JApplet class. As the Show class is a JApplet class, the init(), start(), stop() and destroy()
methods respectively have been overwritten on the same methods in the JApplet class
and have been redefined.

There are 12 classes within the tiler3d.panels package. This package has been created
for panel classes that includes the components with which the user interacts. The Type-
Panel which consists of components that change the tiling, the RepeatPanel that fixes the
repeat number of the tile, the DepthPanel that sets the depth of the tile, the PeakPanel
that fixes the height of the pyramid and the PointingPanel that sets the grouting of the
tiles have been derived from the Jpanel class. In order to reflect the changes made on the



Introducing ISO-TILER 3D 113

panels to the tiles, each operation starts a task. For those tasks, the ChangeType, Chan-
geRepeat, ChangeDepth and ChangePeak classes that are derived from java.lang.Thread
have been written. All of those panels are installed into another panel called the Setting-
Panel that is also derived from the javax.swing.JPanel class. There is also another class
called InfoPanel. This class contains a panel for a 2D image of the tile and another panel
for an explanation window. All the changes made on the panels mentioned are captured
by inner classes defined in SettingPanel and the required changes are made by calling the
methods within the Project class.

Figure 7. The Iso-Tiler 3D interface with the JavaView Control Panel

3.2. Application. Iso-Tiler 3D not only enables the user see the object in 3D, it also
transforms the tiles shown into 3D shapes and allows other 3D modeling programs use
those images. The video images of a sample tiling file created by Iso-Tiler 3D and
animated by the 3D Studio Max 7 modeling program are presented in Figure 8. The AVI
file is available at the following address:
http://www.yunus.hacettepe.edu.tr/̃gurcay/HASMET/index files/Page430.htm

Figure 8. Application



114 H. Gürçay

References

[1] Abas, S. J. and Salman, A. Geometric and Group-Theoretic Methods for Computer Graphic

Studies of Islamic Symmetric Patterns, Computer Graphics Forum 11 (1), 43–53, 1992.
[2] Amenta, N. and Phillips M. Java Kali, Available online at: http://www.geom.

uiuc.edu/java/Kali/ (accessed February 2007).
[3] Cohen, M.F., Shade J., Hiller S. and Deussen O. Wang Tiles for image and texture gen-

eration, International Conference on Computer Graphics and Interactive Techniques ACM
SIGGRAPH (San Diego, California, 2003), 287–294.

[4] Grünbaum, B. and Shephard, G. C. Tilings And Patterns (W. H. Freeman, New York, 1986)
[5] Jablan, S.V., Symmetry And Ornament, Available online at: http://www.emis.de /mono-

graphs/jablan/index.html (accessed February 2007).
[6] JAVAVIEW. Available online at: http://www.javaview.de/ (accessed February 2007).
[7] Kaplan, C. S. Computer generated Islamic star patterns In: Bridges, Mathematical Connec-

tions in Art, Music, and Science, Proc. of the 2000 Bridges Conference, ed. Reza Sarhangi
(Southwestern College, Kansas, 2000).

[8] Kaplan, C. S. and Salesin, D.H. Escherization, SIGRAPH 2000, The 27th International
Conference on Computer Graphics and Interactive Techniques (New Orleans, USA, (200)),
25–27.

[9] Kaplan, C. S. Computer Graphics and Geometric Ornamental Design (PhD Thesis, Unier-
sity of Washington, 2002).

[10] Kaplan, C. S. and Salesin D.H. Dihedral Escherization, Canadian Human-Computer Com-
munications Society, in: the Proceedings of Graphics Interface (London, Ontario, 2004)

[11] Lu, A., Ebert, D. S., Qiao, W., Kraus, M. and Mora B. Volume Illustration Using Wang

Cubes, ACM Transactions on Graphics 26 (2) Article 11 (June 2007).
[12] Lycian Turkey - Discover the Beauty of Ancient Lycia, http://www.lycianturkey.com /ly-

cian sites/myra.htm (accessed June 2007)
[13] ScienceU, Tilings And Tesselations, Available online at: http://www.scienceu.com/ (ac-

cessed February 2007).
[14] Sugimoto, T. and Ogawa, T. Tiling Problem of Convex Pentagon, FORMA 15 (1), 75–79,

2000.
[15] Tess, P edagogugery Software Inc., Available online at: http://www.peda.com/tess/ (ac-

cessed February 2007).
[16] Wallpaper Group. Available online at:http://en.wikipedia.org/wiki/Wallpapergroup (ac-

cessed December 2007).
[17] Xah, L. The Discontinuous Groups of Rotation and Translation in the Plane, Avail-

able online at: http://www.xahlee.org/Wallpaper dir/c0 WallPaper.html (accessed Febru-
ary 2007).

[18] Yen, J. and Sequin, C. Escher Sphere Construction Kit, Symposium on Interactive 3D
Graphics, 95–98, 2001.


