ON CLASSES OF MULTIVALENT FUNCTIONS INVOLVING LINEAR OPERATOR AND MULTIPLIER TRANSFORMATIONS

H. A. Al-Kharsani* and N. M. Al-Areefi* ${ }^{\dagger}$

Received $25: 08: 2008$: Accepted $26: 11: 2008$

Abstract

Using the results of first order differential subordinations and superordinations, we define and discuss new classes of p-valent functions involving the Dziok-Srivastava operator and multiplier transformation.

Keywords: Analytic function, p-valent function, Differential subordinates, Differential superordinations, Dziok-Srivastava linear operator, Multiplier transformation.

2000 AMS Classification: 30 C 80, 30 C 45.

1. Preliminaries

Let \mathcal{H} be the class of functions analytic in $\Delta=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{H}(a, n)$ the subclass of \mathcal{H} consisting of functions of the form $f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots$.

Let \mathcal{V}_{p} denote the class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

and let $\mathcal{V}:=\mathcal{V}_{1}$. For two functions $f(z)$ given by (1.1) and $g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k}$, the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z):=z^{p}+\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k}=:(g * f)(z) \tag{1.2}
\end{equation*}
$$

[^0]For $\alpha_{j} \in \mathbb{C}(j=1,2, \ldots, l)$ and $\beta_{j} \in \mathbb{C} \backslash\{0,-, 1,-2, \ldots\}(j=1,2, \ldots m)$, the generalized hypergeometric function ${ }_{l} F_{m}\left(\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)$ is defined by the infinite series

$$
\begin{aligned}
{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right):=\sum_{n=0}^{\infty} & \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{m}\right)_{n}} \frac{z^{n}}{n!} \\
& \left(l \leq m+1 ; m \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}\right),
\end{aligned}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol defined by

$$
(\lambda)_{n}:=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1 & (n=0) \\ \lambda(\lambda+1)(\lambda+2) \cdots(\lambda+n-1) & (n \in N:=\{1,2,3, \ldots\})\end{cases}
$$

Corresponding to the function

$$
\begin{equation*}
h_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right):=z^{p}{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right), \tag{1.3}
\end{equation*}
$$

the Dziok-Srivastava operator [8] (see also [21]) $H_{p}^{(l, m)}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right)$ is defined by the Hadamard product

$$
\begin{align*}
H_{p}^{(l, m)}\left(\alpha_{1}, \ldots, \alpha_{l} ;\right. & \left.\beta_{1}, \ldots, \beta_{m}\right) f(z) \\
& =h_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right) * f(z) \\
& =z^{p}+\sum_{n=p+1}^{\infty} \frac{\left(\alpha_{1}\right)_{n-p} \cdots\left(\alpha_{l}\right) n-p}{\left(\beta_{1}\right)_{n-p} \cdots\left(\beta_{n}\right)_{n-p}} \frac{a_{n} z^{n}}{(n-p)!} . \tag{1.4}
\end{align*}
$$

Special cases of the Dziok-Srivastava linear operator include the Hohlov linear operator [9], the Carlson-Shaffer linear operator [5], the Ruscheweyh derivative operator [19], the generalized Bernardi-Libera-Livingston operator (cf. [2], [11],[12]) and the SrivastavaOwa fractional derivative operators (cf. [17], [18]).

Corresponding to the function $h_{p}\left(\alpha_{1}, \ldots, \alpha_{\ell} ; \beta_{1}, \ldots, \beta_{m} ; z\right)$, defined by (1.3), we introduce a function $F_{\mu}\left(\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m} ; z\right)$ given by

$$
\begin{aligned}
& h_{p}\left(\alpha_{1}, \ldots, \alpha_{\ell} ; \beta_{1}, \ldots, \beta_{m} ; z\right) * F_{\mu}\left(\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m} ; z\right)=\frac{z^{p}}{(1-z)^{\mu+p-1}} \\
& (z \in \mathbb{U}, \mu>0)
\end{aligned}
$$

Analogous to $H_{p}\left(\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m}\right)$, the linear operator $J_{\mu}\left(\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m}\right)$ on \mathcal{H} is defined as follows:

$$
\begin{aligned}
& J_{\mu}\left(\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m}\right) f(z)=F_{\mu}\left(\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m} ; z\right) * f(z) \\
& \left(\alpha_{1} ; \beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; i=1, \ldots, l ; j=1, \ldots, m, \mu>0 ; z \in \mathbb{U} ; f \in \mathcal{V}_{p}\right)
\end{aligned}
$$

For convenience, we write

$$
\begin{equation*}
J_{\mu}^{\ell, m}\left(\alpha_{1}\right):=J_{\mu}\left(\alpha_{1}, \ldots, \alpha_{\ell} ; \beta_{1}, \ldots, \beta_{m}\right) \tag{1.5}
\end{equation*}
$$

Special cases of this operator are when $p=1$ [10], the generalized integral operator in [1] when $p=1$ and $\mu=2$, and Noor's integral operator [15].

For two analytic functions f and F, we say that F is superordinate to f if f is subordinate to F. Recently Miller and Mocanu [14] considered certain second order differential superordinates. Using the results of Miller and Mocanu [14], Bulboa has considered certain classes of first order differential superordinations [4] and superordination-preserving integral operators [3].

In the present investigation, we introduce new classes of p-valent functions defined by the Dziok-Srivastava linear operator and the multiplier transformation, and study their properties by using certain first order differential subordinations and superordinations.
1.1. Definition. A function $f \in \mathcal{V}(p, n)$ is said to be in the class

$$
\mathcal{V}\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right)
$$

if it satisfies the following subordination:

$$
\begin{equation*}
\frac{H_{p}^{\ell, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}} \prec \varphi(z),(f \in \mathcal{V}(p, n)), \tag{1.6}
\end{equation*}
$$

and is said to be in

$$
\overline{\mathcal{V}}\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right)
$$

if f satisfies the following superordination:

$$
\begin{equation*}
\varphi(z) \prec \frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}},(f \in \mathcal{V}(p, n)), \tag{1.7}
\end{equation*}
$$

where $\varphi(z)$ is analytic in $\Delta, \varphi(0)=1$ and

$$
H_{p}^{l, m}\left[\alpha_{1}\right] f(z):=H_{p}^{l, m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) f(z) .
$$

To make the notation simple, we also write

$$
\mathcal{V}\left(p, n, \alpha_{1} ; \varphi\right):=\mathcal{V}\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right)
$$

and

$$
\overline{\mathcal{V}}\left(p, n, \alpha_{1} ; \varphi\right)=\overline{\mathcal{V}}\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right) .
$$

Also we define the class $\mathcal{V}\left(p, n, \alpha_{1} ; \varphi_{1}, \varphi_{2}\right)$ by the following:

$$
\mathcal{V}\left(p, n, \alpha_{1} ; \varphi_{1}, \varphi_{2}\right):=\overline{\mathcal{V}}\left(p, n, \alpha_{1} ; \varphi_{1}\right) \cap \mathcal{V}\left(p, n, \alpha_{1} ; \varphi_{2}\right)
$$

1.2. Definition. A function $f \in \mathcal{V}(p, n)$ is said to be in the class

$$
A\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right)
$$

if it satisfies the following subordination:

$$
\begin{equation*}
\frac{J_{\mu}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}} \prec \varphi(z),(f \in \mathcal{V}(p, n)), \tag{1.8}
\end{equation*}
$$

and is said to be in

$$
\bar{A}\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right)
$$

if f satisfies the following superordination:

$$
\begin{equation*}
\varphi(z) \prec \frac{J_{\mu}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}},(f \in \mathcal{V}(p, n)), \tag{1.9}
\end{equation*}
$$

where $\varphi(z)$ is analytic in $\Delta, \varphi(0)=1$ and

$$
J_{\mu}^{l, m}\left[\alpha_{1}\right] f(z)=J_{\mu}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) f(z)
$$

To make the notation simple, we also write

$$
A\left(p, n, \alpha_{1} ; \varphi\right):=A\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right)
$$

and

$$
\bar{A}\left(p, n, \alpha_{1} ; \varphi\right):=\bar{A}\left(p, n, \alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; \varphi\right)
$$

Also we define the class $A\left(p, n, \alpha_{1} ; \varphi_{1}, \varphi_{2}\right)$ by the following:

$$
A\left(p, n, \alpha_{1} ; \varphi_{1}, \varphi_{2}\right):=\bar{A}\left(p, n, \alpha_{1} ; \varphi_{1}\right) \cap A\left(p, n, \alpha_{1} ; \varphi_{2}\right) .
$$

Motivated by the multiplier transformation on \mathcal{V}, we define the operator $I_{p}(r, \lambda)$ on ν_{p} by the following infinite series

$$
\begin{equation*}
I_{p}(r, \lambda) f(z)=z^{p}+\sum_{n=p+1}^{\infty}\left(\frac{n+\lambda}{p+\lambda}\right)^{r} a_{n} z^{n},(\lambda \geq 0) . \tag{1.10}
\end{equation*}
$$

The operator $I_{p}(r, \lambda)$ is closely related to the Salagean derivative operator [20]. The operator $I_{\lambda}^{r}:=I_{1}(r, \lambda)$ was studied recently by Cho and Srivastva [6], and by Cho and Kim [7] The operator $I_{r}:=I_{1}(r, 1)$ was studied by Uralagaddi and Somanatha [22]. By using the Hadamard product:

$$
\begin{equation*}
I_{p}(r, \lambda) f(z):=\mathcal{F}_{\lambda}^{r}(z) * f(z) \text { where } \mathcal{F}_{\lambda}^{r}(z)=z^{p}+\sum_{n=p+1}^{\infty}\left(\frac{n+\lambda}{p+\lambda}\right)^{r} z^{n},(\lambda \geq 0) \tag{1.11}
\end{equation*}
$$

Corresponding to the function $\mathcal{F}_{\lambda}^{r}(z)$ defined by (1.5), we introduce a function $\mathcal{F}_{\lambda, \mu}^{r}(z)$ given by

$$
\begin{equation*}
\mathcal{F}_{\lambda}^{r}(z) * \mathcal{F}_{\lambda, \mu}^{r}(z)=\frac{z^{p}}{(1-z)^{\mu+p-1}}, \quad(z \in \mathbb{U}, \mu>0) \tag{1.12}
\end{equation*}
$$

Using $I_{p}(r, \lambda)$, we define the multiplier transformations $T_{\mu}(r, \lambda)$ as follows:

$$
\begin{equation*}
T_{\mu}(r, \lambda) f(z)=\mathcal{F}_{\lambda, \mu}^{r}(z) * f(z), \quad\left(\lambda \geq 0, \mu>0, z \in \mathbb{U}, f \in \mathcal{V}_{p}\right) \tag{1.13}
\end{equation*}
$$

For $p=1$, we note that a special case of this operator is the integral operator defined in [16].
1.3. Definition. A function $f \in \mathcal{V}(p, n)$ is said to be the class $\mathcal{V}(p, n, r, \lambda ; \varphi)$ if it satisfies the following subordination:

$$
\begin{equation*}
\frac{I_{p}(r+1, \lambda) f(z)}{z^{p}} \prec \varphi(z), \quad(f \in \mathcal{V}(p, n)), \tag{1.14}
\end{equation*}
$$

and is said to be in $\overline{\mathcal{V}}(p, n, r, \lambda ; \varphi)$ if f satisfies the following superordination:

$$
\begin{equation*}
\varphi(z) \prec \frac{I_{p}(r+1, \lambda) f(z)}{z^{p}},(f \in \mathcal{V}(p, n)), \tag{1.15}
\end{equation*}
$$

where $\varphi(z)$ is analytic in Δ and $\varphi(0)=1$. Also we define the class $\mathcal{V}\left(p, n, r, \lambda ; \varphi_{1}, \varphi_{2}\right)$ by the following:

$$
\mathcal{V}\left(p, n, r, \lambda, \varphi_{1}, \varphi_{2}\right):=\overline{\mathcal{V}}\left(p, n, r, \lambda ; \varphi_{1}\right) \cap \mathcal{V}\left(p, n, r, \lambda ; \varphi_{2}\right)
$$

1.4. Definition. A function $f \in \mathcal{V}(p, n)$ is said to be in the class $\mathcal{A}(p, n, r, \lambda ; \varphi)$ if it satisfies the following subordination:

$$
\begin{equation*}
\frac{T_{\mu}(r+1, \lambda) f(z)}{z^{p}} \prec \varphi(z),(f \in \mathcal{V}(p, n)), \tag{1.16}
\end{equation*}
$$

and is said to be in $\bar{A}(p, n, r, \lambda ; \varphi)$ if f satisfies the following superordination:

$$
\begin{equation*}
\varphi(z) \prec \frac{T_{\mu}(r+1, \lambda) f(z)}{z^{p}},(f \in \mathcal{V}(p, n)), \tag{1.17}
\end{equation*}
$$

where $\varphi(z)$ is analytic in Δ and $\varphi(0)=1$. Also we define the class $A\left(p, n, r, \lambda ; \varphi_{1}, \varphi_{2}\right)$ by the following:

$$
A\left(p, n, r, \lambda ; \varphi_{1}, \varphi_{2}\right):=\bar{A}\left(p, n, r, \lambda ; \varphi_{1}\right) \cap A\left(p, n, r, \lambda ; \varphi_{2}\right) .
$$

In our present investigation of the above defined classes, we need the following:
1.5. Definition. [14, Definition 2, p. 817]. Denote by Q, the set of all functions $f(z)$ that are analytic and injective on $\bar{\Delta}-E(f)$, where

$$
E(f)=\left\{\xi \in \partial \Delta: \lim _{z \Longrightarrow}^{\Longrightarrow} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\xi) \neq 0$ for $\xi \in \partial \Delta-E(f)$.
1.6. Lemma. (cf. Miller and Mocanu [13, Theorem 3.4h, p. 132]). Let $\psi(z)$ be univalent in the unit disc Δ and θ, φ analytic in a domain $D \supset \psi(\Delta)$ with $\varphi(w) \neq 0$, when $w \in \psi(\Delta)$. Set

$$
Q(z):=z \psi^{\prime}(z) \varphi(\psi(z)), h(z):=\theta(\psi(z))+Q(z)
$$

Suppose that

1) $Q(z)$ is starlike in Δ, and
2) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}>0$ for $z \in \Delta$.

If $q(z)$ is analytic in Δ, with $q(0)=\psi(0), q(\Delta) \subset D$ and
(1.18) $\theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \prec \theta(\psi(z))+z \psi^{\prime}(z) \varphi(\psi(z))$,
then $q(z) \prec \psi(z)$ and $\psi(z)$ is the best dominant.
1.7. Lemma. [4]. Let $\psi(z)$ be univalent in the unit disc Δ and θ analytic in a domain D containing $\psi(\Delta)$. Suppose that
(1) $\operatorname{Re}\left[\theta^{\prime}(\psi(z)) / \varphi(\psi(z))\right]>0$ for $z \in \Delta$.
(2) $z \psi^{\prime}(z) \varphi(\psi(z))$ is starlike in Δ.

If $q(z) \in \mathcal{H}(\psi(0), 1) \cap \mathcal{Q}$, with $q(\Delta) \subseteq D$, and $\theta(q(z))+z q^{\prime}(z) \varphi(q(z))$ is univalent in Δ, then

$$
\begin{equation*}
\theta(\psi(z))+z \psi^{\prime}(z) \varphi(\psi(z)) \prec \theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \tag{1.19}
\end{equation*}
$$

implies $\psi(z) \prec q(z)$ and $\psi(z)$ is the best subordinant.

2. Results involving the Dziok-Srivastava linear operator

2.1. Theorem. Let $\psi(z)$ be univalent in $\Delta, \psi(0)=1$. Assume that ψ is convex in Δ, α_{1} be a complex number and $\operatorname{Re}\left\{\alpha_{1}\right\}>-1$. Let $\chi(z)$ be defined by

$$
\begin{equation*}
\chi(z)=\psi(z)+\frac{z \psi^{\prime}(z)}{\left(\alpha_{1}+1\right)}, \quad\left(\alpha_{1} \neq-1\right) \tag{2.1}
\end{equation*}
$$

If $f \in \mathcal{V}\left(p, n, \alpha_{1}+1 ; \chi\right)$, then $f \in \mathcal{V}\left(p, n, \alpha_{1} ; \psi\right)$. If $f \in \overline{\mathcal{V}}\left(p, n, \alpha_{1}+1 ; \chi\right)$,

$$
\begin{equation*}
0 \neq \frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}} \in \mathcal{H}(1,1) \cap Q, \frac{H_{p}^{l, m}\left[\alpha_{1}+2\right] f(z)}{z^{p}} \text { is univalent in } \Delta \tag{2.2}
\end{equation*}
$$

then $f \in \overline{\mathcal{V}}\left(p, n, \alpha_{1} ; \psi\right)$.
Proof. Define the function $q(z)$ by

$$
\begin{equation*}
q(z)=\frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}} \tag{2.3}
\end{equation*}
$$

Then, clearly, $q(z)$ is analytic in Δ, we find from (2.3) that

$$
\begin{equation*}
\frac{z q^{\prime}(z)}{q(z)}=\frac{z\left(H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)\right)^{\prime}}{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}-p \tag{2.4}
\end{equation*}
$$

By making use of the identity

$$
\begin{equation*}
z\left(H_{p}^{l, m}\left[\alpha_{1}\right] f(z)\right)^{\prime}=\alpha_{1} H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)-\left(\alpha_{1}-p\right) H_{p}^{l, m}\left[\alpha_{1}\right] f(z) \tag{2.5}
\end{equation*}
$$

we have from (2.4) that

$$
\begin{equation*}
\frac{H_{p}^{l, m}\left[\alpha_{1}+2\right] f(z)}{z^{p}}=\frac{1}{\alpha_{1}+1}\left[\left(\alpha_{1}+1\right) q(z)+z q^{\prime}(z)\right] \tag{2.6}
\end{equation*}
$$

Since $f \in \mathcal{V}\left(p, n, \alpha_{1}+1 ; \chi\right)$, we have from (2.6) that

$$
\left(\alpha_{1}+1\right) q(z)+z q^{\prime}(z) \prec\left(\alpha_{1}+1\right) \psi(z)+z \psi^{\prime}(z)
$$

and this can be written as (1.18), by defining

$$
\theta(w)=\left(\alpha_{1}+1\right) w \text { and } \varphi(w)=1
$$

Note that $\varphi(w) \neq 0$ and $\theta(w), \varphi(w)$ are analytic in \mathbb{C}. Set

$$
\begin{align*}
Q(z) & =z \psi^{\prime}(z) \tag{2.7}\\
h(z) & =\theta(\psi(z))+Q(z)=\left(\alpha_{1}+1\right) \psi(z)+z \psi^{\prime}(z) \tag{2.8}
\end{align*}
$$

By the hypothesis of Theorem 2.1, Q is starlike and

$$
\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\operatorname{Re}\left\{\left(\alpha_{1}+2\right)+\frac{z \psi^{\prime \prime}(z)}{\psi(z)}\right\}>0
$$

By an application of Lemma 1.6, we obtain that $q(z) \prec \psi(z)$ or $\frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}} \prec \psi(z)$, which shows that $f \in \mathcal{V}\left(p, n, \alpha_{1} ; \psi\right)$.

The other half of Theorem 2.1 follows by a similar application of Lemma 1.7.
Using Theorem 2.1, we obtain the following "sandwich result":
2.2. Corollary. Let $\psi_{i}(z)$ be univalent in Δ and $\psi_{i}(0)=1$, $(i=1,2)$. Further assume that $\psi_{i}(z)$ is convex univalent in Δ, α_{1} is a complex number and Re $\left\{\alpha_{1}\right\}>-1,(i=1,2)$. If $f \in \mathcal{V}\left(p, n, \alpha_{1}+1 ; \chi_{1}, \chi_{2}\right)$ satisfies (2.2), then $f \in \mathcal{V}\left(p, n, \alpha_{1} ; \psi_{1}, \psi_{2}\right)$, where

$$
\chi_{i}(z)=\psi_{i}(z)+\frac{z \psi_{i}^{\prime}(z)}{\left(\alpha_{1}+1\right)}, \quad\left(i=1,2, ; \alpha_{1} \neq-1\right)
$$

2.3. Theorem. Let ψ be univalent in $\Delta, \psi(0)=1$, and λ a complex number. Assume that ψ is convex in Δ and $\operatorname{Re}\{\lambda\}>-p$. Define the functions F and χ by

$$
\begin{align*}
& F(z)=\frac{\lambda+p}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} f(t) d t \\
& \chi(z)=\left[\frac{z \psi^{\prime}(z)}{(\lambda+p)}+\psi(z)\right], \quad(\lambda \neq-p) \tag{2.9}
\end{align*}
$$

If $f \in \mathcal{V}\left(p, n, \alpha_{1} ; \chi\right)$, then $F \in \mathcal{V}\left(p, n, \alpha_{1} ; \psi\right)$. If $f \in \overline{\mathcal{V}}\left(p, n, \alpha_{1} ; \chi\right)$,
(2.10) $\quad 0 \neq \frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] F(z)}{z^{p}} \in \mathcal{H}(1,1) \cap Q$ and $\frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}}$ is univalent in Δ, then $F \in \overline{\mathcal{V}}\left(p, n, \alpha_{1} ; \psi\right)$.
Proof. From the definition of $F(z)$, we obtain that

$$
\begin{equation*}
(\lambda+p) H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)=\lambda H_{p}^{l, m}\left[\alpha_{1}+1\right] F(z)+z\left(H_{p}^{l, m}\left[\alpha_{1}+1\right] F(z)\right)^{\prime} \tag{2.11}
\end{equation*}
$$

Define the function $q(z)$ by

$$
\begin{equation*}
q(z)=\frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] F(z)}{z^{p}} \tag{2.12}
\end{equation*}
$$

Then, clearly, $q(z)$ is analytic in Δ. Using (2.11) and (2.12), we have

$$
\begin{equation*}
\frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}}=\frac{\lambda q(z)+z\left(\frac{H_{p}^{l, m}[\alpha+1] F^{\prime}(z)}{z^{p}}\right)}{\lambda+p} \tag{2.13}
\end{equation*}
$$

Upon logarithmic differentiation of (2.13), we get

$$
\begin{equation*}
\frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}}=\frac{z q^{\prime}(z)}{\lambda+p}+q(z) \tag{2.14}
\end{equation*}
$$

Since $f \in \mathcal{V}\left(p, n, \alpha_{1}, \chi\right)$, we have from (2.14),

$$
q(z)+\frac{z q^{\prime}(z)}{\lambda+p} \prec \psi(z)+\frac{z \psi^{\prime}(z)}{\lambda+p}
$$

and this can be written as (1.18) by defining $\theta(w)=w$ and $\varphi(w)=\frac{1}{\lambda+p}$.
Note that $\varphi(w) \neq 0$ and $\theta(w), \varphi(w)$ are analytic in \mathbb{C}. Set

$$
\begin{aligned}
Q(z) & :=\frac{z \psi^{\prime}(z)}{\lambda+p} \\
h(z) & :=\theta(\psi(z))+Q(z)=\psi(z)+\frac{z \psi^{\prime}(z)}{\lambda+p}
\end{aligned}
$$

By the hypothesis of Theorem 2.3, $Q(z)$ is starlike and

$$
\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\operatorname{Re}\left\{(\lambda+p)+\left(1+\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}\right)\right\}>0
$$

By an application of Lemma 1.6, we obtain that

$$
q(z) \prec \psi(z),
$$

or

$$
\frac{H_{p}^{l, m}\left[\alpha_{1}+1\right] F(z)}{z^{p}} \prec \psi(z),
$$

which shows that $F \in \mathcal{V}\left(p, n, \alpha_{1} ; \psi\right)$.
The second half of Theorem 2.3 follows by a similar application of Lemma 1.7.
Using Theorem 2.3, we have the following result:
2.4. Corollary. Let ψ_{i} be univalent in $\Delta, \psi_{i}(0)=1,(i=1,2)$ and λ a complex number. Assume that $\psi_{i}(z)$ is convex in Δ and $\operatorname{Re}\{\lambda\}>-p,(i=1,2)$. If $f \in \mathcal{V}\left(p, n, \alpha_{1} ; \chi_{1}, \chi_{2}\right)$ satisfies (2.10), then the function F defined by (2.9) belongs to $\mathcal{V}\left(p, n, \alpha_{1} ; \psi_{1}, \psi_{2}\right)$, where $\chi_{i}(z)=\left[\frac{z \psi_{i}^{\prime}(z)}{(\lambda+p)}+\psi_{i}(z)\right], \quad(i=1,2, \lambda \neq-p)$.

Now we will give some particular cases of Theorem 2.1 obtained for different choices of $\psi(z)$.
2.5. Example. Let $p=1, l=m+1$ and $\alpha_{2}=\beta_{1}, \ldots, \alpha_{l}=\beta_{m}$, we get $H_{1}[1] f(z)=f(z)$ and $H_{1}[2] f(z)=z f^{\prime}(z)$. Let $\chi(z)=1+\lambda z,(0 \leq \lambda \leq 1)$. Then:

$$
f^{\prime}(z) \prec 1+\lambda z \Longrightarrow \frac{f(z)}{z} \prec 1+\frac{\lambda}{2} z
$$

and

$$
1+\lambda z \prec f^{\prime}(z) \Longrightarrow 1+\frac{\lambda}{2} z \prec \frac{f(z)}{z}
$$

2.6. Theorem. Let $\psi(z)$ be univalent in Δ and $\psi(0)=1$. Assume that ψ is convex in Δ, α_{1} is a complex number and $\operatorname{Re}\left\{\alpha_{1}\right\}>-1$. Let $\chi(z)$ be defined by

$$
\begin{equation*}
\chi(z):=\psi(z)+\frac{z \psi^{\prime}(z)}{\left(\alpha_{1}+1\right)},\left(\alpha_{1} \neq-1\right) . \tag{2.15}
\end{equation*}
$$

If $f \in A\left(p, n, \alpha_{1} ; \chi\right)$, then $f \in A(p, n, \alpha+1 ; \psi)$. If $f \in \bar{A}\left(p, n, \alpha_{1} ; \chi\right)$,

$$
\begin{equation*}
0 \neq \frac{J_{\mu}^{l, m}\left[\alpha_{1}+2\right] f(z)}{z^{p}} \in \mathcal{H}(1,1) \cap Q, \frac{J_{\mu}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}} \text { is univalent in } \Delta \tag{2.16}
\end{equation*}
$$

then $f \in \bar{A}\left(p, n, \alpha_{1}+1 ; \psi\right)$.
Proof. Define the function $q(z)$ by

$$
\begin{equation*}
q(z):=\frac{J_{\mu}^{l, m}\left[\alpha_{1}+2\right] f(z)}{z^{p}} \tag{2.17}
\end{equation*}
$$

Then, clearly $q(z)$ is analytic in Δ. We find from (2.9) that

$$
\begin{equation*}
\frac{z q^{\prime}(z)}{q(z)}=\frac{z\left(J_{\mu}^{l, m}\left[\alpha_{1}+2\right] f(z)\right)^{\prime}}{J_{\mu}^{l, m}[\alpha+2] f(z)}-p \tag{2.18}
\end{equation*}
$$

By making use of the identity

$$
\begin{equation*}
z\left(J_{\mu}^{l, m}\left(\alpha_{1}+1\right) f(z)\right)^{\prime}=\alpha_{1}\left(J_{\mu}^{l, m}\left(\alpha_{1}\right) f(z)-\left(\alpha_{1}-p\right) J_{\mu}^{l, m}\left(\alpha_{1}+1\right) f(z)\right. \tag{2.19}
\end{equation*}
$$

We complete the proof using the same steps as in proof of Theorem 2.1.
Using Theorem 2.6, we obtain the following "Sandwich result".
2.7. Corollary. Let $\psi_{i}(z)$ be univalent in Δ and $\psi_{i}(0)=1,(i=1,2)$. Further assume that ψ_{i} is convex in Δ and $\operatorname{Re}\left\{\alpha_{1}\right\}>-1,(i=1,2)$. If $f \in A\left(p, n, \alpha_{1} ; \chi_{1}, \chi_{2}\right)$ satisfies (2.16), then $f \in A\left(p, n, \alpha_{1}+1 ; \psi_{1}, \psi_{2}\right)$, where $\chi_{i}(z)=\psi_{i}(z)+z \frac{\psi_{i}^{\prime}(z)}{\left(\alpha_{1}+1\right)}, \quad\left(i=1,2, \alpha_{1} \neq\right.$ $-1)$.

The proof of the next theorem is the same as the proof of Theorem 2.3.
2.8. Theorem. Let ψ be univalent in $\Delta, \psi(0)=1$ and λ a complex number. Assume that ψ is convex in Δ and $\operatorname{Re}\{\lambda\}>-p$. Define the functions F and χ by

$$
\begin{align*}
& F(z):=\frac{\lambda+p}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} f(t) d t \tag{2.20}\\
& \chi(z):=\left[\psi(z)+\frac{z \psi^{\prime}(z)}{\lambda+p}\right],(\lambda \neq-p) .
\end{align*}
$$

If $f \in A\left(p, n, \alpha_{1} ; \chi\right)$, then $F \in A\left(p, n, \alpha_{1} ; \psi\right)$. If $f \in \bar{A}\left(p, n, \alpha_{1}, \chi\right)$,
(2.21) $0 \neq \frac{J_{\mu}^{l, m}\left[\alpha_{1}+1\right] F(z)}{z^{p}} \in \mathcal{H}(1,1) \cap \mathcal{Q}$ and $\frac{J_{\mu}^{l, m}\left[\alpha_{1}+1\right] f(z)}{z^{p}}$ is univalent in Δ, then $F \in \bar{A}\left(p, n, \alpha_{1} ; \psi\right)$.

Using Theorem 2.8, we have the following result:
2.9. Corollary. Let ψ_{i} be univalent in $\Delta, \psi_{i}(0)=1,(i=1,2)$ and λ a complex number. Assume that ψ_{i} is convex in Δ and $\operatorname{Re}\{\lambda\}>-p$. If $f \in A\left(p, n, \alpha_{1} ; \chi_{1}, \chi_{2}\right)$ satisfies (2.21), then F defined by (2.20) belongs to $A\left(p, n, \alpha_{1} ; \psi_{1}, \psi_{2}\right)$, where

$$
\chi_{i}(z)=\psi_{i}(z)+\frac{z \psi_{i}^{\prime}(z)}{\lambda+p}, \quad(i=1,2, \lambda \neq-p) .
$$

3. Results Involving Multiplier Transformation

3.1. Theorem. Let $\psi(z)$ be univalent in $\Delta, \psi(0)=1, \psi$ convex in Δ, λ a complex number and $\operatorname{Re}\{\lambda\}>-p$. Let $\chi(z)$ be defined by

$$
\chi(z)=\psi(z)+\frac{z \psi^{\prime}(z)}{(p+\lambda)},(\lambda \neq-p) .
$$

If $f \in \mathcal{V}(p, n, r+1, \lambda ; \chi)$, then $f \in \mathcal{V}(p, n, r, \lambda ; \psi)$. If $f \in \overline{\mathcal{V}}(p, n, r+1, \lambda ; \chi)$,

$$
\begin{equation*}
0 \neq \frac{I_{p}(r+1, \lambda) f(z)}{z^{p}} \in \mathcal{H}(1,1) \cap Q, \frac{I_{p}(r+2, \lambda) f(z)}{z^{p}} \text { is univalent in } \Delta \tag{3.1}
\end{equation*}
$$

then $f \in \overline{\mathcal{V}}(p, r, \lambda ; \psi)$.
Proof. Define the function $q(z)$ by

$$
\begin{equation*}
q(z)=\frac{I_{p}(r+1, \lambda) f(z)}{z^{p}} \tag{3.2}
\end{equation*}
$$

Then, clearly, $q(z)$ is analytic in Δ. Also by a simple computation, we find from (3.2) that

$$
\begin{equation*}
\frac{z q^{\prime}(z)}{q(z)}=\frac{z\left(I_{p}(r+1, \lambda) f(z)\right)^{\prime}}{I_{p}(r+1, \lambda) f(z)}-p \tag{3.3}
\end{equation*}
$$

By making use of the identity

$$
\begin{equation*}
z\left(I_{p}(r, \lambda) f(z)\right)^{\prime}=(p+\lambda) I_{p}(r+1, \lambda) f(z)-\lambda I_{p}(r, \lambda) f(z) \tag{3.4}
\end{equation*}
$$

we have from (3.3) that

$$
\begin{equation*}
\frac{I_{p}(r+2, \lambda) f(z)}{z^{p}}=q(z)+\frac{z q^{\prime}(z)}{(p+\lambda)} . \tag{3.5}
\end{equation*}
$$

Since $f \in \mathcal{V}(p, n, r+1, \lambda ; \chi)$, and in view of (3.5), we have

$$
q(z)+\frac{z q^{\prime}(z)}{(p+\lambda)} \prec \psi(z)+\frac{z \psi^{\prime}(z)}{(p+\lambda)}
$$

The first result follows by an application of Lemma 1.6.
Similarly, the second result follows from Lemma 1.7.
Using Theorem 3.1, we obtain the following "sandwich result":
3.2. Corollary. Let $\psi_{i}(z)$ be univalent in $\Delta, \psi_{i}(0)=1, \psi_{i}(z)$ convex in Δ, λ a complex number and $\operatorname{Re}\{\lambda\}>-p$ for $i=1,2$. Define

$$
\chi_{i}(x)=\left[\psi_{i}(z)+\frac{z \psi_{i}^{\prime}(z)}{p+\lambda}\right], \quad(i=1,2, \lambda \neq-p)
$$

If $f \in \mathcal{V}\left(p, n, r+1, \lambda ; \chi_{1}, \chi_{2}\right)$ satisfies (3.1), then $f \in \mathcal{V}\left(p, n, r, \lambda ; \psi_{1}, \psi_{2}\right)$.
3.3. Theorem. Let ψ be univalent in $\Delta, \psi(0)=1, \delta$ a complex number, ψ convex in Δ and $\operatorname{Re}\{\delta\}>-p$. Define the functions $F(z)$ and $\chi(z)$ by

$$
\begin{align*}
& F(z)=\frac{\delta+p}{z^{p}} \int_{0}^{z} t^{\delta-1} f(t) d t \\
& \chi(z)=\psi(z)+\frac{z \psi^{\prime}(z)}{p+\delta}, \quad(\delta \neq-p) \tag{3.6}
\end{align*}
$$

If $f \in \mathcal{V}(p, n, r, \lambda ; \chi)$, then $F \in \mathcal{V}(p, n, r, \lambda ; \psi)$. If $f \in \overline{\mathcal{V}}(p, n, r, \lambda ; \chi)$,

$$
\begin{equation*}
0 \neq \frac{I_{p}(r+1, \lambda) F(z)}{z^{p}} \in \mathcal{H}(1,1) \cap Q, \frac{I_{p}(r+1, \lambda) f(z)}{z^{p}} \text { is univalent in } \Delta, \tag{3.7}
\end{equation*}
$$

then $F \in \overline{\mathcal{V}}(p, n, r, \lambda ; \psi)$.

Proof. Similar to that of Theorem 2.3.
Using Theorem 2.3, we have the following result:
3.4. Corollary. Let ψ_{i} be univalent in $\Delta, \psi_{i}(0)=1$ and δ a complex number. Assume that $\psi_{i}(z)$ is convex in Δ and $\operatorname{Re}\{\delta\}>-p$. Define the functions χ_{i} by

$$
\chi_{i}(z)=\psi_{i}(z)+\frac{z \psi_{i}^{\prime}(z)}{p+\delta},(i=1,2, \delta \neq-p)
$$

If $f \in \mathcal{V}\left(p, n, r, \lambda ; \chi_{1}, \chi_{2}\right)$ satisfies (3.7), then F defined by (3.6) belongs to the class $\mathcal{V}\left(p, n, r, \lambda ; \psi_{1}, \psi_{2}\right)$.
3.5. Theorem. Let $f(z) \in \mathcal{V}(p, n)$. Then $f \in \mathcal{V}(p, n, r, \lambda ; \varphi)$ if and only if

$$
\begin{equation*}
F(z)=\frac{p+\lambda}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} f(t) d t \in \mathcal{V}(p, n, r+1, \lambda ; \varphi) \tag{3.8}
\end{equation*}
$$

Also $f \in \overline{\mathcal{V}}(p, n, r, \lambda ; \varphi)$ if and only if $F \in \overline{\mathcal{V}}(p, n, r+1, \lambda ; \varphi)$.
Proof. From (3.8), we have

$$
\begin{equation*}
(p+\lambda) f(z)=\lambda F(z)+z F^{\prime}(z) \tag{3.9}
\end{equation*}
$$

By convoluting (3.9) with $\phi_{p}(n, \lambda ; z)=z^{p}+\sum_{n=p+1}^{\infty}\left(\frac{n+\lambda}{p+\lambda}\right)^{r} z^{n}$ and using the fact that $z(f * g)^{\prime}(z)=f(z) * z g^{\prime}(z)$, we obtain

$$
(p+\lambda) I_{p}(r, \lambda) f(z)=\lambda I_{p}(r, \lambda) F(z)+z\left(I_{p}(r, \lambda) F(z)\right)^{\prime}
$$

and by using (3.4) we get

$$
\begin{equation*}
I_{p}(r, \lambda) f(z)=I_{p}(r+1, \lambda) F(z) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{align*}
(p+\lambda) I_{p}(r+1, \lambda) f(z) & =z\left(I_{p}(r, \lambda) f(z)\right)^{\prime}+\lambda I_{p}(r, \lambda) f(z) \\
& =z\left(I_{p}(r+1, \lambda) F(z)\right)^{\prime}+\lambda I_{p}(r+1, \lambda) F(z) \tag{3.11}\\
& =(p+\lambda) I_{p}(r+2, \lambda) F(z)
\end{align*}
$$

Therefore, from (3.11), we have

$$
\frac{I_{p}(r+2, \lambda) F(z)}{z^{p}}=\frac{I_{p}(r+1, \lambda) f(z)}{z^{p}}
$$

and the desired result follows at once.
Using Theorem 3.5, we have
3.6. Corollary. Let $f(z) \in \mathcal{V}(p, n)$. Then $f \in \mathcal{V}\left(p, n, r, \lambda ; \varphi_{1}, \varphi_{2}\right)$ if and only if F given by (3.8) is in $\mathcal{V}\left(p, n, r+1, \lambda ; \varphi_{1}, \varphi_{2}\right)$.

Now we will give some particular cases of Theorem 3.1 obtained for different choices of $\psi(z)$.
3.7. Example. Let $p=1$ and $r=\lambda=0$. We get $I_{1}(1,0) f(z)=z f^{\prime}(z)$ and $I_{1}(2,0) f(z)=$ $z\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)$. Let $\chi(z)=(1+z) e^{z}$. Then

$$
f^{\prime}(z)+z f^{\prime \prime}(z) \prec(1+z) e^{z} \Longrightarrow f^{\prime}(z) \prec e^{z}
$$

or

$$
(1+z) e^{z} \prec f^{\prime}(z)+z f^{\prime \prime}(z) \Longrightarrow e^{z} \prec f^{\prime}(z)
$$

3.8. Theorem. Let $\psi(z)$ be univalent in $\Delta, \psi(0)=1, \psi$ convex, λ a complex number and $\operatorname{Re}(\lambda)>-p$. Let $\chi(z)$ be defined by

$$
\chi(z)=\psi(z)+\frac{z \psi^{\prime}(z)}{(p+\lambda)}, \quad(\lambda \neq-p) .
$$

If $f \in A(p, n, r, \lambda ; \chi)$, then $f \in A(p, n, r+1, \lambda ; \psi)$. If $f \in \bar{A}(p, n, r, \lambda ; \chi)$,
(3.12) $\quad 0 \neq \frac{T_{\mu}(r+2, \lambda) f(z)}{z^{p}} \in \mathcal{H}(1,1) \cap Q, \frac{T_{\mu}(r+1, \lambda) f(z)}{z^{p}}$ is univalent in Δ,
then $f \in \bar{A}(p, n, r+1, \lambda ; \psi)$.
Proof. Define the function $q(z)$ by

$$
\begin{equation*}
q(z)=\frac{T_{\mu}(r+2, \lambda) f(z)}{z^{p}} . \tag{3.13}
\end{equation*}
$$

Then, clearly, $q(z)$ is analytic in Δ. Also by a simple computation, we find by (3.13) that

$$
\frac{z q^{\prime}(z)}{q(z)}=\frac{z\left(T_{\mu}(r+2, \lambda) f(z)\right)^{\prime}}{T_{\mu}(r+2, \lambda) f(z)}-p
$$

By making use of the identity

$$
\begin{equation*}
z\left(T_{\mu}(r+1, \lambda) f\right)^{\prime}=(p+\lambda) T_{\mu}(r, \lambda) f(z)-\lambda T_{\mu}(r+1, \lambda) f(z) \tag{3.14}
\end{equation*}
$$

we complete the proof using the same steps as in the proof of Theorem 3.1.
Using Theorem 3.8, we obtain the following "sandwich result":
3.9. Corollary. Let $\psi_{i}(z)$ be univalent in $\Delta, \psi_{i}(0)=1, \psi_{i}(z)$ convex in Δ, λ a complex number and $\operatorname{Re}\{\lambda\}>-p$ for $i=1,2$. Define

$$
\chi_{i}(z)=\psi_{i}(z)+\frac{z \psi_{i}^{\prime}(z)}{(p+\lambda)},(\lambda \neq-p)
$$

If $f \in A\left(p, n, r, \lambda ; \chi_{1}, \chi_{2}\right)$ satisfies (3.12), then $f \in A\left(p, n, r+1, \lambda ; \psi_{1}, \psi_{2}\right)$.
The proof of the next theorem is the same as the proof of Theorem 3.3.
3.10. Theorem. Let ψ be univalent in $\Delta, \psi(0)=1$ and λ a complex number. Assume that ψ is convex in Δ and $\operatorname{Re}\{\lambda\}>-p$. Define the functions F and χ by

$$
\begin{align*}
& F(z)=\frac{\lambda+p}{z^{p}} \int_{0}^{z} t^{\lambda-1} f(t) d t \\
& \chi(z)=\left[\psi(z)+\frac{z \psi(z)}{\lambda+p}\right],(\lambda \neq-p) . \tag{3.15}
\end{align*}
$$

If $f \in A(p, n, r, \lambda ; \chi)$, then $F \in A(p, n, r, \lambda ; \psi)$. If $f \in \bar{A}(p, n, r, \lambda ; \chi)$,

$$
\begin{equation*}
0 \neq \frac{T_{\mu}(r+1, \lambda) F(z)}{z^{p}} \in \mathcal{H}(1,1) \cap Q, \frac{T_{\mu}(r+1, \lambda) f(z)}{z^{p}} \text { is univalent in } \Delta \tag{3.16}
\end{equation*}
$$

then $F \in \bar{A}(p, n, r, \lambda ; \psi)$.
Using Theorem 3.10, we have the following result:
3.11. Corollary. Let ψ_{i} be univalent in $\Delta, \psi_{i}(0)=1$ and λ a complex number. Assume that ψ_{i} is convex in Δ and $\operatorname{Re}\{\lambda\}>-p$. Define the function χ_{i} by

$$
\chi_{i}(z)=\left[\psi_{i}(z)+\frac{z \psi_{i}(z)}{\lambda+p}\right],(i=1,2, \quad \lambda \neq-p)
$$

If $f \in A\left(p, n, r, \lambda ; \chi_{1}, \chi_{2}\right)$ satisfies (3.16), then F defined (3.15) belongs to the class $A\left(p, n, r, \lambda ; \psi_{1}, \psi_{2}\right)$.
3.12. Theorem. Let $f(z) \in \mathcal{V}(p, n)$. Then $f \in A(p, n, r+1, \lambda, \varphi)$ if and only if

$$
\begin{equation*}
F(z)=\frac{p+\lambda}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} f(t) d t \in A(p, n, r, \lambda, \varphi) \tag{3.17}
\end{equation*}
$$

Also $f \in \bar{A}(p, n, r+1, \lambda ; \varphi)$ if and only if $F \in \bar{A}(p, n, r, \lambda ; \varphi)$.
Proof. From (3.17), we have

$$
\begin{equation*}
(p+\lambda) f(z)=\lambda F(z)+z F^{\prime}(z) \tag{3.18}
\end{equation*}
$$

By convoluting (3.18) with $\phi_{p}(n, \lambda ; z)=z^{p}+\sum_{n=p+1}^{\infty}(\mu+p-1)_{n-p}\left(\frac{p+\lambda}{n+\lambda}\right)^{r} \frac{z^{n}}{(n-p)!}$, and using the fact that $z(f * g)^{\prime}(z)=f(z) * z g^{\prime}(z)$, we obtain

$$
(p+\lambda) T_{\mu}(r+3, \lambda) f(z)=\lambda T_{\mu}(r+3, \lambda) F(z)+z\left(T_{\mu}(r+3, \lambda) F(z)\right)^{\prime}
$$

and by using (3.14), we get

$$
\begin{equation*}
T_{\mu}(r+3, \lambda) f(z)=T_{\mu}(r+2, \lambda) F(z) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{align*}
(p+\lambda) T_{\mu}(r+2, \lambda) f(z) & =z\left(T_{\mu}(r+3, \lambda) f(z)\right)^{\prime}+\lambda T_{\mu}(r+3, \lambda) f(z) \\
& =z\left(T_{\mu}(r+2, \lambda) F(z)\right)^{\prime}+\lambda T_{\mu}(r+2, \lambda) F(z) \tag{3.20}\\
& =(p+\lambda) T_{\mu}(r+1, \lambda) F(z)
\end{align*}
$$

Therefore, from (3.20), we have

$$
\frac{T_{\mu}(r+1, \lambda) F(z)}{z^{p}}=\frac{T_{\mu}(r+2, \lambda) f(z)}{z^{p}}
$$

and the desired result follows at once.
Using Theorem 3.12, we have
3.13. Corollary. Let $f \in \mathcal{V}(p, n)$. Then $f \in A\left(p, n, r+1, \lambda ; \varphi_{1}, \varphi_{2}\right)$ if and only if F given by (3.17) is in $A\left(p, n, r, \lambda ; \varphi_{1}, \varphi_{2}\right)$.

Acknowledgment The authors are grateful to Professor T. Bulboaca for his encouragement and valuable comments during the preparation of this paper.

References

[1] Al-Kharsani, H. A. and Al-Khal, R. A. Generalized integral operator and univalent functions, Int. J. Math. Anal. 1 (15), 709-718, 2007.
[2] Bernardi, S. D. Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429-446, 1969.
[3] Bulboacă, T. A class of superordination-preserving integral operators, Indag. Math. (N.S.) 13 (3), 301-311, 2002.
[4] Bulboacă, T. Classes of first-order differential superordinations, Demonstratio Math. 35 (2), 287-292, 2002.
[5] Carlson, B. C. and Shaffer, D. B. Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (4), 737-745, 1984.
[6] Cho, N. E. and Srivastava, H. M. Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling 37 (1-2), 39-43, 2003.
[7] Cho, N. E. and Kim, T. H. Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (3), 399-410, 2003.
[8] Dziok, J. and Srivastava, H. M. Certain subclasses of analytic functions associated with the generalized hypergeometric functions, Integral Transforms Spec. Funct. 14 (1), 7-18, 2003.
[9] Hohlov, Ju. E. Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Math. 10 (197), 83-89, 1978.
[10] Kwon, O. S. and Cho, N. E. Inclusion properties for certain subclasses of analytic functions associated with the Dziok-Srivastava operator, J. Ineq. and Appl. 27, 10 pp, 2007.
[11] Libera, R. J. Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16, 755$758,1965$.
[12] Livingston, A.E. On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17, 352-357, 1966.
[13] Miller, S. S. and Mocanu, P. T. Differential Subordinations: Theory and Applications (Monographs and Textbooks in Pure and Applied Mathematics, No. 225, Marcel Dekker, New York, 2000).
[14] Miller, S. S. and Mocanu, P. T. Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (10), 815-826, 2003.
[15] Noor, K. I. and Noor, M. A. On integral operators, J. Math. Anal. and Appl. 23 (8), 341-352, 1999.
[16] Noor, K. I. On some analytic functions defined by a multiplier transformation, Int. J. Math. \& Math. Scie., 9 pp, 2007.
[17] Owa, S. On the distoriton theorems I, Kyungpook Math. J. 18 (1), 53-59, 1978.
[18] Owa, S. and Srivastava, H. M. Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (5), 1057-1077, 1987.
[19] Ruscheweyh, St. New criteria for univalent functions, Proc. Amer. Math. Soc. 49, 109-115, 1975.
[20] Şălăgean, G. S. Subclasses of univalent functions in Complex analysis (Springer, Berlin 1, 1981), 362-372.
[21] Srivastava, H. M. Some families of fractional derivative and other linear operators associated with analytic univalent and multivalent functions in Analysis and its applications (Allied Publ., New Delhi, 2000), 209-243.
[22] Uralegaddi, B. A. and Somanatha, C. Certain classes of univalent functions in Current topics in analytic function theory (World Publishing, River Edge, NJ, 1992).

[^0]: *Department of Mathematics, Faculty of Science, P.O. Box 838, Dammam 31113, Kingdom of Saudi Arabia. E-mail: (Al-Kharsani) hakh73@hotmail.com (Al-Areefi) najarifi@hotmail.com
 ${ }^{\dagger}$ Corresponding author

