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Abstract

The author studies fuzzy sets over the poset I = [0, 1] with the usual
order. These form a canonical example of fuzzy sets over a poset dis-
cussed in (Tiryaki, İ. U. and Brown, L.M. Plain textures and fuzzy
sets via posets, preprint). Characterizations of these so called “soft
fuzzy sets” are obtained, and soft fuzzy sets are shown to have a richer
mathematical theory than classical I-fuzzy sets. In particular soft fuzzy
points behave like the points of crisp set theory with respect to join, and
moreover there exists a Lowen type functor from Top to the construct
SF-Top that preserves both separation and compactness.
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1. Introduction

In [17] the author and L.M. Brown used the characterization of plain textures in terms
of posets given in [8] to present several new results in the theory of plain ditopological
texture spaces. As part of this investigation they considered fuzzy sets over a poset and
mentioned a canonical example of such fuzzy sets that coincides with the notion of “soft
fuzzy set” introduced by the author in his PhD thesis [15] from a different view-point.
This paper presents an updated account of the theory of soft fuzzy sets based on the
discussion in [17] and placed within a more suitable categorical framework than that
given in [15]. As mentioned in [17], fuzzy sets over a poset have properties that make
them potentially useful in applications. Naturally, soft fuzzy sets share these properties
and it is anticipated that they will find useful applications in various areas.

If (N,≤) is a partially ordered set (poset, for short) we denote by LN the set of
lower sets of N as in [17]. Hence (N,LN) is a plain texture, and all plain textures can
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be given in this form [8]. If (X,≤) is also a poset and we take X × N together with

the product order (x1, n1) ≤ prod (x2, n2) ⇐⇒ x1 ≤ x2 and n1 ≤ n2, then L
prod
X×N

denotes the corresponding texturing of X ×N and by [17, Proposition 4.1] the texture

(X ×N, L
prod
X×N) is the product of the textures (X,LX) and (N,LN ).

The elements of L
prod
X×N may be regarded as LN -fuzzy subsets of X of a special kind.

Indeed if we set

(1.1) FN (X) = {µ : X → LN | x ≤ y =⇒ µ(y) ⊆ µ(x)}

then by [17, Proposition 4.2] the mapping

(1.2) µ 7→ Aµ, Aµ = {(x, n) | n ∈ µ(x)}

is an isomorphism from FN (X) to the texturing L
prod
X×N of X ×N with inverse

(1.3) A 7→ µA, µA(x) = {n | (x, n) ∈ A}.

Using this isomorphism to transfer the lattice structure of L
prod
X×N to FN (X) by setting

(1.4)
∨

j∈J

µj = µ ⇐⇒ Aµ =
⋃

j∈J

Aµj
and

∧

j∈J

µj = µ ⇐⇒ Aµ =
⋂

j∈J

Aµj

for any µj ∈ FN (X), j ∈ J , the mappings µ 7→ Aµ and A 7→ µA become isomorphisms

between the complete, completely distributive lattices FN (X) and L
prod
X×N .

In [17, Theorem 2.10] it is shown that every complementation on a plain texture
is grounded. More specifically, every order-reversing involution n 7→ n′ on N leads to
a complementation σ satisfying σ(Pn) = Qn′ , n ∈ N , and conversely. Hence order-
reversing involutions x 7→ x′, n 7→ n′ on (X,≤), (N,≤) give rise to complementations
σX , σN , respectively. Also (x,n) 7→ (x,n)′ = (x′, n′) is an order-reversing involution on
(X ×N,≤ prod), and by [17, Proposition 4.3] the corresponding complementation σX×N
on (X ×N, L

prod
X×N) is the product [3] σX ⊗ σN of σX and σN .

For µ ∈ FN (X) and Aµ defined as in (1.2) we have

(1.5) σX×N (Aµ) = {(x, n) | x ∈ X, n ∈ N, n′ /∈ µ(x′)}

by [17, Lemma 4.4]. We also recall the following corollary:

1.1. Corollary. [17] For µ ∈ FN (X) define µ′(x) = {n ∈ N | n′ /∈ µ(x′)}, x ∈ X. Then

(i) µ′ ∈ FN (X) for all µ ∈ FN (X).
(ii) The mapping µ 7→ µ′ is an order-reversing involution on FN(X).
(iii) Aµ′ = σX×N (Aµ) for all µ ∈ FN (X).

As a consequence of Corollary 1.1 it is clear that under the given hypotheses, the
mapping µ → Aµ becomes an isomorphism between the Hutton algebras FN (X) and

L
prod
X×N with inverse A 7→ µA.

In this paper we shall make the following special choices. Firstly X will just be a set,
which, to conform to the above analysis we take with the discrete ordering x1 ≤ x2 ⇐⇒
x1 = x2 and the trivial involution x 7→ x, that is x′ = x for all x ∈ X, which is certainly
order-reversing and leads to the standard complementation πX , πX(Y ) = X \ Y , Y ⊆ X
by [17, Examples 2.11 (1)]. Secondly, we take N = I = [0, 1] with the standard ordering
and the order-reversing involution r 7→ 1 − r, r ∈ I. Hence, by [17, Examples 2.2 (2)
and Examples 2.11 (2)], the corresponding texture is the unit interval texture (I, I, ι),
where I = {[0, r), [0, r] | r ∈ I} and ι([0, r)) = [0, 1 − r], ι([0, r]) = (0, 1 − r), r ∈ I.
This gives us the family FI of LI-fuzzy subsets of X, and the textural representation
(X,P(X), πX)⊗(I, I, ι). It is instructive to compare this with the textural representation
of the Hutton algebra F (X) of classical Zadeh fuzzy sets [18] (that is I-fuzzy subsets ofX),
which by [3] is known to be (X,P(X), πX)⊗(L,L, λ), where L = (0, 1], L = {(0, r] | r ∈ I}
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and λ((0, r]) = (0, 1−r]. The unit interval texture (I, I, ι) has a much richer mathematical
structure than does (L,L, λ), particularly when endowed with the natural ditopology
(τI, κI) defined by τI = {[0, s) | s ∈ I} ∪ {I}, κI = {[0, s] | s ∈ I} ∪ {∅}. The unit interval
texture is also plain, whereas (L,L, λ) is not, a fact that has far reaching consequences.

This paper is devoted to a consideration of the changes to the theory of I-fuzzy subsets
of X that result from replacing (L,L, λ) by the texture (I, I, ι). We will show that the
elements of FI(X) may be represented as pairs (µ,M), where µ ∈ F (X) and M ∈ P(X).
For x ∈ X it will follow that there are two possible states, corresponding to x ∈ M
and x /∈ M , associated with the degree of membership µ(x). In case x ∈ M we may
think of µ(x) as a realized or hard value, otherwise it will be soft or unrealized. For this
reason we shall refer to the pairs (µ,M) as soft fuzzy sets. Although we will be concerned
solely with the mathematical properties of soft fuzzy sets in this paper, and not consider
applications at all, it is clear that one way of making use of this extra degree of freedom
would be to regard a transition from a soft to a hard value as representing a potential
increase in the degree of membership, that is one for which it is not possible to give a
numerical value at the current stage. It is anticipated that significant applications along
these or similar lines will be found to parallel the richer mathematical theory.

For terms from the theory of ditopological texture spaces not explained here, and
for additional results and motivation, the reader is referred to [2–8], [11] and [16]. A
useful reference to lattice theory is [9], and we will generally follow the notation of [1] for
concepts from category theory. In particular ObA will denote the class of objects and
MorA the class of morphisms for a category A. Sometimes A(A1, A2) will be used to
denote the set of A–morphisms from A1 to A2.

2. Lattice of Soft Fuzzy Subsets

We begin by associating a fuzzy subset and a crisp subset of X with a given element
of FI(X). Since X has the discrete ordering we just have FI(X) = {η | η : X → I}.
Hence for x ∈ X we have η(x) = Pr or η(x) = Qr for some r ∈ I. In either case we may
associate the number r = sup η(x) with x to give a function η1 ∈ F (X), and we may
define η2 ∈ P(X) by x ∈ η2 ⇐⇒ η(x) = Px ⇐⇒ η1(x) ∈ η(x). That is

2.1. Definition. For η ∈ FI(X) we denote by η1, η2 respectively the fuzzy subset of X
and the crisp subset of X given by

η1(x) = sup η(x), x ∈ X, and η2 = {x ∈ X | η1(x) ∈ η(x)}.

This focuses our attention on pairs consisting of an I-fuzzy subset and a crisp subset
of X. It is these pairs that will occupy our attention throughout this paper, and we make
the following definition.

2.2. Definition. Let X be a set, µ an I-fuzzy subset of X and M ⊆ X. Then the pair
(µ,M) will be called a soft fuzzy subset of X. The set of all soft fuzzy subsets of X will
be denoted by SF (X).

We now see η 7→ (η1, η2) as setting up a mapping from FI(X) to SF (X). Conversely
if (µ,M) ∈ SF (X) then we may set ξ(µ,M) = η where

η(x) =

{

Pµ(x) x ∈M,

Qµ(x) x /∈M.

It is clear from the definitions that

2.3. Lemma. The mapping ξ : SF (X) → FI(X) defined above is a bijection with inverse
ξ−1 given by ξ−1(η) = (η1, η2). �
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Composing this mapping with the bijection η 7→ Aη given in (1.2) produces the

bijection (µ,M) 7→ Aξ(µ,M) between SF (X) and L
prod
X×I

considered in [15]. A simple
calculation shows that

(2.1) Aξ(µ,M) = {(x, s) | s < µ(x) or (s = µ(x) and x ∈M)}

2.4. Example. By the definition of product texture [2] the elements of P(X) ⊗ I are
arbitrary intersections of sets of the form (Y × I)∪ (X × [0, s]) and (Y × I)∪ (X × [0, s))
for Y ⊆ X and s ∈ I. It will be interesting to find the soft fuzzy sets corresponding to
these basic elements of P(X) ⊗ I. For this purpose consider µ : X → I defined by

µ(x) =

{

1 x ∈ Y

s x ∈ X \ Y
.

It is straightforward to verify that

Aξ(µ,X) = (Y × I) ∪ (X × [0, s]),

Aξ(µ,Y ) = (Y × I) ∪ (X × [0, s)).

It is significant that these soft fuzzy sets differ only in the crisp set M .

Our next step is to define an order relation on SF (X) which reflects the ordering of
P(X) ⊗ I by inclusion, or equivalently the corresponding order on FI(X).

2.5. Lemma. For all (µ,M), (ν,N) ∈ SF (X) we have Aξ(µ,M) ⊆ Aξ(ν,N) if and only if

(2.2) µ(x) < ν(x) or (µ(x) = ν(x) and x /∈M \N) ∀x ∈ X.

Proof. First suppose that (2.2) holds but that Aξ(µ,M) 6⊆ Aξ(ν,N). Take (x, s) ∈ Aξ(µ,M)

with (x, s) /∈ Aξ(ν,N). We have the following two cases:

(1) s > ν(x). From (2.1) we have µ(x) ≤ ν(x) and so s > µ(x), which contradicts
(x, s) ∈ Aξ(µ,M).

(2) s = ν(x) and x /∈ N . Now µ(x) < s will contradict (x, s) ∈ Aξ(µ,M) so µ(x) = s
and x ∈M . This gives µ(x) = ν(x) and x ∈M \N , which contradicts (2.1).

Conversely, assume that Aξ(µ,M) ⊆ Aξ(ν,N), but that (2.1) does not hold. Then for some
x ∈ X we have µ(x) ≥ ν(x) and (µ(x) 6= ν(x) or x ∈ M \ N), so we may distinguish
the two cases µ(x) > ν(x) and µ(x) = ν(x), x ∈ M \ N . Both give an immediate
contradiction to Aξ(µ,M) ⊆ Aξ(ν,N). �

This leads to the following definition of a relation ⊑ on SF (X).

2.6. Definition. The relation ⊑ on SF (X) is given by

(µ,M) ⊑ (ν,N) ⇐⇒ (µ(x) < ν(x)) or (µ(x) = ν(x) and x /∈M \N) ∀ x ∈ X

for all (µ,M), (ν,N) ∈ SF (X).

By Lemma 2.5, (µ,M) ⊑ (ν,N) ⇐⇒ Aξ(µ,M) ⊆ Aξ(ν,N), and since inclusion is a
partial order on P(X) ⊗ I we obtain an order-preserving bijection between (SF (X),⊑)
and (P(X) ⊗ I,⊆).

It is known that (P(X) ⊗ I,⊆) is a complete lattice. We establish the same result for
(SF (X),⊑), at the same time giving formulae for calculating arbitrary meets and joins.

2.7. Proposition. If (µj ,Mj) ∈ SF (X), j ∈ J, then the family {(µj ,Mj) | j ∈ J} has
a meet, that is greatest lower bound, in (SF (X),⊑), denoted by

d
j∈J (µj ,Mj) and given

by
l

j∈J

(µj ,Mj) = (µ,M)

where µ(x) =
∧

j∈J µj(x) ∀x ∈ X and M = {x ∈ X | ∀ j ∈ J, x ∈Mj or µ(x) < µj(x)}.
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Proof. Take j ∈ J . Clearly µ(x) ≤ µj(x) for all x ∈ X. If µ(x) = µj(x) and x ∈M then
x ∈Mj and so x /∈M \Mj . Thus (µ,M) ⊑ (µj ,Mj) for all j ∈ J .

Now take (ν,N) ∈ SF (X) with (ν,N) ⊑ (µj ,Mj) for all j ∈ J . Suppose that
(ν,N) 6⊑ (µ,M). Again we may distinguish the following two cases for some x ∈ X

(1) ν(x) > µ(x). In this case infj∈J µj(x) < ν(x) and so there exists j ∈ J satisfying
µ(x) ≤ µj(x) < ν(x), which contradicts (ν,N) ⊑ (µj ,Mj).

(2) ν(x) = µ(x) and x ∈ N \M . Since x /∈ M there exists j ∈ J satisfying x /∈ Mj

and µ(x) = µj(x). This gives ν(x) = µJ (x) and x ∈ N \Mj , which contradicts
(ν,N) ⊑ (µj ,Mj).

This establishes that (µ,M) is indeed the greatest lower bound of the elements (µj ,Mj),
j ∈ J . �

2.8. Corollary. For all (µj ,Mj) ∈ SF (X), j ∈ J, we have

A
ξ

( d
j∈J (µj ,Mj)

) =
⋂

j∈J

Aξ(µj ,Mj).

Proof. Denote
d
j∈J (µj ,Mj) by (µ,M) as in Proposition 2.7. By Lemma 2.5 we clearly

have Aξ(µ,M) ⊆
⋂

j∈J Aξ(µj ,Mj).

Assume the opposite inclusion is false and take (x, s) ∈
⋂

j∈J Aξ(µj ,Mj) with (x, s) /∈
Aξ(µ,M). Then we have the following two cases:

(1) s > µ(x). This leads to a contradiction since (x, s) ∈
⋂

j∈J Aξ(µj ,Mj) implies

s ≤ µj(x) for all j ∈ J .
(2) s = µ(x) and x /∈ M . In this case there exists j ∈ J with x /∈ Mj and

µ(x) = µj(x). Hence (x, s) /∈ Aξ(µj ,Mj), which again is a contradiction.

This establishes the stated equality. �

2.9. Proposition. If (µj ,Mj) ∈ SF (X), j ∈ J, then the family {(µj ,Mj) | j ∈ J} has
a join, that is least upper bound, in (SF (X),⊑), denoted by

⊔

j∈J(µj ,Mj) and given by

⊔

j∈J

(µj ,Mj) = (µ,M)

where µ(x) =
∨

j∈J µj(x) ∀ x ∈ X and M = {x ∈ X | ∃ j ∈ J with x ∈Mj and

µ(x) = µj(x)}.

Proof. Dual to the proof of Proposition 2.10, and is omitted. �

2.10. Corollary. For all (µj ,Mj) ∈ SF (X), j ∈ J, we have

A
ξ

(

⊔

j∈J (µj ,Mj)
) =

⋃

j∈J

Aξ(µj ,Mj).

Proof. Dual to the proof of Corollary 2.11, and is omitted. �

We now see that η 7→ Aξ(η) is an isomorphism between the complete lattice (SF (x),⊑)
and (P(X)⊗I,⊆). Since the latter is known to be completely distributive the same is true
for (SF (X),⊑). In particular we deduce that ξ is an isomorphism between (SF (x),⊑)
and FI(X) with the lattice operations given by (1.4).

To define an appropriate complementation on SF (X) we recall from Corollary 1.1
that for η ∈ FI(X) we have η′(x) = {s ∈ I | s′ /∈ η(x′)}, and since we have s′ = 1− s and
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x′ = x this gives η′(x) = {s ∈ I | 1 − s /∈ η(x)}. Hence, for µ ∈ F (X) and M ∈ P(X) we
have

ξ(µ,M)′(x) = {s ∈ I | 1 − s /∈ ξ(µ,M)}

= {s ∈ I | µ(x) < 1 − s or (µ(x) = 1 − s and x /∈M)}

= {s ∈ I | s < 1 − µ(x) or (s = 1 − µ(x) and x ∈ X \M)}

= ξ(1 − µ,X \M)(x).

This justifies the following:

2.11. Definition. For (µ,M) ∈ SF (X) the soft fuzzy set (µ,M)′ = (1 − µ,X \M) is
called the complement of (µ,M).

We deduce that with this definition (SF (X),⊑) is a Hutton algebra isomorphic to

FI(X), and hence to L
prod
X×I

= P(X) ⊗ I. In particular,

(i) ((µ,M)′)′ = (µ,M), and
(ii) (µ,M) ⊑ (ν,N) ⇐⇒ (ν,N)′ ⊑ (µ,M)′.

In order to be able to set up a relationship between the set X × I itself and SF (X) we
define a notion of “point” in SF (X). It will be useful also to define a dual notion of
“copoint”.

2.12. Definition. Take x ∈ X and s ∈ I.

(1) Define xs : X → I by xs(z) =

{

s if z = x

0 otherwise
. Then the soft fuzzy set (xs, {x})

is called the point of SF (X) with base x and value s.

(2) Define xs : X → I by xs(z) =

{

s if z = x

1 otherwise
. Then the soft fuzzy set (xs, X \

{x}) is called the copoint of SF (X) with base x and value s.

Note that, contrary to the situation with classical fuzzy subsets, it is meaningful to
consider the point (xs, {x}) for s = 0. This is because, although xs is again the zero
function, x is distinguished as being the only point with a hard value. Dually, for the
copoint (xs,X \ {x}) with s = 1, xs is the constant function with value 1 but x is
distinguished as the only point with a soft value.

2.13. Definition. We denote (xr, {x}) ⊑ (µ,M) by (xr, {x}) ∈ (µ,M), and refer to
(xr, {x}) as an element of (µ,M).

It should be stressed that this definition merely provides a suggestive notation which
is appropriate to the notion of point.

Now we relate the points and copoints of SF (X) with (X × I,P(X) ⊗ I).

2.14. Proposition. For x ∈ X, s ∈ I we have

Aξ(xs,{x}) = P(x,s) and Aξ(xs,X\{x}) = Q(x,s).

Proof. We prove the first equality, leaving the dual proof of the second equality to the
interested reader. Take (x, s) ∈ X × I. Then for (z, r) ∈ X × I,

(z, r) ∈ Aξ(xs,{x}) ⇐⇒ r < xs(z) or (r = xs(z) and z ∈ {x})

⇐⇒ z = x and r ≤ s,

whence Aξ(xs,{x}) = {x} × [0, s] = P(x,s). �
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It is an immediate corollary of this result that ξ is a bijection between the points and

copoints of SF (X), and the corresponding points xs, xs(u) =

{

Ps if u = x

∅ otherwise
, u ∈ X

and copoints xs, xs(u) =

{

Qs if x = u

I otherwise
, u ∈ X of FI(X) in the sense of [17].

The following important results will be proved by using known properties of the tex-
turing (X × I,P(X) ⊗ I). The interested reader could easily supply direct proofs based
on the definitions given above, see also [17, Lemma 4.7].

2.15. Theorem. For (µ,M) ∈ SF (X), (µj ,Mj) ∈ SF (X), j ∈ J, and (x, s) ∈ X × I

we have:

(1) (µ,M) =
⊔

{(xs, {x}) | (xs, {x}) ∈ (µ,M)}.
(2) (µ,M) =

d
{(xs,X \ {x}) | (µ,M) ⊑ (xs,X \ {x})}.

(3) (µ,M) 6⊑ (xs,X \ {x}) ⇐⇒ (xs, {x}) ∈ (µ,M).
(4) (xs, {x}) /∈ (xs,X \ {x}).
(5) (xs, {x}) ∈

⊔

j∈J (µj ,Mj) =⇒ ∃ j ∈ J with (xs, {x}) ∈ (µj ,Mj).

Proof. (1). From ([5], Theorem 1.2 (7)) we have Aξ(µ,M) =
∨

{P(x,s) | ξ(µ,M) 6⊆
Q(x,s)} =

⋃

{P(x,s) | P(x,s) ⊆ ξ(µ,M)} as (X × I,P(X) ⊗ I) is a plain texture. Hence

Aξ(µ,M) =
⋃

{

Aξ(xs,{x}) | ξ(xs, {x}) ⊆ ξ(µ,M)
}

= ξ
(

⊔

{

(xs, {x}) | (xs, {x}) ∈ (µ,M)
})

by Proposition 2.16, Corollary 2.13 and Corollary 2.9. The result now follows since ξ is
injective.

(2). Similar to (1) using ([5], Theorem 1.2 (6)).

(3). By Corollary 2.9 and Proposition 2.16 we have

(µ,M) 6⊑ (xs,X \ {x}) ⇐⇒ Aξ(µ,M) 6⊆ Aξ(xs,X\{x})

⇐⇒ Aξ(µ,M) 6⊆ Q(x,s)

⇐⇒ P(x,s) ⊆ Aξ(µ,M) by plainness

⇐⇒ Aξ(xs,{x}) ⊆ Aξ(µ,M)

⇐⇒ (xs, {x}) ⊑ (µ,M).

(4). Immediate from (3) on taking (µ,M) = (xs, {x}).

(5). From (xs, {x}) ∈
⊔

j∈J (µj ,Mj) we have P(x,s) ⊆
⋃

j∈J Aξ(µj ,Mj), which is equiva-

lent to (x, s) ∈
⋃

j∈J Aξ(µj ,Mj). Hence there exists j ∈ J with (x, s) ∈ Aξ(µj ,Mj), whence

Aξ(xs,{x}) = P(x,s) ⊆ Aξ(µj ,Mj) and so (xs, {x}) ∈ (µj ,Mj) for this j. �

Equalities (1) and (2) above show the way in which the soft fuzzy subsets of X may
be generated by the points or copoints of SF (X). Results (3) and (4) are technical but
extremely powerful results which reflect the fact that the texture (X × I,P(X) ⊗ I) is
plain. Property (5), which is also a consequence of plainness, shows that the points in
SF (X) act like the points in classical set theory with respect to join, in contrast to the
fuzzy points in classical fuzzy set theory.

The effect of the complement on the points and copoints of SF (X) is given below.

(iii) (xs, {x})
′ = (x1−s,X \ {x}), and

(iv) (xs,X \ {x})′ = (x1−s, {x}).
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The proofs are straightforward, and are omitted.

Let us recall that if (S, S), (T,T) are textures and ψ : S → T a point function, then
ψ is called ω-preserving if Ps1 6⊆ Qs2 =⇒ Pψ(x1) 6⊆ Qψ(x2). We denote by ifTex the
construct of textures and ω-preserving functions between the base sets.

Now let X, Y be sets with the discrete order and ϕ : X → Y a point function. If we
denote the identity on I by id then 〈ϕ, id〉 : X × I → Y × I defined by 〈ϕ, id〉(x, s) =
(ϕ(x), s) is order-preserving and hence ω-preserving regarded as a mapping from (X ×

I,Lprod
X×I

) to (Y × I,Lprod
Y×I

). If we denote by SF-Set the construct whose objects are pairs
(X,SF (X)) and morphisms from Set this gives us a (non-full) embedding of SF-Set in
ifTex. Specifically we define E : SF-Set → ifTex by setting

E((X,SF (X))
ϕ
−→ (Y, SF (Y ))) = (X × I,Lprod

X×I
)
〈ϕ,id〉
−−−−→ (Y × I,Lprod

Y×I
).

It clear that E is indeed an embedding. Also, since an ifTex-isomorphism preserves plain-
ness it is easy to see that SF-Set is embedded as an isomorphism-closed subconstruct of
ifTex.

The point function ϕ may be used to define mappings between SF (X) and SF (Y ).
To this end we look at the difunction (f, F ) corresponding to 〈ϕ, id〉(x, s) = (ϕ(x), s) as
in [5, Lemma 3.4]. Since we are dealing with plain textures this mapping automatically
satisfies conditions (b) and (c) of [6, Lemma 3.8] and therefore we have

(2.3)
f =

⋃

{

P ((x,s), (ϕ(x),s)) | (x, s) ∈ X × I
}

, and

F =
⋂

{

Q((x,s), (ϕ(s),s)) | (x, s) ∈ X × I
}

.

The image and co-image operators now map from L
prod
X×I

to L
prod
Y×I

, and the inverse image

and inverse co-image operators, which are equal, map from L
prod
Y×I

to L
prod
X×I

. In view of

the isomorphism between SF (X) and L
prod
X×I

, and that between SF (Y ) and L
prod
Y×I

, these
lead to the required mappings, as detailed below.

2.16. Proposition. Let ϕ : X → Y be a point function.

(1) The mapping ϕ⇀ from SF (X) to SF (Y ) corresponding to the image operator of
the difunction (f, F ) is given by

ϕ⇀(µ,M) = (ν,N) where ν(y) = sup{µ(x) | y = ϕ(x)}, and

N = {ϕ(x) | x ∈M and ν(ϕ(x)) = µ(x)}.

(2) The mapping ϕ⇁ from SF (X) to SF (Y ) corresponding to the co-image operator
of the difunction (f, F ) is given by

ϕ⇁(µ,M) = (ν,N) where ν(y) = inf{µ(x) | y = ϕ(x)}, and

N = Y \ {ϕ(x) | x ∈ X \M and ν(ϕ(x)) = µ(x)}.

(3) The mapping ϕ← from SF (Y ) to SF (X) corresponding to the inverse image and
inverse co-image of the difunction (f, F ) is given by

ϕ←(ν,N) = (ν ◦ ϕ, ϕ−1[N ]).

Proof. (1) We are required to show that f→Aξ(µ,M) = Aξ(ν,N). By the above formulae for
(f, F ) and [5, Definition 2.5] and it is straightforward to verify that for (µ,M) ∈ SF (X)
we have

f→Aξ(µ,M) = {(y, r) ∈ Y × I | ∃ (x, s) ∈ Aξ(µ,M) with (y, r) ≤ prod (ϕ(x), s)}.

Alternatively, this follows immediately from [17, Lemma 2.5 (3 i)].
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Taking (y, r) ∈ f→Aξ(µ,M) gives (x, s) ∈ Aξ(µ,M) with (y, r) ≤ prod (ϕ(x), s), whence
y = ϕ(x) and r ≤ s. But s < µ(x) or (s = µ(x) and x ∈ M) by (2.1), so in either
case r ≤ s ≤ µ(x) ≤ ν(y) and we have r < ν(y) or r = ν(y). In the second case we
deduce s = µ(x), whence x ∈ M , and ν(ϕ(x)) = µ(x) whence y = ϕ(x) ∈ N . This gives
(y, r) ∈ Aξ(ν,N), so f→Aξ(µ,M) ⊆ Aξ(ν,N).

Conversely, take (y, r) ∈ Aξ(ν,N). There are two cases to consider.

Case (i). r < ν(y). Since ν(y) = sup{µ(x) | y = ϕ(x)} there exists x ∈ X with y = ϕ(x)
and r < µ(x) ≤ ν(y). Take s = r. Then s < µ(x) gives (x, s) ∈ Aξ(µ,M) by (2.1), and
clearly (y, r) ≤ prod (ϕ(x), s) whence (y, r) ∈ f→Aξ(µ,M).

Case (ii). r = ν(y) and y ∈ N . By the definition of N there exists x ∈M with y = ϕ(x)
and ν(y) = ν(ϕ(x)) = µ(x). Taking s = r gives s = µ(x), and x ∈M so (x, s) ∈ Aξ(µ,M)

and (y, r) ≤ prod (ϕ(x), s) so again (y, r) ∈ f→Aξ(µ,M). Thus Aξ(ν,N) ⊆ f→Aξ(µ,M) and
the proof is complete.

(2) Dual to the proof of (1), and is omitted.

(3) Straightforward. �

The following inclusions may easily be obtained from [5, Theorem 2.24].

ϕ←(ϕ⇁(µ,M)) ⊑ (µ,M) ⊑ ϕ←(ϕ⇀(µ,M)), ∀ (µ,M) ∈ SF (X),

ϕ⇀(ϕ←(ν,N)) ⊑ (ν,N) ⊑ ϕ⇁(ϕ←(ν,N)), ∀ (ν,N) ∈ SF (Y ).

There are many more results that can be deduced from the properties of the (co) image
and inverse image operators. We mention just a few of these in the following notes.

2.17. Note. The mappings ϕ← : SF (Y ) → SF (X) preserve arbitrary intersections
and unions by [5, Corollary 2.12]. They also preserve complementation. Indeed using
(2.3) and [5, Definition 2.18 (2)] it is not difficult to show that F ′ = f , so (f, F ) is a
complemented difunction. Hence

f←Aξ(µ,M)′ = f←σX×I(Aξ(µ,M)) = F←σX×I(Aξ(µ,M))

= σY×I((F
′)←Aξ(µ,M)) = σY×I(f

←Aξ(µ,M))

by [5, Lemma 2.20], which gives ϕ←(µ,M)′ = (ϕ←(µ,M))′ as required. We also have

2.18. Lemma. (1) For X
ϕ
−→ Y

ψ
−→ Z we have (ψ ◦ ϕ)← = ϕ← ◦ ψ←.

(2) (ιX)← = ιSF (X), where ιX is the identity on X and ιSF (X) that on SF (X).

Proof. Left to the interested reader. �

For general complemented textures (S1, S1, σ1), (S2, S2, σ2) mappings from S2 to S1

that preserve complementation, arbitrary intersections and joins are the morphisms for a
category named ctmTexop, which is isomorphic to the category cdfTex of complemented
textures and complemented difunctions [6]. It is clear that SF-Set may be embedded
as a non-full subcategory of ctmTexop, and hence of cdfTex. The details are given
in [15], and are not repeated here. It must be stressed that this embedding involves
a loss of information because the morphisms of these categories do not preserve the
point structure, that is the embedding functor is a forgetful functor. For example, if we
replace I by its Hutton texture [6, Example 2.14] then we obtain an isomorphic object
in ctmTexop or cdfTex since the texturings are isomorphic, but we do not obtain an
isomorphic object in ifTex or cifTex because the point structures are different, and
indeed the Hutton texture is not even plain. Since the point structure is an important
aspect of soft fuzzy sets we prefer therefore the embedding in ifTex or cifTex, which
gives an isomorphism closed subconstruct.
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2.19. Note. The mappings ϕ⇀ : SF (X) → SF (Y ) preserve arbitrary unions by [5,
Corollary 2.12]. They also preserve the points of SF (X) strongly in the sense that
ϕ⇀(xs, {x}) = (ys, {y}) for some y ∈ Y . Indeed it is clear from Proposition 2.16 (1)
that this equality holds for y = ϕ(x). Conversely, a mapping θ : SF (X) → SF (Y ) that
preserves arbitrary unions and is strongly point preserving defines a function ϕ : X → Y
for which θ = ϕ⇀. It is clear that such mappings could also be used as morphisms is
a category isomorphic to SF-Set, and be generalized to a wider context. We refer the
reader for a discussion along these lines, and do not take up this topic in greater detail
here.

Dually, the mappings ϕ⇁ : SF (X) → SF (Y ) preserve arbitrary intersections and are
strongly co-point preserving. Similar comments to the naturally apply to these mappings
also.

We conclude this section by presenting an alternative description of soft fuzzy sets.
As mentioned earlier, for a soft fuzzy subset (µ,M) of X and for x ∈ X, one of two
states may be associated with the value µ(x) according as x ∈M or x /∈M . If we denote
the first state by 1 and the second by 0 we may associate with (µ,M) the function
〈µ, χM 〉 : X → D = I×{0, 1} defined by 〈µ, χM 〉(x) = (µ(x), χM (x)), where as usual χM

denotes the characteristic function χM (x) =

{

1 if x ∈M

0 if x /∈M
, x ∈ X, of M . Now we have:

2.20. Proposition. Denote by ≤ the lexical ordering on D = I × {0, 1}. That is, for
(r, k), (s, l) ∈ D, (r, k) ≤ (s, l) ⇐⇒ (r < s) or (r = s and k ≤ l), where I and {0, 1}
have their usual orderings. Then for (µ,M), (ν,N) ∈ SF (X),

〈µ, χM 〉 ≤ 〈ν, χN〉 ⇐⇒ (µ,M) ⊑ (ν,N)

where 〈µ, χM 〉 ≤ 〈ν, χN 〉 is defined pointwise.

Proof. If 〈µ, χM 〉 ≤ 〈ν, χN 〉 then given x ∈ X either µ(x) < ν(x) or (µ(x) = ν(x)
and χM (x) ≤ χN(x)). Clearly χM (x) ≤ χN (x) is equivalent to x /∈ M \ N , whence
(µ,M) ⊑ (ν,N) by Definition 2.8. The reverse implication is proved in the same way. �

If for (s, k) ∈ D we define (s, k)′ = (1− s, 1−k) it is clear that the mapping ′ : D → D,
(s, k) 7→ (s, k)′, is an order-reversing involution. Moreover, if 〈µ, χM 〉 corresponds to
(µ,M) then 〈µ, χM 〉′ defined by 〈µ, χM 〉′(x) = (〈µ, χM 〉(x))′ corresponds to the comple-
ment (µ,M)′ of (µ,M). Hence:

2.21. Proposition. The Hutton algebra (SF (X),⊑, ′) is isomorphic to the Hutton al-
gebra (DX ,≤, ′) of D-fuzzy subsets of X.

2.22. Corollary. (D,≤, ′) is a Hutton algebra isomorphic to (I,⊆, ι).

Proof. If X is chosen to be a singleton then it is straightforward to show that SF (X) is
isomorphic to I. On the other hand SF (X) is then isomorphic to D by Proposition 2.21.
Hence D is isomorphic to I. �

Finally, the points are distinguished as the D-fuzzy subsets 〈xs, χ{x}〉, and the copoints
〈xs, χX\{x}〉,x ∈ X, s ∈ I. Hence all aspects of the theory of soft fuzzy sets may be equally
well expressed using this new representation.

3. SF -topologies

In this section we specialize the notion of L-topologies on X to the case of SF -
topologies on X. As expected, we will have a considerable simplification arising from the
very clean point structure.
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3.1. Definition. Let S be a set. A subset T ⊆ SF (X) is called an SF -topology on X if

SFT1 (0, ∅) ∈ T and (1,X) ∈ T .
SFT2 (µj ,Mj) ∈ T , j = 1, 2, . . . , n =⇒

dn

j=1(µj ,Mj) ∈ T .

SFT3 (µj ,Mj) ∈ T , j ∈ J =⇒
⊔

j∈J (µj ,Mj) ∈ T .

As usual, the elements of T are called open, and those of T ′ = {(µ,M) | (µ,M)′ ∈ T}
closed.

If T is an SF -topology on X we call the pair (X,T ) an SF -topological space.

The closure of a soft fuzzy set (µ,M) will be denoted by (µ,M). It is given by

(µ,M) =
l

{(ν,N) | (µ,M) ⊑ (ν,N) ∈ T ′}.

Likewise the interior is given by

(µ,M)o =
⊔

{(ν,N) | (ν,N) ∈ T, (ν,N) ⊑ (µ,M)}.

Bases and subbases may be defined and characterized exactly as in classical topology.

3.2. Definition. Let T be an SF -topology on X.

(1) B ⊆ T is called a base for T if each element of T can be written as a join of
elements of B. Equivalently, B is a base of T if and only if given (µ,M) ∈ T
and (xr, {x}) ∈ (µ,M) there exists (ν,N) ∈ B with (xr, {x}) ∈ (ν,N) ⊑ (µ,M).

(2) S ⊆ T is called a subbase of T if the set of finite meets of elements of S is a base
of T .

3.3. Proposition. A subset B ⊆ SF (X) is a base for some SF -topology on X if and
only if it satisfies the following conditions

SFB1
⊔

{(ν,N) | (ν,N) ∈ B} = (1,X).
SFB2 Given (ν1, N1), (ν2, N2) ∈ B and (xr, {x}) ∈ (ν1, N1) ⊓ (ν2, N2), there exists

(ν3, N3) ∈ B satisfying (xr, {x}) ∈ (ν3, N3) ⊑ (ν1, N1) ⊓ (ν2, N2).

Proof. Immediate in view of Theorem 2.17 (5). �

We note that, as in classical topology, any non-empty subset S of SF (X) is a subbase
for some SF -topology on X since the set of finite meets of elements of S trivially satisfies
SFB1 and SFB2.

Now let us consider continuity. Again our definition is a specialization of that used
for L-topologies.

3.4. Definition. Let T be an SF -topology on X and V an SF -topology on Y . Then a
function ϕ : X → Y is called T–V continuous if (ν,N) ∈ V =⇒ ϕ←(ν,N) ∈ T .

By Lemma 2.18 we see that identity functions are continuous, and that the composition
of two continuous functions is continuous. Hence SF -topological spaces and continuous
functions between the base sets define a construct which we denote by SF-Top. It is
straightforward to verify that SF-Top is topological over SF-Set.

The following result will be useful when discussing continuity.

3.5. Lemma. Let ϕ : X → Y be a function, x ∈ X, r ∈ I and (ν,N) ∈ SF (Y ). Then

(ϕ(x)r, {ϕ(x)}) ∈ (ν,N) ⇐⇒ (xr, {x}) ∈ ϕ←(ν,N).
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Proof.

(xr, {x}) ∈ ϕ←(ν,N) ⇐⇒ (xr, {x}) ∈ (ν ◦ ϕ,ϕ←N)

⇐⇒ r < (ν ◦ ϕ)(x) or r = (ν ◦ ϕ)(x) and x ∈ ϕ←M

⇐⇒ r < ν(ϕ(x)) or r = ν(ϕ(x)) and ϕ(x) ∈ N

⇐⇒ (ϕ(x)r, {ϕ(x)}) ∈ (ν,N),

whence the result. �

Now let us relate SF -topologies on X with ditopologies on (X × I,P(X) ⊗ I, σX). If
T is an SF -topology on X, then T ⊆ SF and we may apply the isomorphism (µ,M) 7→
Aξ(µ,M) to give Aξ[T ] ⊆ P(X)⊗I. Since Aξ(0,∅) = ∅, Aξ(1,X) = X×I, and the isomorphism
takes meet and join in SF (X) to intersection and union respectively in P(X) ⊗ I, it is
immediate that Aξ[T ] is a topology on the plain complemented texture (X × I,P(X) ⊗
I, σX). Also, by [5, Lemma 2.20], for (µ,M) ∈ T we have Aξ((µ,M)′) = σX(Aξ(µ,M)), so
Aξ[T ′] = σX(Aξ(T )) is a cotopology on (X × I,P(X)⊗ I, σX). Hence (Aξ[T ], Aξ[T ′]) is the
complemented ditopology on (X × I,P(X) ⊗ I, σX) corresponding to T .

Note that A
ξ((µ,M)) =

⋂

{Aξ(ν,N) | Aξ(µ,M) ⊆ Aξ(ν,N) ∈ Aξ[T ′]}, which is just the

closure of Aξ(µ,M) with respect to the ditopology (Aξ[T ],ξ[T ′]). Likewise, Aξ((µ,M)o) is the
interior of Aξ(µ,M).

Next we recall the functor E, which we now regard as mapping from SF-Set to
cifPTex. Let T be an SF -topology on X and V an SF -topology on Y . We wish to
show that if ϕ : X → Y is T–V continuous then 〈ϕ, id〉 : X× I → Y × I is (Aξ[T ], Aξ[T ′])–
(Aξ[V ], Aξ[V ′]) bicontinuous. We will need the following result.

3.6. Lemma. For ϕ : X → Y and (ν,N) ∈ SF (Y ) we have

〈ϕ, id〉−1[Aξ(ν,N)] = Aξ(ϕ←(ν,N)).

Proof. This equality follows at once from [5, Lemma 3.9] and the fact that the textures
are plain. �

Now take H ∈ Aξ[V ]. Then we have (ν,N) ∈ V with H = Aξ(ν,N), so 〈ϕ, id〉−1[H ] =

Aξ(ϕ←(ν,N)) by Lemma 3.6. But if ϕ is T–V continuous then ϕ←(ν,N) ∈ T so 〈ϕ, id〉−1[H ] ∈
Aξ[T ] as required. The cocontinuity of 〈ϕ, id〉 is proved likewise, and we see that E may
be regarded as a functor from SF-Top to cifPDitop. Restricting to complemented di-
topologies on textures of the form (X × I,P(X) ⊗ I, σX) we may regard E as a functor
from SF-Top to the subcategory cifPDitop

SF
. To make E into an isomorphism we will

also need to restrict our attention to the morphisms in cfPDitop
SF

of the form 〈ϕ, id〉.
This leads to the following definition.

3.7. Definition. The category whose objects are complemented ditopological textures
of the form (X × I, P(X) ⊗ I, σX×I, τX , κX), X ∈ ObSet, and whose morphisms are
the bicontinuous mappings 〈ϕ, id〉, ϕ ∈ Set(X,Y ), will be denoted by SF-Ditop.

Clearly SF-Ditop is a non-full subcategory of cfPDitop
SF

, and E : SF-Top →
SF-Ditop an isomorphism.

This isomorphism may be used to translate concepts and results for ditopological
texture spaces to SF -topologies on a set X. Indeed, this will be the source of the
material on separation axioms and compactness presented in the next section.

Since (Aξ[T ], Aξ[T ′]) is a ditopology on the product texture (X,P(X)) ⊗ (I, I) it is
natural to ask when this is the product of a ditopology on (X,P(X)) and a ditopology
on (I, I). Given a ditopology (τ, κ) on (X × I,P(X) ⊗ I) we let

τ 1 = {G ∈ P(X) | G× I ∈ τ} and κ1 = {K ∈ P(X) | K × I ∈ κ}.
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Clearly, (τ 1, κ1) is a ditopology on (X,P(X)). Likewise, (τ 2, κ2) defined by

τ 2 = {G ∈ I | X ×G ∈ τ} and κ2 = {K ∈ I | X ×K ∈ κ}

is a ditopology on (I, I). The product of (τ 1, κ1) and (τ 2, κ2) is a ditopology on (X ×
I,P(X)⊗ I) which is clearly coarser than (τ, κ). The following result gives necessary and
sufficient conditions under which these ditopologies coincide.

3.8. Lemma. The following are equivalent:

(1) The product of (τ 1, κ1) and (τ 2, κ2) coincides with (τ, κ).
(2) The following conditions hold:

(a) Given G ∈ τ , (x, r) ∈ X × I with P(x,r) ⊆ G, there exist G1 ∈ τ 1, G2 ∈ τ 2

satisfying P (x,r) ⊆ (G1 × I) ∩ (X ×G2) ⊆ G.

(b) Given K ∈ κ and (x, r) ∈ X × I with K ⊆ Q(x,r), there exist K1 ∈ κ1,

K2 ∈ κ2 satisfying K ⊆ (K1 × I) ∪ (X ×K2) ⊆ Q(x,r).

Proof. Clear from the definition of product ditopology and the fact that the texture
(X × I,P(X) ⊗ I) is plain. �

If (τ, κ) is complemented then (τ 1, κ1), (τ 2, κ2) are also complemented, so in particular
τ 1 is a topology on X in the usual sense, and κ1 is the set of closed sets under τ 1. This
suggests that we may define a functor G : SF-Ditop → Top by setting G(X× I,P(X)⊗
I, σX , τ, κ) = (X, τ 1) and G(〈ϕ, id〉) = ϕ. We verify that if 〈ϕ, id〉 ∈ MorSF-Ditop

then ϕ ∈ MorTop. Suppose that ϕ : X → Y and that the complemented ditopologies
are respectively (τX , κX) and (τY , κY ). Then for G ∈ τ 1

Y we have G× I ∈ τY and so if
〈ϕ, id〉 is bicontinuous we have 〈ϕ, id〉−1[G× I] ∈ τX . However it is trivial to verify that
〈ϕ, id〉−1[G× I] = ϕ−1[G] × I, so ϕ−1[G] ∈ τ 1

X and we have established that ϕ is τ 1
X–τ 1

Y

continuous.

The remaining conditions to be satisfied by G are easily verified, and we deduce that
G : SF-Ditop → Top is indeed a functor.

In the opposite direction we may define a functor F : Set → cifPTexSF by

F(X
ϕ
−→ Y ) = (X × I,P(X) ⊗ I, σX×I)

〈ϕ,id〉
−−−−→ (Y × I,P(Y ) ⊗ I, σY×I)

and specialize this functor to produce a family of functors from Top → SF-Ditop. To
this end, let (τ0, κ0) be a fixed but arbitrary complemented ditopology on (I, I, ι). Then
if T is a topology on X and T

c = {X \G | G ∈ T}, (T,Tc) is a complemented ditopology
on (X,P(X), πX) and we may define a complemented ditopology on (X×I,P(X)⊗I, σX)
by taking the product of (T,Tc) and (τ0, κ0). Now let (X,T), (Y,V) be topological spaces
and ϕ : (X,T) → (Y,V) continuous. The product topology V⊗τ0 has base G×H , G ∈ V,
H ∈ τ0, and 〈ϕ, id〉−1[G×H ] = ϕ−1[G] ×H ∈ T ⊗ τ0, whence 〈ϕ, id〉 is continuous, and
hence bicontinuous since the ditopologies are complemented.

This shows that the functor F specializes to a functor F(τ0,κ0) : Top → SF-Ditop

defined by setting F(τ0,κ0)(X,T) = (X×I,P(X)⊗I, σX , T⊗τ0,T
c⊗κ0) and F(τ0,κ0)(f) =

〈f, ιI〉.

As for the classical case [6, Theorem 5.12] we have:

3.9. Theorem. Choose τ0 = {I, ∅} = κ0. Then F(τ0,κ0) is an adjoint of G.

Proof. Take B = (X × I,P(X) ⊗ I, σX , τ, κ) ∈ ObSF-Ditop. Then, recalling that
G(X×I,P(X)⊗I, σX , τ, κ) = (X, τ 1), it will be sufficient to show that (〈idX , idI〉, (X, τ 1))
is an F(τ0,κ0) universal arrow with domain B.

Certainly 〈idX , idI〉 : X×I → X×I is τ–τ 1×{I, ∅} continuous, and hence bicontinuous
since the ditopologies are complemented. This verifies that (〈idX , idI〉, (X, τ 1)) is an
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F(τ0,κ0) structured arrow with domain B. If (〈ϕ, idI〉, (Y,V)) is also an F(τ0,κ0) structured
arrow with domain B we must prove the existence of a unique continuous function ϕ :
(X, τ 1) → (Y,V) making the following diagram commutative.

B
〈idX ,idI〉

//

〈ϕ,idI〉

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
F(τ0,κ0)(X, τ

1)

F(τ0 ,κ0)(ϕ)

��
�

�

�

�

�

F(τ0,κ0)(Y,V)

Clearly the only possible choice for ϕ is ϕ, so we must prove that ϕ : X → Y is τ 1–V

continuous. However, V ∈ V =⇒ V × I ∈ V⊗ τ0 =⇒ ϕ−1[V ]× I = 〈ϕ, idI〉
−1[V × I] ∈ τ

since 〈ϕ, idI〉 is a SF-Ditop morphism, whence ϕ−1[V ] ∈ τ 1 as required. �

There are other natural choices for the ditopology (τ0, κ0), and we will return to the
family of functors F(τ0,κ0) again later on.

The following results will be useful when working directly in terms of SF-Top.

3.10. Lemma.

(1) τ 1
T = {G ⊆ X | (χG, G) ∈ T} and

τ 2
T = {[0, r) | (r, ∅) ∈ T} ∪ {[0, s] | (s,X) ∈ T},

(2) The following are equivalent:
(i) τT = τ 1

T ⊗ τ 2
T .

(ii) For (h,H) ∈ T and (x, r) ∈ X × I satisfying (xr, {x}) ∈ (h,H) there exists
Y ⊆ X with (χY , Y ) ∈ T and s ∈ I so that

(xr, {x}) ∈ (χY ∧ s, ∅) ⊑ (h,H), (s, ∅) ∈ T, or

(xr, {x}) ∈ (χY ∧ s, Y ) ⊑ (h,H), (s,X) ∈ T.

(iii) There exists a subbase B of T so that for (h,H) ∈ B and (x, r) ∈ X × I

with (xr, {x}) ⊑ (h,H) there exist Y ⊆ X and s ∈ I as in (ii).
(iv) (X,T ) = F(τ2

T
,κ2

T
)(G(X,T )).

Proof. (1) Clear since Aξ(χG,G)) = G× I, Aξ(r,∅) = X × [0, r) and Aξ(r,X) = X × [0, r].

(2) (i) =⇒ (ii). Since (xr, {x}) ∈ (h,H) we have P(x,r) ⊆ Aξ(h,H). Also Aξ(h,H) ∈ τT ,

so we have G1 ∈ τ 1
T , G2 ∈ τ 2

T with P(x,r) ⊆ (G1 × I) ∩ (X × G2) ⊆ Aξ(h,H). By (1),
(χG1 , G1) ∈ T so we may take Y = G1, whence Y ⊆ X and (χY , Y ) ∈ T . There are two
cases to consider:

Case a. G2 = [0, s) for some s ∈ I. Then (s, ∅) ∈ T by (1), P(x,r) ⊆ (Y ×I)∩(X×[0, s)) ⊆
Aξ(h,H). Since Aξ(χY ,Y ) = Y × I and Aξ(s,∅) = X× [0, s) we have (Y × I)∩ (X × [0, s)) =
Aξ((χY ,Y )⊓(s,∅)) = Aξ(χY ∧s,∅), whence (xr, {x}) ∈ (χY ∧ s, ∅) ⊑ (h,H), as required.

Case b. G2 = X × [0, s] for some s ∈ I. Then (s,X) ∈ T , P(x,r) ⊆ (Y × I) ∩ (X ×
[0, s])A⊆ξ(h,H). Since Aξ(χY ,Y ) = Y × I and Aξ(s,X) = X × [0, s] we have (Y × I) ∩
(X × [0, s]) = Aξ((χY ,Y )⊓(s,X)) = Aξ(χY ∧s,Y ), whence (xr, {x}) ∈ (χY ∧ s, Y ) ⊑ (h,H),
as required.

(ii) =⇒ (iii). Immediate.

(iii) =⇒ (i). Take (h,H) ∈ T and (x, r) ∈ X × I with P(x,r) ⊆ Aξ(h,H). Suppose

that B is a subbase of T for which (ii) holds. Then there exist (hji ,H
j
i ) ∈ B, i ∈ Ij , Ij
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finite, j ∈ J , for which

(h,H) =
⊔

j∈J

( l

i∈Ij

(hji ,H
j
i )

)

.

Now Aξ(h,H) =
⋃

j∈J

(
⋂

i∈Ij
A
ξ(h

j
i
,H

j
i
)

)

, so P(x,r) ⊆
⋃

j∈J

(
⋂

i∈Ij
A
ξ(h

j
i
,H

j
i
)

)

, and there

exists j ∈ J for which P(x,r) ⊆
⋂

i∈Ij
A
ξ(h

j
i
,H

j
i
)
. It follows that for this j, P(x,r) ⊆

A
ξ(h

j
i
,H

j
i
)

for each i ∈ Ij . By (ii) we have Yi ⊆ X with (χYi
, Yi) ∈ T , and sj ∈ I having

the stated properties. Let Y =
⋂

i∈Ij
Yi. Then,

Aξ(χY ,Y ) = Y × I =
⋂

i∈Ij

(Yi × I) = A
ξ

(

d
i∈Ij

(χYi
,Yi)

),

so (χY , Y ) =
d
i∈Ij

(χYi
, Yi) ∈ T , since Ij is finite. Hence Y ∈ τ 1

T and clearly x ∈ Y . Let

s = min{si | i ∈ Ij}. There are two cases to consider.

Case 1. There exists k ∈ Ij with s = sk, (sk, ∅) ∈ T and (xr, {x}) ∈ (χYk
∧ s, ∅). Now

r < s, so since x ∈ Y we have (xr, {x}) ∈ (χY ∧ s, ∅). On the other hand, for i ∈ Ij we

have Y ⊆ Yi, s ≤ si, so (χY ∧s, ∅) ⊆ (χYi
∧si, ∅) ⊑ (hji ,H

j
i ) or (χY ∧s, ∅) ⊆ (χYi

∧si, Yi) ⊑

(hji ,H
j
i ). Hence (χY ∧ s, ∅) ⊑

d
i∈Ij

(hji ,H
j
i ) ⊑ (h,H), so P(x,r) ⊆ (Y × I)∩ (X × [0, s)) ⊆

Aξ(h,H). Here Y ∈ τ 1
T , [0, s) ∈ τ 2

T .

Case 2. For all i ∈ Ij with s = si, (si,X) ∈ T and (xr, {x}) ⊑ (χYi
∧ si, Yi). Now

(xr, {x}) ∈ (χY ∧s, Y ), while if (si, ∅) ∈ T then by hypothesis s < si. Hence (χY ∧s, Y ) ⊑
(χYi

∧ si, ∅) ⊑ (hji ,H
j
i ) or (χY ∧ s, Y ) ⊑ (χTi

∧ si, Yi) ⊑ (hji ,H
j
i ) for each i ∈ Ij . As in

Case 1, (xr, {x}) ∈ (χY ∧ s, Y ) ⊑ (h,H), so P(x,r) ⊆ (Y × I) ∩ (X × [0, s]) ⊆ Aξ(h,H).

Here Y ∈ τ 1
T , [0, s] ∈ τ 2

T .

This completes the proof that τT = τ 1
T ⊗ τ 2

T .

(i) ⇐⇒ (iv). Immediate from the definitions. �

3.11. Definition. An SF -topology T is called productive if it satisfies one, and hence
all, of the equivalent conditions of Lemma 3.10 (2).

4. Separation and compactness of SF -topological spaces

There are well-established separation axioms for ditopological texture spaces [7] which
apply, in particular, to spaces in the subcategory cifPDitopSF. Hence we may use
the isomorphism E : SF-Top → cifPDitop

SF
to define corresponding axioms for SF -

topologies. To illustrate this process we give the details for the R0 and co-R0 axioms.

4.1. Proposition. Let T be an SF -topology on X. Then the ditopology (Aξ[T ], Aξ[T ′])
on (X × I,P(X) ⊗ I, σX) is R0 if and only if

(g,G) ∈ T, (xs, {x}) ∈ (g,G) =⇒ (xs, {x}) ⊑ (g,G),

and co-R0 if and only if

(k,K) ∈ T ′, (xs, {x}) /∈ (k,K) =⇒ (k,K) ⊑ {xs,X \ {x})◦.

Proof. Under the isomorphism E, (g,G) ∈ T corresponds toAξ(g,G) ∈ Aξ[T ] and (xs, {x}) ∈
(g,G) to P(x,s) ⊆ Aξ(g,G), and hence to Aξ(g,G) 6⊆ Q(x,s) since we are dealing with
a plain texture. The R0 axiom now gives [P(x,s)] ⊆ Aξ(g,G), which corresponds to

(xs, {x}) ⊑ (g,G), as required. The result for the co-R0 axiom follows in a similar
way, and we omit the details. �
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It is shown in [7, Corollary 3.5] that for complemented ditopologies the notions of
R0 and co-R0 coincide. Since the ditopology (Aξ[T ], Aξ[T ′]) is complemented this will be
the case here, so we need only consider the R0 axiom for SF -topologies, regarding the
ditopological co-R0 axiom as giving an alternative description of the R0 axiom. Hence
we may make the following definition:

4.2. Definition. An SF–topology T on X is said to be R0 if it satisfies either, and
hence both, of the following equivalent conditions,

(a) (g,G) ∈ T , (xs, {x}) ∈ (g,G) =⇒ (xs, {x}) ⊑ (g,G),
(b) (k,K) ∈ T ′, (xs, {x}) /∈ (k,K) =⇒ (k,K) ⊑ {xs,X \ {x})◦.

Further equivalent conditions for the ditopological R0 and co-R0 axioms are given
in [7, Lemma 3.4], and these translate easily under the isomorphism Ef to equivalent
conditions for an SF -topology to be R0:

4.3. Proposition. Let T be an SF -topology on X. Then (X,T ) is R0 if and only if
one, and hence all, of the following equivalent conditions hold.

(i) For (g,G) ∈ T there are sets (ki,Ki) ∈ T ′, i ∈ I, with (g,G) =
⊔

i∈I(ki,Ki).

(ii) Given (g,G) ∈ T , s ∈ I with (xs, {x}) ∈ (g,G) there exists (k,K) ∈ T ′ with
(k,K) ⊑ (g,G) and (xs, {x}) ∈ (k,K).

(iii) For (k,K) ∈ T ′ there are sets (gi, Gi) ∈ T , i ∈ I, with (k,K) =
d
i∈I(gi, Gi).

(iv) Given (k,K) ∈ T ′, (x, s) ∈ X × I with (xs, {x}) 6⊑ (f, F ) there exists (g,G) ∈ T
with (k,K) ⊆ (g,G) and (xs, {x}) 6⊑ (g,G).

Using the above treatment of the R0 axiom as a guide, we now give the R1 and
regularity axioms without discussing the link with the corresponding ditopological axioms
in detail.

4.4. Definition. An SF–topology T on X is said to be R1 if it satisfies either, and
hence both, of the following equivalent conditions,

(a) (g,G) ∈ T , (xs, {x}) ∈ (g,G), {yt, {y}) /∈ (g,G) =⇒ ∃ (h,H) ∈ T with

(xs, {x}) ∈ (h,H) and {yt, {y}) /∈ (h,H).
(b) (k,K) ∈ T ′, (xs, {x}) /∈ (k,K), {yt, {y}) ∈ (k,K) =⇒ ∃ (f, F ) ∈ T ′ with

(xs, {x}) /∈ (f, F ) and {yt, {y}) ∈ (f, F )◦.

From [7, Lemma 3.7] we have the further equivalent conditions given below.

4.5. Proposition. Let T be SF -topology on X. Then (X,T ) is R1 if and only if it
satisfies any one of the following equivalent conditions.

(i) Given (g,G) ∈ T , (xs, {x}) ∈ (g,G) and {yt, {y}) /∈ (g,G) we have (h,H) ∈ T

with (xs, {x}) ∈ (h,H) ⊑ (h,H) ⊑ (yt,X \ {y}).
(ii) For (g,G) ∈ T we have (hij ,H

i
j) ∈ T , j ∈ Ji, i ∈ I, with

(g,G) =
⊔

i∈I

l

j∈Ji

(hij , H
i
j) =

⊔

i∈I

l

j∈Ji

(hij ,H
i
j).

(iii) Given (k,K) ∈ T ′, (xs, {x}) /∈ (k,K) and (yt, {y}) ∈ (k,K) we have (f, F ) ∈ T ′

with (yt, {y}) ∈ (f, F )◦ ⊑ (k,K) ⊑ (xs,X \ {x}).
(iv) For (k,K) ∈ T ′ we have (f ij , F

i
j ) ∈ T ′, j ∈ Ji, i ∈ I with

(k,K) =
l

i∈I

⊔

j∈Ji

(f ij , F
i
j ) =

l

i∈I

⊔

j∈Ji

(f ij , F
i
j )
◦.

4.6. Definition. An SF–topology T on X is said to be regular if it satisfies either, and
hence both, of the following equivalent conditions,
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(a) (g,G) ∈ T , (xs, {x}) ∈ (g,G) =⇒ ∃(h,H) ∈ T with (xs, {x}) ∈ (h,H)),

(h,H) ⊑ (g,G).
(b) (k,K) ∈ T ′, (xs, {x}) /∈ (k,K) =⇒ ∃(f, F ) ∈ T ′ with (xs, {x}) /∈ (f, F ),

(f, F ) ⊑ (k,K)◦.

According to [7, Lemma 3.10] we have:

4.7. Proposition. Let T be a SF -topology on X. Then (X,T ) is regular if and only if
it satisfies either of the following equivalent conditions:

(i) For (g,G) ∈ T we have (hi,Hi) ∈ T , i ∈ I, with

G =
⊔

i∈I

(hi,Hi) =
⊔

i∈I

(hi,Hi).

(ii) For (k,K) ∈ T ′ we have (fi, Fi) ∈ T ′, i ∈ I, with

(k,K) =
l

i∈I

(fi, Fi) =
l

i∈I

(fi, Fi)
◦.

It is clear from the definitions that

regular =⇒ R1 =⇒ R0.

We now turn to the T0 axiom, which is a self-dual property of ditopological texture spaces.
In [7, Theorem 4.7] several equivalent conditions for a ditopological texture space to be
T0 are given, one of which holds only for coseparated textures [7, Definition 4.2], that
is for textures satisfying Qs 6⊆ Qt ⇐⇒ Ps 6⊆ Pt. Since by [7, Lemma 4.3] every plain
texture is coseparated, this condition is included in the following definition of the T0

axiom for SF -topological spaces.

4.8. Definition. A SF -topology T on X is T0 if it satisfies one, and hence all, of the
following equivalent conditions.

(a) (xs, {x}) /∈ (yt, {t}) =⇒ ∃ (b,B) ∈ T ∪T ′ with (xs, {x}) /∈ (b,B) and (yt, {y}) ∈
(b,B).

(b) (xs, {x}) /∈ (yt, {x}) =⇒ ∃ (bi, Bi) ∈ T∪T ′, i ∈ I , with (yt, {y}) ∈
⊔

i∈I(bi, Bi) ⊑
(xs,X \ {x}).

(c) (xs, {x}) /∈ (yt, {y})) =⇒ ∃ (bi, Bi) ∈ T∪T ′, i ∈ I , with (yt, {y}) ∈
d
i∈I(bi, Bi) ⊑

(xs,X \ {x}).
(d) For (µ,M) ∈ SF (X) there exist (bij , B

i
j) ∈ T ∪ T ′, i ∈ I , j ∈ Ji, with (µ,M) =

⊔

i∈I

d
j∈Ji

(bij , B
i
j).

(e) (xs, {x}) ⊑ (yt, {y}) and (xs,X \ {x})◦ ⊑ (yt,X \ {y})◦ =⇒ (xs, {x}) ∈
(yt, {y}).

(f) For all copoints (xs,X \ {x}) there exist (bi, Bi) ∈ T ∪ T ′, i ∈ I , with (xs,X \
{x}) =

⊔

i∈I(bi, Bi).

(g) For all points (xs, {x}) there exist (bi, Bi) ∈ T ∪ T ′, i ∈ I , with (xs, {x}) =d
i∈I(bi, Bi).

Now we may give:

4.9. Definition. An SF -topology is called:

(1) T1 if it is T0 and R0.
(2) T2 if it is T0 and R1.
(3) T3 if it is T0 and regular.

Clearly,

T3 =⇒ T2 =⇒ T1 =⇒ T0,
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exactly as for classical topology. According to [7, Theorem 4.11] we have the following
characterizations of the T1 property.

4.10. Proposition. An SF -topology T on X is T1 if and only if it satisfies one, and
hence all, of the equivalent conditions below:

(i) For any (µ,M) ∈ SF (X) we have (fi, Fi) ∈ T ′, i ∈ I, with (µ,M) =
⊔

i∈I(fi, Fi).

(ii) (xs, {x}) /∈ (yt, {y}) =⇒ ∃ (f, F ) ∈ T ′ satisfying (xs, {x}) /∈ (f, F ) 6⊑ (yt,X \
{y}).

(iii) (xs, {x}) ∈ T ′ for all points (xs, {x}).
(iv) For any (µ,M) ∈ SF (X) we have (gi, Gi) ∈ T , i ∈ I, with (µ,M) =

d
i∈I(gi, Gi).

(v) (xs, {x})) /∈ (yt, {y})) =⇒ ∃ (g,G) ∈ T satisfying (xs, {x}) /∈ (g,G) 6⊑ (yt,X \
{y}).

(vi) (xs,X \ {x}) ∈ T for all copoints (xs,X \ {x}).

Finally, [7, Theorem 4.17] leads to the following characterizations of the T2 or Haus-
dorff property for SF -topological spaces.

4.11. Proposition. An SF -topology T on X is T2 if and only if it satisfies either, and
hence both, of the following equivalent conditions.

(a) (xs, {x}) /∈ (yt, {y}) =⇒ ∃ (h,H) ∈ T and (k,K) ∈ T ′ with (h,H) ⊑ (k,K),
(xs, {x}) /∈ (k,K) and (yt, {y}) ∈ (h,H).

(b) For (µ,M) ∈ SF (X) there exist (hij ,H
i
j) ∈ T, (kij ,K

i
j) ∈ T ′, i ∈ I, j ∈ Ji, with

(hij ,H
i
j) ⊑ (kij ,K

i
j) for all i, j so that

(µ,M) =
⊔

i∈I

l

j∈Ji

(hij ,H
i
j) =

⊔

i∈I

l

j∈Ji

(kij ,K
i
j).

Finally we note the following:

4.12. Definition. The SF -topology T on X is normal if given (k,K) ∈ T ′, (g,G) ∈ T

with (k,K) ⊑ (g,G) there exists (h,H) ∈ T satisfying (f, F ) ⊑ (h,H) ⊑ (h,H) ⊑ (g,G).

It should be noted that [7] also gives a notion of complete regularity for ditopological
texture spaces. However, we do not discuss the corresponding property for SF -topological
spaces in the present paper.

We now turn to compactness. Notions of compactness, cocompactness; and of stability,
costability for ditopological texture spaces are given in [2], see also [11], the terminol-
ogy being adapted from that used by R.D. Kopperman in [10] for the corresponding
bitopological properties. Again, compactness and cocompactness, stability and costabil-
ity coincide for complemented ditopologies, so we need only define corresponding notions
of compactness and stability for SF -topological spaces.

4.13. Definition. Let T be a SF -topology on X. Then (X,T ) is called:

(1) Compact if it satisfies either, and hence both, of the following equivalent condi-
tions:
(a) Whenever

⊔

i∈I(gi, Gi) = (1,X), (gi, Gi) ∈ T , i ∈ I , there is a finite subset
J of I with

⊔

j∈J (gj , Gj) = (1,X).

(b) Whenever
d
i∈I(fi, Fi) = (0, ∅), (fi, Fi) ∈ T ′, i ∈ I , there is a finite subset

J of I with
d
j∈J (fj , Fj) = (0, ∅).

(2) Stable if it satisfies either, and hence both, of the following equivalent conditions:
(a) For (k,K) ∈ T ′ \ {(1, X)}, whenever (k,K) ⊑

⊔

i∈I(gi, Gi), (gi, Gi) ∈ T ,
i ∈ I , there is a finite subset J of I with (k,K) ⊑

⊔

j∈J (gj , Gj).

(b) For (g,G) ∈ T \ {(0, ∅)}, whenever
d
i∈I(fi, Fi) ⊑ (g,G), (fi, Fi) ∈ T ′,

i ∈ I , there is a finite subset J of I with
d
j∈J (fj , Fj) ⊑ (g,G).
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4.14. Proposition.

(1) A stable R1 SF -topology is regular.
(2) A regular stable SF -topology is normal.

Proof. This follows immediately from the corresponding results for ditopological texture
spaces presented in [11]. �

A ditopological space that satisfies all four of the properties compact, cocompact,
stable and costable is called dicompact. There is good evidence that dicompactness is
an extremely important compactness notion in ditopological texture spaces, just as its
counterpart is in bitopological spaces, and as mentioned previously one of our main
motivations in replacing the texture (L,L, λ) by the unit interval texture (I, I, ι) as the
foundation of a theory of fuzzy sets is that the natural ditopology (τI, κI) on (I, I, ι)
is dicompact. An important consequence of this fact will become apparent later in
connection with a concept of Lowen functor for SF -topologies.

5. The Lowen Functors

In this section we define and study functors between Top and SF-Top analogous to
the Lowen functors ω and ι between Top and I-Top [12, 13, 14].

5.1. Definition. Let T be a topology on X. We denote by ω(T) the SF -topology on X
with subbase BT = {(µ,M) ∈ SF (X) | {x | (xr, {x}) ∈ (µ,M)} ∈ T ∀ r ∈ I}, and speak
of T 7→ ω(T) as the (generalized) Lowen mapping ω.

Suppose that (X,T), (Y,V) are topological spaces and that ϕ : X → Y is T–V contin-
uous. By Lemma 3.5 it is easy to see that for (ν,N) ∈ BV , r ∈ I, we have

{x | (xr, {x}) ∈ ϕ←(ν,N)} = ϕ−1[{y | (yr, {y}) ∈ (ν,N)}].

On the other hand, {y | (yr, {y}) ∈ (ν,N)} ∈ V, so {x | (xr, {x}) ∈ ϕ←(ν,N)} ∈ T for
all r ∈ I. This shows that ϕ←(ν,N) ∈ BT ⊆ ω(T), whence ϕ is ω(T)–ω(V) is continuous.
Hence the Lowen mapping ω may be regarded as the functor from Top to SF-Top

that takes (X,T) ∈ ObTop to (X,ω(T)) ∈ ObSF-Top, and ϕ ∈ Top((X,T), (Y,V)) to
ϕ ∈ SF-Top((X,ω(T)), (Y, ω(V))).

5.2. Definition. Let T be an SF -topology on X. We denote by ι(T ) the topology on
X with subbase {{x | (xr, {x}) ∈ (µ,M)} | (µ,M) ∈ T, r ∈ I}, and speak of T 7→ ι(T )
as the (generalized) Lowen mapping ι.

Suppose that (X,T ), (Y, V ) are SF–topological spaces and that ϕ : X → Y is T–V
continuous. Take (ν,N) ∈ V , r ∈ I, so that {y | (yr, {y}) ∈ (ν,N)} is a sub-basic
element of ι(V ). By the above equality ϕ−1[{y | (yr, {y}) ∈ (ν,N)}] ∈ ι(T ) since
ϕ←(ν,N) ∈ T and so {x | (xr, {x}) ∈ ϕ←(ν,N)} ∈ ι(T ) for each r ∈ I. This verifies
that ϕ is ι(T )– ι(V ) continuous. Hence the Lowen mapping ι may be regarded as the
functor from SF-Top to Top that takes (X,T ) ∈ ObSF-Top to (X, ι(T )) ∈ ObTop,
and ϕ ∈ SF-Top((X,T ), (Y, V )) to ϕ ∈ Top((X, ι(T )), (Y, ι(V ))).

As for the classical Lowen functors (see [14]) we have:

5.3. Theorem. The Lowen functor ι is an adjoint and the Lowen functor ω a co-adjoint.

Proof. Take (X,T) ∈ ObTop. We claim that (idX , (X,ω(T)) is a universal arrow with
domain (X,T). To prove this we need to first verify that the identity point function
idX : X → X is T–ι(ω(T)) continuous, and for this it is clearly sufficient to note that
for (µ,M) ∈ BT we have {x | (xr, {x}) ∈ (µ,M)} ∈ T for all r ∈ I. To show that ι
is an adjoint it remains only to show that the structured arrow (idX , (X,ω(T)) has the
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universal property. Hence, let (ϕ, (Y, V )) be any structured arrow with domain (X,T).
We must prove the existence of a unique SF-Top morphism ϕ : X → Y making the
following diagram commutative.

(X,T)
idX

//

f

))R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

(X, ι(ω(T)))

ι(ϕ)

��
�

�

�

�

(Y, ι(V ))

Clearly the only possible choice for ϕ is ϕ, so we must show that ϕ is ω(T)–V continuous.
Since ϕ is T–ι(V ) continuous, for (ν,N) ∈ V and r ∈ I we have ϕ−1[{y | (yr, {y}) ∈
(ν,N)}] ∈ T. But by Lemma 3.5 we deduce {x | (xr, {x}) ∈ ϕ←(ν,N)} ∈ T for all r ∈ I,
whence ϕ←(ν,N) ∈ ω(T) for all (ν,N) ∈ V , which establishes the ω(T)–V continuity of
ϕ.

Hence, ι is an adjoint, and by [1, Theorem 19.1] we may deduce that ω is a co-
adjoint. �

5.4. Proposition. Let T be a topology on X and ω the Lowen mapping. Then:

(1) For s ∈ I we have (s, ∅) ∈ ω(T) and (s,X) ∈ ω(T), where s is the constant
function on X with value s.

(2) For G ∈ T we have (χG, G) ∈ ω(T).
(3) The SF -topology ω(T) is productive.

Proof. (1) It is clear that

{x | (xr, {x}) ∈ (s, ∅)} =

{

X if r < s,

∅ otherwise,
,

{x | (xr, {x}) ∈ (s,X)} =

{

X if r ≤ s,

∅ otherwise,

and so these soft fuzzy sets belong to BT , and therefore to ω(T).

(2). Clear since {x | (xr, {x}) ∈ (χG, G)} = G ∈ T for all r ∈ I.

(3) Take (x, r) ∈ X × I and (µ,M) ∈ BT with (xr, {x}) ∈ (µ,M). Define Y =
{y ∈ X | (yr, {y}) ∈ (µ,M)}. Then x ∈ Y , and Y ∈ T by the definition of BT . Since
{u ∈ X | (us, {u}) ∈ (χY , Y )} = Y ∈ T for all s ∈ I we deduce that (χY , Y ) ∈ BT ⊆ ω(T).
Finally, for s = r we have (s,X) ∈ ω(T) by (1), and it is easy to verify that

(xr, {x}) ∈ (χY ∧ s, Y ) ⊑ (µ,M),

so the conditions of Lemma 3.10 (2 iii) hold for the subbase BT of Definition 5.1. Hence,
ω(T) is productive. �

5.5. Corollary. Let T be a topology on X and ω the Lowen mapping. Then ω(T) satisfies
τω(T) = T ⊗ I, κω(T) = T

c ⊗ I. In particular, the set

B∗ = {(s, ∅) | s ∈ I} ∪ {(s, X) | s ∈ I} ∪ {(χY , Y ) | Y ∈ T}

is a subbase for ω(T).

Proof. By Proposition 5.4 (3) we have τω(T) = τ 1
ω(T) × τ 2

ω(T). By Lemma 3.10 (1) we

obtain I = {[0, s) | s ∈ I} ∪ {[0, s] | s ∈ I} ⊆ τ 2
ω(T) ⊆ I from Proposition 5.4 (1), and

T ⊆ τ 1
ω(T) from Proposition 5.4 (2). To obtain the first equality it remains to prove that

τ 1
ω(T) ⊆ T. Take G ∈ τ 1

ω(T). If G = ∅ then G ∈ T so assume G 6= ∅ and take x ∈ G.
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Now (χG, G) ∈ ω(T) and (x1, {x}) ∈ (χG, G), so by the definition of subbase there exists
(µi,Mi) ∈ B, 1 ≤ i ≤ n with (x1, {x}) ∈

dn

i=1(µi,Mi) ⊑ (χG, G). Set

Yi = {y | (y1, {y}) ∈ (µi,Mi), i = 1, 2, . . . , n}.

Then x ∈ Yi ∈ T and so x ∈
⋂n

i1
Yi ∈ T. Finally it is easy to verify that

⋂n

i=1 Yi ⊆ G, so

G ∈ T as required.

This completes the proof of τω(T) = T ⊗ I, and κω(T) = T
c ⊗ I follows by taking the

complement.

Since the sets G× I, G ∈ T, X× [0, s), X× [0, s], s ∈ I form a subbase for the topology
T ⊗ I, the set B∗ is a subbase for ω(T). �

This result shows that the generalized Lowen functor ω involves the discrete, codiscrete
ditopology (I, I) on (I, I, ω), a result which is quite analogous to that for the classical
Lowen functor [6, Theorem 5.14]. We wish to show that we may replace ω by a functor
that involves the dicompact natural ditopology on (I, I, ω). As a first step we define a
special class of soft fuzzy sets.

5.6. Definition. The soft fuzzy set (µ,M) ∈ SF (X) is called rotund if

(xr, {x}) ∈ (µ,M), r < 1 =⇒ ∃ s > r with (xs, {x}) ∈ (µ,M).

We denote by SFr(X) the set of rotund soft fuzzy subsets of X.

5.7. Example. For s ∈ I and A ⊆ X we have

(1) (s, ∅) and (χA, A) are rotund.
(2) (s,X) is not rotund.

Clearly (1) follows from (xr, {x}) ∈ (s, ∅) ⇐⇒ r < s and (xr, {x}) ∈ (χA, A) ⇐⇒ x ∈
A, while (2) follows from (xr, {x}) ∈ (s,X) ⇐⇒ r ≤ s.

5.8. Lemma. The family SFr(X) is closed under arbitrary joins and finite meets.

Proof. First take (µj ,Mj) ∈ SFr(X), j ∈ J and (xr, {x}) ∈
⊔

j∈J (µj ,Mj) with r < 1.

Then (xr, {x}) ∈ (µj ,Mj) for some j ∈ J , whence we have r < s with (xs, {x}) ∈
(µj ,Mj) ⊑

⊔

j∈J (µj ,Mj).

It will be sufficient to prove that the meet of two rotund soft fuzzy sets is rotund, so
take (µ1,M1), (µ2,M2) ∈ SFr(X) and r < 1 with (xr, {x}) ∈ (µ1,M1) ⊓ (µ2,M2). From
(xr, {x}) ∈ (µ1,M1) we have r < s1 with (xs1 , {x}) ∈ (µ1,M1), and likewise we have
r < s2 with (xs2 , {x}) ∈ (µ2,M2). Setting s = min{s1, s2} now gives

(xs, {x}) ∈ (xs1 , {x}) ⊓ (xs2 , {x}) ⊑ (µ1,M1) ⊓ (µ2,M2),

whence (xs, {x}) ∈ (µ1,M1) ⊓ (µ2,M2), as required. �

5.9. Definition. Let T be a topology on X. We denote by ωr(T) the SF–topology on

X with subbase BT
r = {(µ,M) ∈ SFr(X) | {x | (xr, {x}) ∈ (µ,M)} ∈ T ∀ r ∈ I}, and

refer to ωr as the Lowen rotund mapping.

We note that with the notation of Definition 5.1 we have BT
r = BT ∩ SFr(X). Since

SFr(X) ⊂ SF (X) we may again regard ωr as a functor from Top to SF-Top.

5.10. Proposition. Let T be a topology on X and ωr the Lowen rotund functor. Then:

(1) For s ∈ I we have (s, ∅) ∈ ωr(T) .
(2) For G ∈ T we have (χG, G) ∈ ωr(T).
(3) The SF -topology ωr(T) is productive.
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Proof. (1) and (2) are clear since (s, ∅), (χG, G), G ∈ T, belong to BT by the proof of
Proposition 5.4, and they belong to SFr(X) by Example 5.7.

(3) Take (x, r) ∈ X × I and (µ,M) ∈ BT
r with (xr, {x}) ∈ (µ,M). Define Y = {y ∈

X | (yr, {y}) ∈ (µ,M)}. Then x ∈ Y , and Y ∈ T by the definition of BT
r . Since {u ∈

X | (us, {u}) ∈ (χY , Y )} = Y ∈ T for all s ∈ I we deduce that (χY , Y ) ∈ BT
r ⊆ ωr(T).

Finally, for r < s we have (s,X) ∈ ωr(T) by (1), and it is easy to verify that

(xr, {x}) ∈ (χY ∧ s,X) ⊑ (µ,M),

so the conditions of Lemma 3.10 (2 iii) hold for the subbase BT
r of Definition 6.9. Hence,

ωr(T) is productive. �

5.11. Corollary. Let T be a topology on X and ωr the Lowen rotund functor. Then
ωr(T) satisfies τωr(T) = T ⊗ τI, κωr(T) = T

c ⊗ κI. In particular, the set

B∗r = {(s, ∅) | s ∈ I} ∪ {(χY , Y ) | Y ∈ T}

is a subbase for ωr(T).

Proof. By Proposition 5.10 (3) we have τωr(T) = τ 1
ωr(T) × τ 2

ωr(T). By Lemma 3.10 (1)

we obtain τI = {[0, s) | s ∈ I} ∪ {I} ⊆ τ 2
ωr(T) ⊆ τI from Proposition 5.10 (1), and

T ⊆ τ 1
ωr(T) from Proposition 5.10 (2). To obtain the first equality it remains to prove

that τ 1
ωr(T) ⊆ T. Take G ∈ τ 1

ωr(T). If G = ∅ then G ∈ T so assume G 6= ∅ and take

x ∈ G. Now (χG, G) ∈ ωr(T) and (xr, {x}) ∈ (χG, G), so by the definition of subbase
there exists (µi,Mi) ∈ B, 1 ≤ i ≤ n with (xr, {x}) ∈

dn

i=1(µi,Mi) ⊑ (χG, G). Set

Yi = {y | (y1, {y}) ∈ (µi,Mi), i = 1, 2, . . . , n}.

Then x ∈ Yi ∈ T and so x ∈
⋂n

i1
Yi ∈ T. Finally it is easy to verify that

⋂n

i=1 Yi ⊆ G, so
G ∈ T as required.

This completes the proof of τωr(T) = T ⊗ τI, and κωr(T) = T
c ⊗ κI follows by taking

the complement.

Since the sets G × I, G ∈ T, X × [0, s), s ∈ I form a subbase for the topology T ⊗ I,
the set B∗r is a subbase for ωr(T). �

6. The preservation of topological properties by the Lowen

functors ω and ωr

It is well known that the classical Lowen functor ω preserves the separation axioms
but not compactness. We will see that the generalized Lowen functor ω from Top to
SF-Top has just the same property, but that the Lowen rotund functor ωr preserves
both the separation axioms and compactness. The existence of a functor from Top to
SF-Top that preserves, in particular, the compact Hausdorff property is one of the most
important gains that is achieved by replacing classical fuzzy sets by soft fuzzy sets.

Let us consider the functor F(τI,κI) : Top → SF-Ditop, where (τI, κI) is the natural
ditopology τI = {[0, s) | s ∈ I} ∪ {I}, κI = {[0, s] | s ∈ I} ∪ {∅} on (I, I, ι). Hence, for
(X,T) ∈ Top we have

F(τI,κI)(X,T) = (X × I, P(X) ⊗ I, σX , T ⊗ τI, T
c ⊗ κI).

Now by Corollary 5.11 we have T ⊗ τI = τωr(T) and T
c⊗κI = κωr(T). On the other hand,

for the isomorphism E : SF-Top → SF-Ditop we have

E
−1(X × I, P(X) ⊗ I, σX , τωr(T), κωr(T)) = (X,ωr(T)).
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We deduce at once that

ωr = E
−1 ◦ F(τI,κI),

and likewise, using Corollary 5.5,

ω = E
−1 ◦ F(I,I).

Since E
−1
f is an isomorphism it follows that we may consider F(τI,κI), F(I,I) in place of ωr,

ω respectively. Hence the question we must ask is whether the fact that T has a certain
topological property implies that (T ⊗ τI,T

c⊗κI) or (T⊗ I,Tc⊗ I) has the corresponding
ditopological property.

To be definite we will restrict our attention to the topological properties T0, R0, R1,
regular, and compact.

The first thing to notice is that the natural complemented ditopology (τI, κI) has
all the corresponding separation properties T0, R0, R1 and regular [7], and also the
dicompactness property [2]. On the other hand the finer ditopology (I, I) satisfies the
separation axioms, but is not dicompact. Indeed, the set [0, 1) is closed, but the open
cover {[0, 1 − ǫ) | 0 < s < 1} has no finite subcover. Hence (I, I) is not stable and hence
not dicompact.

Secondly, if T has one of the properties mentioned above, we must determine if (T,Tc)
has the corresponding ditopological property.

6.1. Proposition. Let (X,T) be a topological space and (X,P(X), πX , T,T
c) the corre-

sponding ditopological texture space. Then

(1) If (X,T) is T0, R0, R1 or regular then (X,P(X), πX ,T,T
c) is respectively T0, R0,

R1, or regular.
(2) If (X,T) is compact then (X,P(X), πX ,T,T

c) is dicompact.

Proof. (1) Let (X,T) be T0 and take x, y in X with Qx 6⊆ Qy. Then X \ {x} 6⊆ X \ {y}
and so x 6= y. Since (X,T) is T0 we have G ∈ T with

(x /∈ G and y ∈ G) or (x ∈ G and y /∈ G).

In the first case take B = G ∈ T ⊆ τ , and in the second case take B = X \G ∈ T
c. Then

in either case Px 6⊆ B 6⊆ Qy and B ∈ T ∪ T
c, so the ditopology (T,Tc) is T0.

Now let (X,T) be R0 and take G ∈ T and x ∈ X with G 6⊆ Qx. Then x ∈ G and

so K = {x} ⊆ G. Then in (X,P(X), πX ,T,T
c) we have Px ⊆ K ⊆ G, K ∈ T

c, whence
[Px] ⊆ G and so (T,Tc) is R0.

Suppose that (X,T) is R1 and take G ∈ T, x, y ∈ X with G 6⊆ Qx, Py 6⊆ G. Then

x /∈ {y} so since (X,T) is R1 the points x and y are contained in disjoint open sets. Hence
there exists H ∈ T with x ∈ H and y /∈ H . We deduce that H 6⊆ Qx and Py 6⊆ [H ],
whence (T,Tc) is R1.

Finally, let (X,T) be regular and take G ∈ T, x ∈ X with G 6⊆ Qx. Then x ∈ G
and since for a regular space each point has a base of closed neighborhoods there exists
H ∈ T with x ∈ H ⊆ H ⊆ G. This gives H 6⊆ Qx, [H ] ⊆ G, so (T,Tc) is regular.

(2) Let (X,T) be compact. Then every closed subset of X is also compact, so (T,Tc)
is compact and stable. Since this ditopology is complemented it is also cocompact and
costable, so (T,Tc) is dicompact. �

In view of the fact that the ditopological properties T0, R0, R1, R2, regular and
dicompact are all productive (see respectively, [7] and [11]) we obtain the following.
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6.2. Theorem.

(1) The Lowen rotund functor ωr preserves the properties R0, R1, regular, T0, T1,
T2, T3 and compactness.

(2) The generalized Lowen functor ω preserves the properties R0, R1, regular, T0,
T1, T2 and T3, but not compactness.

It is not known if the Lowen functors preserve normality.
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